2015年广州市中考数学试题

合集下载

2015年中考数学试题_方程与不等式_专题解题评析(2016.1中国数学教育)

2015年中考数学试题_方程与不等式_专题解题评析(2016.1中国数学教育)
2 ax2 1 + bx1 + c = 0,且 ax2 + bx2 + c = 0 成立,则 x1,x2 是
一元二次方程 ax2 + bx + c = 0 (a≠0 ) 的两根的应用是学 生常常遗漏的方法. 1. 分式方程的相关概念理解 例8 ( 山东 · 东营卷 ) 若分式方程 x - a = a 无解, x+1 则 a 的值为 答案:a = ±1. 2. 二次方程的相关概念理解 例9 ( 四川 · 达州卷 ) 方程 (m - 2 ) x 2 - 姨3 - m x + 1 = 0 有两个实数根,则 m 的取值范围为 ( 4 (A )m> 5 2 (C ) m≠3 答案:B. 湖北 · 鄂州卷 ) 关于 x 的一元二次方程 x2 + 例 10 ( (2k + 1 ) x + k2 + 1 = 0 有两个不等实根 x1,x2. (1 )求实数 k 的取值范围. (2 )若方程两实根 x1,x2 满足 x1 + x2 = x1·x2, 求 k 的值. 答案: (1 )k > 3 ; 4 (2 )k = 2. 例 11 ( 四川 · 凉山卷 ) 已知实数 m,n 满足 3m2 + 6m - 5 = 0, 3n2 + 6n - 5 = 0,且 m ≠n,则 n + m = m n . 答案:- 22 . 5 】 对分式方程的验根是必需的步骤 . 例 8 中 【 评析 ) . .
二、应用探究类
38
2016 年第 1—2 期
ZHONGKAOZHINAN 一元一次方程组 、分式方程、二元一次方程或一元一 次不等式解决实际问题 . 常见的题目就不再赘述,仅 列举探究性较强的题目进行评析. 例7 ( 浙江 · 义乌卷 ) 实验室里,水平桌面上有 甲、乙、丙三个圆柱形容器 ( 容器足够高 ),底面半径 之比为 1 ∶ 2 ∶ 1,用两个相同的管子在容器的 5 cm 高度 处连通 ( 即管子底端离容器底 5 cm ),现三个容器中, 只有甲中有水,水位高 1 cm,如图 1 所示 . 若每分钟 同时向乙和丙注入相同量的水,开始注水 1 分钟,乙 的水位上升 5 cm,则开始注入 6 后,甲与乙的水位高度之差是 0.5 cm.

广东省各市2015年中考数学试题分类汇编(解析版)专题3:方程(组)问题

广东省各市2015年中考数学试题分类汇编(解析版)专题3:方程(组)问题

广东省各市2015年中考数学试题分类解析汇编(20专题)专题3:方程(组)问题1. (2015年广东佛山3分)若()()221x x x mx n +-=++,则m n +=【 】A. 1B. 2-C. 1-D. 2 【答案】C.【考点】求代数式的值;整体思想的应用.【分析】∵()()221x x x mx n +-=++,即222x x x mx n +-=++,∴2mx n x +=-. 令1x =得1m n +=-. 故选C.2. (2015年广东佛山3分)如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m ,另一边减少了3m ,剩余一块面积为202m 的矩形空地,则原正方形空地的边长是【 】A. 7mB. 8mC. 9mD. 10m 【答案】A.【考点】一元二次方程的应用(几何问题). 【分析】设原正方形空地的边长是xm ,根据题意,得()()3220x x --=,化简,得25140x x --=,解得127,2x x ==- (不合题意,舍去).∴原正方形空地的边长是7m . 故选A.3. (2015年广东广州3分)已知,a b 满足方程组51234a b a b +=⎧⎨-=⎩,则a b +的值为【 】A. 4-B. 4C. 2-D. 2 【答案】B.【考点】解二元一次方程组;求代数式的值;整体思想的应用.【分析】由51234a b a b +=⎧⎨-=⎩两式相加,得4416a b +=,∴4a b +=. 故选B.4. (2015年广东广州3分)已知2是关于x 的方程2230x mx m -+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为【 】A. 10B. 14C. 10或14D. 8或10 【答案】B.【考点】一元二次方程的解和解一元二次方程;确定三角形的条件.【分析】∵2是关于x 的方程2230x mx m -+=的一个根,∴4430m m -+=,解得4m =.∴方程为28120x x -+=,解得122,6x x == .∵这个方程的两个根恰好是等腰三角形ABC 的两条边长, ∴根据三角形三边关系,只能是6,6,2. ∴三角形ABC 的周长为14. 故选B.5. (2015年广东深圳3分)某商品的标价为200元,8折销售仍赚40元,则商品进价为【 】元.A. 140B. 120C. 160D. 100 【答案】B.【考点】一元一次方程的应用(销售问题). 【分析】设商品进价为x 元,根据题意,得2000.840x ⋅-=,解得120x =. ∴商品进价为120元. 故选B.6. (2015年广东3分)若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是【 】 A. 2a ≥ B. 2a ≤ C. 2a > D. 2a < 【答案】C.【考点】一元二次方程根的判别式;解一元一次不等式. 【分析】∵关于x 的方程2904+-+=x x a 有两个不相等的实数根, ∴291404⎛⎫∆=-+> ⎪⎝⎭-a ,即1+4a -9>0,解得2>a .故选C.7. (2015年广东珠海3分)一元二次方程2104x x ++=的根的情况是【 】 A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 无实数根 D. 无法确定根的情况【答案】B.【考点】一元二次方程根的判别式. 【分析】∵对于方程2104x x ++=有2114104D =-创=, ∴方程2104x x ++=有两个相等的实数根. 故选B.1. (2015年广东佛山3分)分式方程132x x=-的解是 ▲ . 【答案】3x =. 【考点】解分式方程.【分析】首先去掉分母,观察可得最简公分母是()2x x -,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:()1332362632x x x x x x x x=⇒=-⇒=-⇒-=-⇒=-, 经检验,3x =是原方程的解, ∴原方程的解是3x =.2. (2015年广东4分)分式方程321=+x x的解是 ▲ . 【答案】2=x . 【考点】解分式方程【分析】去分母,得:()321=+x x ,解得:2=x ,经检验,2=x 是原方程的解, ∴原方程的解是2=x .1. (2015年广东梅州9分)已知关于x 的方程2220x x a ++-=. (1)若该方程有两个不相等的实数根,求实数a 的取值范围; (2)当该方程的一个根为1时,求a 的值及方程的另一根.【答案】解:(1)∵关于x 的方程2220x x a ++-=有两个不相等的实数根,∴()2242>0a ∆=--,解得,<3a .(2)∵该方程的一个根为1,∴1220a ++-=,解得,1a =-.∴原方程为2230x x +-=,解得121,3x x ==- .∴1a =-,方程的另一根为3-.【考点】一元二次方程的根和根的判别式;解一元二次方程和一元一次不等级式.【分析】(1)由方程有两个不相等的实数根,根据根的判别式大于0得到关于a 的不等级式,解之即可.(2)当该方程的一个根为1时,代入方程即可求得a 的值,从而得到方程,解之即得另一根.2. (2015年广东佛山8分)某景点的门票价格如下表:购票人数/人 1-50 51-100 100以上每人门票价/元12108某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付1118元,如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?【答案】解:(1)设七年级(1)有x 名学生,七年级(2)有y 名学生,若两班人数多于50人且少于100人,有()1210111810816x y x y +=⎧⎪⎨+=⎪⎩,解得15169.4x y =⎧⎨=⎩,不合题意,舍去.若两班人数多于100人,有()121011188816x y x y +=⎧⎪⎨+=⎪⎩,解得4953x y =⎧⎨=⎩.答:七年级(1)有49名学生,七年级(2)有53名学生. (2)∵()()49128196,53108106⨯-=⨯-= ,∴团体购票与单独购票相比较,七年级(1)节约了196元,七年级(2)节约了106元.【考点】二元一次方程组的应用;分类思想的应用.【分析】(1)方程组的应用解题关键是找出等量关系,列出方程级求解. 本题设七年级(1)有x 名学生,七年级(2)有y 名学生,等量关系为:“两班都以班为单位单独购票,一共支付1118元”和“两班联合起来作为一个团体购票,需花费816元”.注意,就分两班人数多于50人且少于100人和两班人数多于100人两种情况讨论.(2)分别计算出两个班单独购票与团体购票费用之差即可.3. (2015年广东广州9分)解方程:()534x x =-.【答案】解:去括号,得5312x x =-,移项,得5312x x -=-, 合并同类项,得212x =-, 化x 的系数为1,得6x =-, ∴原方程的解为6x =-.【考点】解一元一次方程.【分析】按去括号、移项、合并同类项、化x 的系数为1的步骤循序进行.4. (2015年广东广州12分)某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元. (1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元. 【答案】解:(1)设2013年至2015年该地区投入教育经费的年平均增长率为x ,根据题意,得()2250013025x +=, 解得,120.1, 2.1x x ==- (舍去), ∴年平均增长率为0.110%=.答:2013年至2015年该地区投入教育经费的年平均增长率为10%. (2)()3025110%3327.5+=,答:2016年该地区将投入教育经费3327.5万元.【考点】一元二次方程的应用(增长率问题).【分析】(1)设2013年至2015年该地区投入教育经费的年平均增长率为x ,2014年该地区投入教育经费为()25001x +,2015年该地区投入教育经费为()()()225001125001x x x ++=+. 据此列出方程求解.(2)根据()3025110%+计算即可.5. (2015年广东广州12分)4件同型号的产品中,有1件不合格品和3件合格品. (1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率; (2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3)在这4件产品中加入x 件合格品后,进行如下试验:随机抽取1件进行检测,然后放回, 多次重复这个试验.通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x 的值大约是多少? 【答案】解:(1)∵从4件产品中随机抽取1件进行检测,∴抽到的是不合格品的概率是11134=+. (2)记不合格品为B ,合格品为1,2,3A A A ,画树状图如下:∵随机抽取2件进行检测的所有等可能结果有12种,抽到的都是合格品的情况有6种,∴抽到的都是合格品的概率为61122=. (3)根据题意,得30.954xx+=+, 解得16x =,经检验,合适. 答:x 的值大约是16.【考点】画树状图法或列表法;概率;频数、频率和总量的关系;方程思想的应用.【分析】(1)根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.(2)画树状图或列表,求出随机抽取2件进行检测的所有等可能结果和抽到的都是合格品的情况,二者的比值就是其发生的概率.(3)根据频数、频率和总量的关系列方程求解.6. (2015年广东深圳6分)解方程:542332x x x +=--. 【答案】解:去分母,得()()()()3252342332x x x x x -+-=--,去括号,得22321015245224x x x x x -+-=-+, 移项、合并同类项,得2720130x x -+=, 因式分解,得()()17130x x --=,解得12131,7x x ==. 经检验,12131,7x x == 是原方程的解,∴原方程的解为12131,7x x == .【考点】解分式方程.【分析】首先去掉分母,观察可得最简公分母是()()2332x x --,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元二次方程,最后检验即可求解.7. (2015年广东深圳8分)下表为深圳市居民每月用水收费标准,(单位:元/m 3).用水量单价剩余部分(1)某用户用水10立方米,共交水费23元,求a 的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米? 【答案】解:(1)由题意,得1023a =,解得 2.3a =,∴a 的值为2.3.(2)设该用户用水x 立方米备,若22x ≤,则2.371x =,解得2030>2223x =,舍去. 若>22x ,则()()2.322 2.3 1.12271x ⨯++-=,解得28x =,适合. 答:用户用水28立方米.【考点】一元一次方程的应用;分类思想的应用.【分析】(1)方程的应用解题关键是找出等量关系,列出方程求解. 本题等量关系为:⨯=用水量单价水费.(2)分22x ≤和>22x 两种情况列方程求解. 8. (2015年广东6分)解方程:2320x x -+=. 【答案】解:(1)(2)0--=x x ,∴10-=x 或20-=x . ∴11=x ,22=x .【考点】因式分解法解一元二次方程.【分析】因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题(数学化归思想).9. (2015年广东7分)某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?【答案】解:(1)设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:5(30)(40)766(30)3(40)120-+-=⎧⎨-+-=⎩x y x y ,解得4256=⎧⎨=⎩x y . 答:A ,B 两种型号计算器的销售价格分别为42元,56元. (2)设最少需要购进A 型号的计算a 台,得3040(70)2500+-≥a a ,解得30≥a .答:最少需要购进A 型号的计算器30台.【考点】二元一次方程组和一元一次不等式的应用(销售问题).【分析】(1)要列方程(组),首先要根据题意找出存在的等量关系,本题设A ,B 型号的计算器的销售价格分别是x 元,y 元,等量关系为:“销售5 台A 型号和1台B 型号计算器的利润76元”和“销售6台A 型号和3台B 型号计算器的利润120元”.(2)不等式的应用解题关键是找出不等量关系,列出不等式求解. 本题设最少需要购进A 型号的计算a 台,不等量关系为:“购进A ,B 两种型号计算器共70台的资金不多于2500元”.10. (2015年广东汕尾9分)已知关于x 的方程2220x x a ++-=. (1)若该方程有两个不相等的实数根,求实数a 的取值范围; (2)当该方程的一个根为1时,求a 的值及方程的另一根.【答案】解:(1)∵关于x 的方程2220x x a ++-=有两个不相等的实数根,∴()2242>0a ∆=--,解得,<3a .(2)∵该方程的一个根为1,∴1220a ++-=,解得,1a =-.∴原方程为2230x x +-=,解得121,3x x ==- .∴1a =-,方程的另一根为3-.【考点】一元二次方程的根和根的判别式;解一元二次方程和一元一次不等级式.【分析】(1)由方程有两个不相等的实数根,根据根的判别式大于0得到关于a 的不等级式,解之即可.(2)当该方程的一个根为1时,代入方程即可求得a 的值,从而得到方程,解之即得另一根.11. (2015年广东珠海6分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012年至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷? 【答案】解:(1)设该镇2012年至2014年绿地面积的年平均增长率为x ,根据题意,得()257.5182.8x+=,解得,120.2, 2.2x x ==- (不合题意,舍去).答:该镇2012年至2014年绿地面积的年平均增长率为20%. (2)∵()82.8120%99.36<100?=,∴年增长率保持不变,2015年该镇绿地面积不能达到100公顷.【考点】一元二次方程的应用(增长率问题).【分析】(1)设该镇2012年至2014年绿地面积的年平均增长率为x ,2013年该镇绿地面积为()57.51x +,2014年该镇绿地面积为()()()257.51157.51x x x++=+,又2014年该镇绿地面积82.8公顷,据此列出方程求解.(2)由(1)得到的年平均增长率,计算出2015年该镇绿地面积,与100公顷比较即可.12. (2015年广东珠海9分)阅读材料:善于思考的小军在解方程组2534115 ①②x y x y ì+=ïí+=ïî时,采用了一种“整体代换”的解法:解:将方程②变形:4105x y y ++= 即()2255x y y ++= ③把方程①代入③得:235y ?= ∴1y =-把1y =-代入①得,4x =,∴方程组的解为41x y ì=ïí=-ïî.请你解决一下问题:(1)模仿小军的“整体代换”法解方程组3259419①②x y x y ì-=ïí-=ïî;(2)已知,x y 满足方程组22223212472836①②x xy y x xy y ì-+=ïíï++=î (i )求224x y +的值; (ii )求112x y+的值. 【答案】解:(1)将方程②变形:96219x y y -+= 即()332219x y y -+= ③ ,把方程①代入③得:35219y ?=,∴2y = 把2y =代入①得,3x =,∴方程组的解为32x y ì=ïí=ïî.(2)(i )由①得:()2234472x yxy +=+,即2247243xyx y ++=③ , 把方程③代入②得:4722363xyxy +?=,解得,2xy =.∴把2xy =代入③得,22417x y +=.(ii )∵2xy =,22417x y +=,∴()22224417825x y x y xy +=++=+=.∴25x y +=?.∴1125224x y x y xy ++==?. 【考点】阅读理解型问题;解二元方程组;求代数式的值;整体思想的应用. 【分析】(1)模仿小军的“整体代换”法解方程组即可.(2)(i )模仿小军的“整体代换”法求出2xy =和22417x y +=.(ii )由22417x y +=求出25x y +=?,从而根据11222x yx y xy++=求解即可.。

广州市番禺区2015年中考数学一模试题(含答案)

广州市番禺区2015年中考数学一模试题(含答案)

2015年番禺区九年级数学综合训练试题(一)第一部分 选择题(共30分)、选择题(本大题共 10小题,每小题 只有一项是符合题目要求的.) 3分,满分30分•在每小题给出的四个选项中1.下列计算正确的是(探)4.已知a , b 两数在数轴上对应的点如右图所示,下列结论中正确的是(探)(A a b (0 b a 0 (B ) ab 0(D ) a b 05. 某射击队要从四名运动员中选拔一名运动员参加比赛, 如右表所示•如果要选择一个成绩高 且发挥稳定的人参赛,则这个人应是(探) •(A )甲(B )乙 C )丙(D ) 丁6. 下列图形可以由一个图形经过平移变换得到的是(探)(A ) (B ) (C ) (D )7. 据报道,2014年6月,恒大集团与阿里巴巴集团实施战略合作,阿里巴巴注资 州恒大•将数据1200000000用科学记数法表示为(探).8899(A ) 1.2 10 (B ) 12 10 (C ) 1.2 10 (D ) 1.2 10(A ) 2 12(B ) .93(C) (ab 2)2 a 2b 42.二元 次方程组 x y 2 口的解是(探x y 0)x 0x 1(A(B )y 2y 13.如图的立体图形的左视图可能是 W(D )(A )(B )选拔赛中每名队员的平均成绩x 与方差s 2甲卩丙卩丁护2I PL 加 1(C ) (C ) (D )12亿元入股广8.如图,O O 的半径为5, AB 为O O 的弦,OC 丄AB 于点C .若OC 3,则AB 的长为(探)分别过点C B 作射线AD 的垂线段,垂足分别为 E 、F . 求证:BF=CE(A ) 4(B) 6(C ) 8(D ) 109. 甲口袋中有1个红球和1个黄球,乙口袋中有 1个红球、1个黄球和1个绿球,这些球除颜色外 都相同•从两个口袋中各随机取一个球,取出的两个球都是红的概率为(探)(A) 2 cm cm ( B ) 2cm(C ) 3cm (D) 4cm第二部分 非选择题(共120分)二、填空题(本大题共 6小题,每小题3分,满分18分.) 11.函数y—1的自变量x 的取值范围是.x 412. 若分式的值为0,则X 的值为探.x 214.如图,若 AB 是O O 的直径,CD 是O O 的弦,/ ABD 58。

初三中考数学数与式

初三中考数学数与式

第一部分 中考基础复习第一章 数与式第1讲 实数A 级 基础题1.(2015年广东梅州)12的相反数是( )A .2B .-2 C.12 D .-122.(2015年广东佛山)-3的倒数是( )A .-13 B.13C .3D .-33.(2015年广东广州)四个数-3.14,0,1,2中为负数的是( ) A .-3.14 B .0 C .1 D .24.(2015年内蒙古呼和浩特)以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是( )A .-3 ℃B .15 ℃C .-10 ℃D .-1 ℃5.(2015年广东汕尾)今年五月份香港举办“保普选反暴力”大联盟大型签名行动,9天共收集超121万个签名,将121万用科学记数法表示为( )A .1.21×106B .12.1×105C .0.121×107D .1.21×1056.(2015年湖南永州)在数轴上表示数-1和2014的两点分别为A 和B ,则A ,B 两点间的距离为( )A .2013B .2014C .2015D .20167.(2015年黑龙江绥化)在实数0,π,227, 2 ,-9中,无理数的个数有( )A .1个B .2个C .3个D .4个 8.(2015年山东威海)已知实数a ,b 在数轴上的位置如图1-1-2,下列结论错误的是( )图1-1-2A.||a <1<||b B .1 <-a <b C .1 < ||a <b D .-b <a <-1 9.(2015年湖北武汉)计算:-10+(+6)=________.10.(2015年吉林长春)比较大小:2__________1.(填“>”“=”或“<”) 11.(2015年江苏镇江)已知一个数的绝对值是4,则这个数是__________. 12.计算:(1)(2015年广东梅州)计算:8+|2 2-3|-⎝⎛⎭⎫13-1-(2015+2)°. (2)(2015年广东佛山)计算:9+20150+(-2)3+2 3×sin60°.B 级 中等题13.(2015年山东青岛)某种计算机完成一次基本运算的时间约为0.000 000 001 s ,将0.000 000 001 s 用科学记数法表示为( )A .0.1×10-8 sB .0.1×10-9 sC .1×10-8 sD .1×10-9 s 14.(2015年山东菏泽)如图1-1-3,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )图1-1-3A .点MB .点NC .点PD .点Q 15.(2015年重庆)下列图形都是由几个黑色和白色的正方形按一定规律组成.在图1-1-4中,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,按此规律,图⑩中黑色正方形的个数是( )图1-1-4A .32B .29C .28D .2616.(2015年贵州遵义)按一定规律排列的一列数依次为:45,48,411,414,…,按此规律,这列数中的第10个数与第16个数的积是__________.C 级 拔尖题17.(2015年湖南娄底)下列数据是按一定规律排列的(如图1-1-5),则第7行的第一个数为__________.图1-1-5第2讲 代数式A 级 基础题1.若x =1,y =12,则x 2+4xy +4y 2的值是( )A .2B .4 C.32 D.122.(2015年吉林)购买1个单价为a 元的面包和3瓶单价为b 元的饮料,所需要钱数为( )A .(a +b )元B .3(a +b )元C .(3a +b )元D .(a +3b )元3.(2015年四川自贡)为庆祝抗战胜利70周年,我市某楼盘让利于民,决定将原价为a 元/米2的商品房价降价10%销售,降价后的销售价为( )A .a -10%元/米2B .a ·10%元/米2C .a (1-10%)元/米2D .a (1+10%)元/米24.(2015年福建厦门)某商店举办促销活动,促销的方法是将原价x 元的衣服以⎝⎛⎭⎫45x -10元出售,则下列说法中,能正确表达该商店促销方法的是( )A .原价减去10元后再打8折B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元5.(2015年海南)某企业今年1月份产值为x 万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是( )A .(1-10%)(1+15%)x 万元B .(1-10%+15%)x 万元C .(x -10%)(x +15%)万元D .(1+10%-15%)x 万元 6.(2015年重庆)如图1-2-4所示的图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第④个图形中小圆圈的个数为( )图1-2-4A .21个B .24个C .27个D .30个7.(2015年湖南株洲)如果手机通话每分钟收费m 元,那么通话a 分钟,收费________元.8.(2014年江苏苏州)若a -2b =3,则9-2a +4b 的值为________. 9.(2015年湖南益阳)如图1-2-5是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n 个图案中有________根小棒.图1-2-510.(2015年四川内江)如图1-2-6是由火柴棒搭成的几何图案,则第n 个图案中有________根火柴棒.(用含n 的代数式表示)图1-2-611.已知a=3,b=|-2|,c=12,求代数式a2+b-4c的值.12.已知a,b互为相反数,c,d互为倒数,m的绝对值是2,求|| a+b2m2+1+4m-3cd的值.B级中等题13.按如图1-2-7所示的程序计算,若开始输入n的值为1,则最后输出的结果是()图1-2-7A.3 B.15 C.42 D.6314.(2015年黑龙江绥化)如图1-2-8,填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c=________.图1-2-815.(2015年江苏淮安)将连续正整数按如下规律排列(如图1-2-9):图1-2-9若正整数565位于第a 行,第b 列,则a +b =________. 16.(2014年四川达州)《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图1-2-10.图1-2-10由图易得:12+122+123+…+12n =________.C 级 拔尖题17.(2014年安徽)观察下列关于自然数的等式: 32-4×12=5;① 52-4×22=9;② 72-4×32=13;③ ……根据上述规律解决下列问题:(1)完成第四个等式:92-4×________2=________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.(列代数式)第3讲 整式与分式 第1课时 整式A 级 基础题1.(2015年浙江台州)单项式2a 的系数是( ) A .2 B .2a C .1 D .a2.(2015年广东珠海)计算-3a 2×a 3的结果为( ) A .-3a 5 B .3a 6 C .-3a 6 D .3a 53.(2015年四川巴中)若单项式2x 2y a +b 与-13x a -b y 4是同类项,则a ,b 的值分别为( )A .a =3,b =1B .a =-3,b =1C .a =3,b =-1D .a =-3,b =-1 4.(2015年湖南邵阳)已知a +b =3,ab =2,则a 2+b 2的值为( ) A .3 B .4 C .5 D .65.(2015年广东佛山)若(x +2)(x -1)=x 4+mx +n ,则m +n =( ) A .1 B .-2 C .-1 D .26.(2015年广东深圳)下列说法错误的是( )A .a ·a =a 2B .2a +a =3aC .(a 3)2=a 5D .a 3÷a -1=a 47.(2015年浙江金华)已知a +b =3,a -b =5,则代数式a 2-b 2=________. 8.(2015年广东珠海)填空:x 2+10x +________=(x +________)2. 9.(2015年四川绵阳)计算:a (a 2÷a )-a 2=________.10.(2015年山东菏泽)若x 2+x +m =(x -3)(x +n )对x 恒成立,则n =__________. 11.(2015年广东梅州)已知a +b =-2,求代数式(a -1)2+b (2a +b )+2a 的值.12.(2015年北京)已知2a 2+3a -6=0.求代数式3a ()2a +1-()2a +1()2a -1的值.B 级 中等题13.(2015年山东临沂)观察下列关于x 的单项式,探究其规律: x,3x 2,5x 3,7x 4,9x 5,11x 6,…,按照上述规律,第2015个单项式是( ) A .2015x 2015 B .4029x 2014 C .4029x 2015 D .4031x 201514.(2015年安徽)按一定规律排列的一列数:21,22,23,25,28,213,…,若x,y,z表示这列数中的连续三个数,猜想x,y,z满足的关系式是____________.15.(2014年浙江宁波)一个大正方形和四个全等的小正方形按图1-3-2(1)(2)两种方式摆放,则图(2)的大正方形中未被小正方形覆盖部分的面积是________.(用a,b的代数式表示)图1-3-216.(2015年河北)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:-3x=x2-5x+1(1)求所捂住的二次三项式;(2)若x=6+1,求所捂住的二次三项式的值.C级拔尖题17.利民商店出售一种原价为a的商品,有如下几种方案:(1)先提价10%,再降价10%;(2)先降价10%,再提价10%;(3)先提价20%,再降价20%.问:用这三种方案调价的结果是否一样,最后是不是都恢复了原价?第2课时 因式分解A 级 基础题1.(2014年海南)下列式子从左到右变形是因式分解的是( ) A .a 2+4a -21=a (a +4)-21 B .a 2+4a -21=(a -3)(a +7) C .(a -3)(a +7)=a 2+4a -21 D .a 2+4a -21=(a +2)2-25 2.(2015年湖北武汉)把a 2-2a 分解因式,正确的是( ) A .a (a -2) B .a (a +2) C .a (a 2-2) D .a (2-a ) 3.(2014年辽宁葫芦岛)计算:552-152=( ) A .40 B .1600 C .2400 D .28004.(2015年浙江台州)把多项式2x 2-8分解因式,结果正确的是( ) A .2()x 2-8 B .2()x -22C .2()x +2()x -2D .2x ⎝⎛⎭⎫x -4x 5.(2015年贵州毕节)下列因式分解正确的是( )A .a 4b -6a 3b +9a 2b =a 2b (a 2-6a +9)B .x 2-x +14=⎝⎛⎭⎫x -122 C .x 2-2x +4=(x -2)2 D .4x 2-y 2=(4x +y )(4x -y )6.(2015年广西贺州)把多项式4x 2y -4xy 2-x 3分解因式的结果是( ) A .4xy (x -y )-x 3 B .-x (x -2y )2C .x (4xy -4y 2-x 2)D .-x (-4xy +4y 2+x 2) 7.(2015年山东枣庄)如图1-3-3,边长为a ,b 的矩形的周长为14,面积为10,则a 2b+ab 2的值为( )图1-3-3A .140B .70C .35D .248.(2015年广东梅州)分解因式:m 3-m =________. 9.(2015年广东广州)分解因式:2mx -6my =________. 10.(2015年广东深圳)分解因式:3a 2-3b 2________.11.(2015年山东东营)分解因式:4+12(x -y )+9(x -y )2=________. 12.已知ab =-3,a +b =2.求代数式a 3b +ab 3的值.B 级 中等题13.(2015年湖南衡阳)已知a +b =3,a -b =-1,则a 2-b 2的值为________. 14.(2015年湖北孝感)分解因式:(a -b )2-4b 2__________. 15.(2015年甘肃平凉)分解因式:x 3y -2x 2y +xy =________.16.(2015年湖南株洲)分解因式:x 2()x -2-16()x -2=____________________.C 级 拔尖题17.分解因式:x 2-y 2-3x -3y .第3课时 分式A 级 基础题1.(2015年浙江丽水)分式-11-x可变形为( )A .-1x -1 B.11+x C .-11+x D.1x -12.(2015年浙江金华)要使分式xx +4有意义,则x 的取值应满足( )A .x =-4B .x ≠4C .x >-4D .x ≠-43.(2015年湖南)若分式3-xx +1的值为0,则x 的值为( )A .3或-1B .0C .3D .-14.(2014年内蒙古赤峰)化简a 2b -ab 2b -a的结果正确的是( )A .abB .-abC .a 2-b 2D .b 2-a 25.(2015年山东济南)化简 m 2m -3-9m -3 的结果是( )A .m +3B .m -3 C.m -3m +3 D.m +3m -36.(2015年湖南益阳)下列等式成立的是( ) A.1a +2b =3a +b B.22a +b =1a +b C.ab ab -b 2=a a -b D.a -a +b =-a a +b7.(2015年广东珠海)若分式3x -5有意义,则x 应满足________.8.(2015年江苏镇江)当x =__________时,分式x +1x -2的值为0.9.(2015年吉林)计算:x x -y ·x 2-y 2x=________.10.(2015年贵州六盘水)已知c 4=b 5=a6≠0,则b +c a 的值为________.11.(2015年广东佛山)计算:2x -2-8x 2-4.12.(2015年广东广州)已知A =x 2+2x +1x 2-1-xx -1.(1)化简A ;(2)当x 满足不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0,且x 为整数时,求A 的值.B 级 中等题 13.(2015年山东临沂)计算:a a +2-4a 2+2a = ______________.14.(2015年湖南邵阳)先化简⎝⎛⎭⎫1x -2-2x ·x 2-2x 2,再从0,1,2中选取一个合适的x 的值代入求值.15.(2015年湖北襄阳)先化简,再求值:⎝ ⎛⎭⎪⎫5x +3yx 2-y 2+2x y 2-x 2÷1x 2y -xy 2,其中x =3+2,y =3- 2.16.(2015年贵州黔东南州)先化简,再求值:m -33m 2-6m ÷⎝⎛⎭⎫m +2-5m -2,其中m 是方程x 2+2x -3=0的根.C 级 拔尖题 17.(2015年广东梅州)若1(2n -1)(2n +1)=a 2n -1+b2n +1,对任意自然数n 都成立,则a=______,b =______;计算:m =11×3+13×5+15×7+…+119×21=________.第4讲 二次根式A 级 基础题1.(2015年重庆)计算3 2-2的值是( )A .2B .3 C. 2 D .2 22.(2015年安徽)计算8×2的结果是( )A.10 B .4 C. 6 D .23.(2015年江苏无锡)函数y =x -4中自变量x 的取值范围是( )A .x >4B .x ≥4C .x ≤4D .x ≠44.(2015年四川凉山州)下列根式中,不能与3合并的是( ) A.13 B.33C.23D.12 5.(2015年江苏淮安)下列式子为最简二次根式的是( )A. 3B. 4C.8D.126.(2015年湖北潜江)下列各式计算正确的是( )A.2+3= 5 B .4 3-3 3=1 C .2 3×3 3=6 3 D.27÷3=37.(2015年湖南衡阳)计算8-2=________.8.(2015年江苏南京)计算5×153的结果是________. 9.(2015年江苏泰州)计算:18-2 12等于________. 10.(2015年湖北荆门)当1<a <2时,代数式()a -22+||1-a 的值是________.11.(2014年广东佛山)计算:8÷2-1+327×[2+(-2)3].12.(2014年湖北荆门)计算:24×13-4×18×(1-2)0.B 级 中等题13.(2014年安徽)设n 为正整数,且n <65<n +1,则n 的值为( )A .5B .6C .7D .814.(2014年山东济宁)如果ab>0,a+b<0,那么下面各式:①ab=ab;②ab·ba=1;③ab÷ab=-b,其中正确的是()A.①②B.②③C.①③D.①②③15.(2015年四川攀枝花)若y=x-3+3-x+2,则x y=________.16.(2014年山东德州)若y=x-4+4-x2-2,则(x+y)y=________.C级拔尖题17.(2015年山西)阅读与计算:阅读以下材料,并完成相应的任务.斐波那契(约1170—1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰好是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用:斐波那契数列中的第n个数可以用15⎝⎛⎭⎪⎫1+52n-⎝⎛⎭⎪⎫1-52n表示.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.第一章基础题强化提高测试时间:45分钟 满分:100分一、选择题(本大题共6小题,每小题5分,共30分)1.-15的相反数是( )A .15B .-15 C.115 D .-1152.用科学记数法表示316 000 000为( )A .3.16×107B .3.16×108C .31.6×107D .31.6×1063.下列二次根式中的最简二次根式是( ) A.30 B.12 C.8 D.124.下列运算正确的是( )A .a 2+a 3=a 5 B.()-a 32=a 6C .ab 2·3a 2b =3a 2b 2D .-2a 6÷a 2=-2a 35.下列计算正确的是( )A .ab ·ab =2abB .(2a )3=2a 3C .3 a -a =3(a ≥0) D.a ·b =ab (a ≥0,b ≥0)6.下列运算正确的是( )A.2+3= 5 B .3x 2y -x 2y =3C.a 2+b 2a +b=a +b D.()a 2b 3=a 6b 3 二、填空题(本大题共4小题,每小题5分,共20分)7.若分式1x -5有意义,则实数x 的取值范围是________. 8.81的平方根是________.9.若a 2-3b =5,则6b -2a 2+2015=________.10.化简:2(8-2)=________.三、解答题(本大题共5小题,每小题10分,共50分)11.分解因式:m 3n -4mn .12.化简:1x +3+6x 2-9.13.先化简,再求值:(2a +b )(2a -b )+(4ab 3-8a 2b 2)÷4ab ,其中a =-2,b =1.14.计算:|-3|+2sin45°+tan60°-⎝⎛⎭⎫-13-1-12+(π-3)0.15.先化简,再求值:⎝ ⎛⎭⎪⎫a 2-b 2a 2-2ab +b 2+a b -a ÷b 2a 2-ab,其中a ,b 满足a +1+|b -3|=0.第一部分 中考基础复习第一章 数与式第1讲 实数【演练·巩固提升】1.D 2.A 3.A 4.C 5.A 6.C 7.B 8.A9.-4 10.> 11.±412.解:(1)原式=2 2+3-2 2-3-1=-1.(2)原式=3+1-8+2 3×32=-4+3=-1. 13.D 14.C 15.B 16.110017.22 解析:由排列的规律可得,第n -1行结束的时候排了1+2+3+…+n -1=12n (n -1)个数.所以第n 行的第1个数为12n (n -1)+1.所以n =7时,第7行的第1个数为22. 第2讲 代数式【演练·巩固提升】1.B 2.D 3.C 4.B 5.A6.B 7.am 8.3 9.5n +1 10.2n (n +1)11.解:当a =3,b =|-2|=2,c =12时,a 2+b -4c =3+2-2=3. 12.解:根据题意,可知:a +b =0,①cd =1,②|m |=2,即m =±2.③把①②代入原式,可得原式=0+4m -3×1=4m -3.当m =2时,4m -3=2×4-3=5;当m =-2时,4m -3=-2×4-3=-11.所以,原式的值是5或-11.13.C 解析:把n =1代入,得n (n +1)=2<15,把n =2代入,得n (n +1)=6<15,把n =6代入,得n (n +1)=42>15,则最后输出的结果为42.14.110 解析:根据左上角+4=左下角,左上角+3=右上角,右下角的数是左下角与右上角两个数的乘积加上1的和,可得6+4=a,6+3=c ,ac +1=b ,可得a =10,c =9,b =91,所以a +b +c =10+9+91=110.15.147 解析:∵565÷4=141……1,∴正整数565位于第142行,即a =142.∵奇数行的数字在前四列,数字逐渐增加;偶数行的数字在后四列,数字逐渐减小,∴正整数565位于第五列,即b =5.∴a +b =142+5=147.16.2n -12n 解析:取n 天后剩下12n ,所以n 天共取走1-12n ,即12+122+123+…+12n =1-12n=2n -12n . 17.解:(1)4 17(2)第n 个等式为(2n +1)2-4n 2=4n +1.证明如下:左边=(2n +1)2-4n 2=4n 2+4n +1-4n 2=4n +1=右边.∴(2n +1)2-4n 2=4n +1.第3讲 整式与分式第1课时 整式【演练·巩固提升】1.A 2.A 3.A 4.C 5.C 6.C7.15 8.25 5 9.0 10.411.解:原式=a 2-2a +1+2ab +b 2+2a =()a +b 2+1,当a +b =-2时,()a +b 2+1=()-22+1=3.12.解:原式=6a 2+3a -(4a 2-1)=6a 2-4a 2+3a +1=2a 2+3a +1.因为2a 2+3a -6=0,所以2a 2+3a =6,所以原式=7.13.C 解析:先看x 的指数,第一个指数是1,第二个指数是2,第2015个单项式的指数是2015;再看系数,系数是连续的奇数,所以第2015个奇数为4029,所以第2015个单项式为4029x 2015.14.xy =z 解析:∵a m a n =a m +n ,21×22=23,22×23=25,23×25=28,25×28=213,故答案为xy =z .15.ab 解析:设大正方形的边长为x 1,小正方形的边长为x 2,由图①和②列出方程组得⎩⎪⎨⎪⎧ x 1+2x 2=a ,x 1-2x 2=b ,解得⎩⎨⎧ x 1=a +b 2,x 2=a -b 4.图②的大正方形中未被小正方形覆盖部分的面积=⎝⎛⎭⎫a +b 22-4×⎝⎛⎭⎫a -b 42=ab .16.解:(1)设所捂的二次三项式为A ,则A =x 2-5x +1+3x =x 2-2x +1.(2)若x =6+1,则A =()x -12=()6+1-12=6.17.解:方案(1)的调价结果为(1+10%)(1-10%)a =0.99a ;方案(2)的调价结果为(1-10%)(1+10%)a =0.99a ;方案(3)的调价结果为(1+20%)(1-20%)a =0.96a .由此可以得到方案(1)(2)的调价结果是一样的,方案(3)的调价结果与(1)(2)不一样.最后都没有恢复原价. 第2课时 因式分解【演练·巩固提升】1.B 2.A 3.D 4.C 5.B 6.B 7.B8.m ()m +1()m -1 9.2m ()x -3y10.3()a +b ()a -b 11.(3x -3y +2)212.解:∵a +b =2,∴(a +b )2=4.∴a 2+2ab +b 2=4.又∵ab =-3,a 2+2ab +b 2=4,∴a 2+b 2=10.∴a 3b +ab 3=ab (a 2+b 2)=-30.13.-3 14.(a +b )(a -3b ) 15.xy (x -1)216.(x -2)(x -4)(x +4)17.解:原式=(x +y )(x -y )-3(x +y )=(x +y )(x -y -3)第3课时 分式【演练·巩固提升】1.D 2.D 3.C 4.B 5.A 6.C 7.x ≠5 8.-1 9.x +y10.32 解析:由题意,可设a =6k ,b =5k ,c =4k ,则b +c a =5k +4k 6k =32. 11.解:原式=2()x +2-8()x +2()x -2=2()x -2()x +2()x -2=2x +2. 12.解:(1)A =x 2+2x +1x 2-1-x x -1=()x +12()x +1()x -1-x x -1=x +1x -1-x x -1=1x -1. (2)解x -1≥0,得x ≥1.解x -3<0,得x <3.∴⎩⎪⎨⎪⎧x -1≥0,x -3<0的解为1≤x <3. ∵x 为整数,∴x =1,2.当x =1时,分式无意义;当x =2时,A =12-1=1. 13.a -2a 解析:原式=a a +2-4a (a +2)=a 2a (a +2)-4a (a +2)=a 2-4a (a +2)=(a +2)(a -2)a (a +2)=a -2a. 14.解:原式=⎣⎢⎡⎦⎥⎤x x (x -2)-2(x -2)x (x -2)·x (x -2)2=x -2(x -2)x (x -2)·x (x -2)2=x -2x +42=-x +42, 由于x ≠0,且x ≠2,因此只能取x =1.所以当x =1时,原式的值为-x +42=-1+42=32. 15.解:原式=⎝ ⎛⎭⎪⎫5x +3y x 2-y 2-2x x 2-y 2÷1xy (x -y )=3(x +y )(x +y )(x -y )·xy (x -y ) =3xy .把x =3+2,y =3-2代入,可得:原式=3(3+2)(3-2)=3.16.解:原式=m -33m (m -2)÷⎝ ⎛⎭⎪⎫m 2-4m -2-5m -2=m -33m (m -2)·m -2(m +3)(m -3)=13m (m +3). ∵m 是方程x 2+2x -3=0的根,∴m =-3或m =1.当m =-3时,原式无意义;当m =1时,原式=13m (m +3)=13×1×(1+3)=112. 17.12 -12 1021. 解析:∵1()2n -1()2n +1=12()2n -1-12()2n +1 =a 2n -1+b 2n +1, ∴a =12,b =-12. ∴m =11×3+13×5+15×7+…+119×21=⎝⎛⎭⎫12-16+⎝⎛⎭⎫16-110+…+⎝⎛⎭⎫138-142=1021. 第4讲 二次根式【演练·巩固提升】1.D 2.B 3.B 4.C 5.A 6.D 7.2 8.5 9.2 210.1 解析:原式=||a -2+||1-a =2-a +a -1=1.11.解:原式=2 2÷12+3×(2-2 2)=4 2+6-6 2 =6-2 2.12.解:(1)原式=24×13-4×24×1=2 2-2= 2. 13.D 14.B15.9 解析:由题意,得x -3≥0,且3-x ≥0,得x =3,故y =2.∴x y =9. 16.14解析:由题意,得x -4≥0,且4-x ≥0. 解得x ≥4,且x ≤4.所以x =4.所以y =-2.所以(x +y )y =(4-2)-2=14. 17.解:第1个数:当n =1时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤1+52-1-52 =15×5=1. 第2个数:当n =2时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+522-⎝ ⎛⎭⎪⎫1-522=15⎝ ⎛⎭⎪⎫1+52-1-52⎝ ⎛⎭⎪⎫1+52+1-52 =15×5×1=1. 第一章基础题强化提高测试1.A 2.B 3.A 4.B 5.D 6.D7.x ≠5 8.±3 9.2005 10.211.解:原式=mn ()m 2-4= mn (m +2)(m -2).12.解:原式=x -3(x +3)(x -3)+6(x +3)(x -3)=x -3+6(x +3)(x -3)=x +3(x +3)(x -3)=1x -3. 13.解:原式=4a 2-b 2+b 2-2ab =2a (2a -b ). 当a =-2,b =1时,原式=2×(-2)×[2×(-2)-1]=20.14.解:原式=3+2×22+3-(-3)-2 3+1 =3+1+3+3-2 3+1=5.15.解:原式=⎣⎢⎡⎦⎥⎤(a +b )(a -b )(a -b )2-a a -b ·a (a -b )b 2 =⎝ ⎛⎭⎪⎫a +b a -b -a a -b ·a (a -b )b2=b a -b ·a (a -b )b 2=a b . ∵a +1+|b -3|=0,∴a +1=0,b -3=0.解得a =-1,b = 3.∴原式=-13=-33.。

2015年广东省广州市中考数学模拟试卷

2015年广东省广州市中考数学模拟试卷

2015年广东省广州市中考数学模拟试卷(扫描二维码可查看试题解析)一、选择题.(本题共10小题,每小题3分,共30分,在每小题所给出的选项中,只有一项符合题目要求)1.(3分)(2013•广州)比0大的数是()A.﹣1 B.C.0D.12.(3分)(2014•重庆)计算5x2﹣2x2的结果是()A.3B.3x C.3x2D.3x43.(3分)(2014•重庆)如图,△ABC∽△DEF,相似比为1:2.若BC=1,则EF的长是()A.1B.2C.3D.44.(3分)(2014•重庆)如图,直线AB∥CD,直线EF分别交AB,CD于点E,F.若∠AEF=50°,则∠EFC的大小是()A.40°B.50°C.120°D.130°5.(3分)(2014•重庆)若点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,则k的值是()A.5B.4C.3D.16.(3分)(2014•重庆)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为()A.30°B.60°C.90°D.120°7.(3分)(2014•重庆)如图,菱形ABCD的对角线AC,BD相交于点O,AC=8,BD=6,以AB 为直径作一个半圆,则图中阴影部分的面积为()A.25π﹣6 B.π﹣6 C.π﹣6D.π﹣68.(3分)(2014•重庆)如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),过点E的直线l交x轴于点F,交y轴于点G(0,﹣2),则点F的坐标是()A.(,0)B.(,0)C.(,0)D.(,0)9.(3分)(2013•广州)若5k+20<0,则关于x的一元二次方程x2+4x﹣k=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断10.(3分)(2013•广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=()A.2B.2C.D.二.填空题.(本大题共6小题,每小题3分,共18分)11.(3分)(2013•广州)点P在线段AB的垂直平分线上,PA=7,则PB=.12.(3分)(2013•广州)广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为.13.(3分)(2013•广州)分解因式:x2+xy=.14.(3分)(2013•河南)将一副直角三角板ABC和EDF如图放置(其中∠A=60°,∠F=45°).使点E落在AC边上,且ED∥BC,则∠CEF的度数为.15.(3分)(2013•河南)如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为.16.(3分)(2014•河南)如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为.三、解答题(本大题共9小题,满分102分)17.(9分)(2014•深圳)计算:﹣2tan60°+(﹣1)0﹣()﹣1.18.(9分)(2014•深圳)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明四边形ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.19.(12分)(2014•北京)已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.20.(14分)(2014•重庆)为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1﹣5月新注册小型企业一共有家.请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.21.(6分)(2014•山西)如图,点A、B、C表示某旅游景区三个缆车站的位置,线段AB、BC 表示连接缆车站的钢缆,已知A、B、C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米、310米、710米,钢缆AB的坡度i1=1:2,钢缆BC的坡度i2=1:1,景区因改造缆车线路,需要从A 到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度i是指坡面的铅直高度与水平宽度的比)22.(12分)(2014•山西)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?23.(12分)(2014•山西)综合与探究:如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,A、C两点的坐标分别为(4,0),(﹣2,3),抛物线W经过O、A、C三点,D是抛物线W的顶点.(1)求抛物线W的解析式及顶点D的坐标;(2)将抛物线W和▱OABC一起先向右平移4个单位后,再向下平移m(0<m<3)个单位,得到抛物线W′和▱O′A′B′C′,在向下平移的过程中,设▱O′A′B′C′与▱OABC的重叠部分的面积为S,试探究:当m为何值时S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W′的顶点为F,若点M是x轴上的动点,点N是抛物线W′上的动点,试判断是否存在这样的点M和点N,使得以D、F、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.24.(14分)(2014•重庆)如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.25.(14分)(2014•深圳)如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.2015年广东省广州市中考数学模拟试卷参考答案一、选择题.(本题共10小题,每小题3分,共30分,在每小题所给出的选项中,只有一项符合题目要求)1.D 2.C 3.B 4.D 5.D 6.B 7.D 8.C 9.A 10.B二.填空题.(本大题共6小题,每小题3分,共18分)11.7 12.5.25×10613.x(x+y) 14.15°15.12 16.三、解答题(本大题共9小题,满分102分)17.18.19.20.16 21.22.23.24.25.。

2015年中考数学试题(附答案及分析)

2015年中考数学试题(附答案及分析)

2015年中考数学试题考生须知:1. 答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上2. 用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内.答 在试题卷上无效.3.考生必须保持答题卡整洁.考试结束后,请将本试题卷和答题卡一并上交.试题卷一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案. 1、和数轴上的点一一对应的是( )(A)整数 (B)有理数 (C)无理数 (D)实数 2、化简:322)3(x x -的结果是( )(A )53x - (B )518x (C )56x - (D )518x - 3、已知一组数据54321x x x x x 、、、、的平均数是5,则另一组 新数组5432154321+++++x x x x x 、、、、的平均数是( )(A )6 (B )8 (C )10 (D )无法计算 4、下列语句中,属于命题..的是( ) (A) 作线段的垂直平分线 (B) 等角的补角相等吗 (C) 平行四边形是轴对称图形 (D) 用三条线段去拼成一个三角形5、一次函数2)3(+-=x k y ,若y 随x 的增大而增大,则k 的值可以是( ) (A )1 (B )2 (C )3 (D )46、有两个圆,⊙1O 的半径等于地球的半径,⊙2O 的半径等于一个篮球的半径,现将两个圆都向外膨胀(相当于作同心圆),使周长都增加1米,则半径伸长的较多的圆是( ) A 、⊙1O B 、⊙2O C 、两圆的半径伸长是相同的 D 、无法确定7.数学活动课上,小明,小华各画了△ABC 和△DEF,尺寸如下图,两个三角形面积分别记作S △ABC 和S △DEF ,那么你认为( )8、若不等式组 -2 x+4≥0 (x 为未知数)无解,则二次函数的图象y=ax 2-2x+1 x >a 与x 的交点( )A.没有交点B.一个交点C.两个交点D.不能确定 9.已知w 关于t 的函数:2w t=,则下列有关此函数图像的描述正确的是( ) (A )该函数图像与坐标轴有两个交点 (B )该函数图像经过第一象限 (C )该函数图像关于原点中心对称 (D )该函数图像在第四象限10.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形;②四边形CDFE 不可能为正方形,③DE 长度的最小值为4;④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是( )A .①④⑤B .③④⑤C .①③④D .①②③二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案 11. 21-的倒数是 ,写出一个比-3大而比-2小的无理数是 . 12. 数据1、5、6、5、6、5、6、6的众数是 ,方差是 .13. 正方形ABCD 的边长为a cm ,E 、F 分别是BC 、CD 的中点,连接BF 、DE ,则图中阴影部分的面积是 cm 2. 14. 已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有3个整数解,则实数a 的取值范围是 .第13题CEBAFD(第10题)15.具有方向的线段叫做有向线段,以A 为起点,B 为终点的有向线段记作AB ,已知BC=AC AB +,如下图所示:如果a AB =,BC=b ,则A C a b =+。

2015广州中考数学答案

即EF 2 5 2 ( 24 2 ) 5 7 32 EF , BF 5 5
AB//DE,ABF DEF
作 FG AB ,交 AB 于点 G
BGF EFD 90 BGF EFD BF FG DE DF 768 125
125
32 FG 5 24 5 5
5 25 , 2n 2 5n 2 n 4 8
2
∴当 n 5 时, 2n2 5n 的最小值为 25
4 8
三、解答题 17. (本小题满分 9 分)
5x 3( x 4)
解: 5x 3x 12
5x 3x 12
2 x 12
x 6
18. (本小题满分 9 分)
四边形 ABCD 是正方形
AD AB, D EAB 90
在 EAB 和 FDA 中,
m 的取值范围为 m 7
(2)解:设 A 的坐标为 ( x, y)
点 B 与点 A 关于 x 轴对称,
B 点坐标为 ( x, y)
AB 的距离为 2 y
SOAB 6
xy 6
y
1 2 y x 6 2
m7 x
xy m 7
m 7 6 m 13
FG
∴F 到 AB 的距离为 768
25.解: (1)令 x 0 ,则 y c ;∴ C (0, c) ∵ OC 的距离为 3,∴ c 3 ,即 c 3 ∴ C (0,3) 或 C (0, 3)
(2)∵ x1 x2 0 ∴ x1 , x2 异号 ①若 C (0,3) ,即 c 3 把 C (0,3) 代入 y2 3x t ,则 0 t 3 ,即 t 3 ∴ y2 3x 3 把 A( x1 ,0) 代入 y2 3x 3 ,则 3x1 3 0 ,即 x1 1 ∴ A(1, 0) ∵ x1 , x2 异号, x1 1 0 ∴ x2 0 ∵ x1 x2

2015学年广东省广州中考数学年试题答案

上海市2015年初中毕业生学业考试数学答案解析第Ⅰ卷【提示】本题考查了标准差的意义,波动越大,标准差越大,数据越不稳定,反之也成立.【考点】统计量的选择6.【答案】B【解析】∵在O 中,AB 是弦,半径OC AB ⊥,∴AD DB =,当DO CD =,则AD BD DO CD AB CO ==⊥,,,故四边形OACB 为菱形.故选:B.【提示】此题主要考查了菱形的判定以及垂径定理,熟练掌握菱形的判定方法是解题关键.【考点】菱形的判定,垂径定理第Ⅱ卷【考点】中位数11-nπ22【解析】∵AB πAC n ==,,∴BC AC AB n π=-=-,∵在点,∴1111DE BC (n π)n π2222==-=-. 11n π22-. 【考点】平面向量故答案为:22.5.在B 上,∴B 的半径为∵如果D 与B 相交,∴D 的半径在D 内,∴R 13>,∴13R <<符合要求,故答案为:14(答案不唯一)【提示】本题考查了圆与圆的位置关系、点与圆的位置关系,解题的关键是首先确定B 的半径,然后确定D 的半径的取值范围,难度不大.【考点】圆与圆的位置关系,点与圆的位置关系18.【答案】x 2x x x +-∵解不等式①得:x 3>-,解不等式②得:x 2≤,∴不等式组的解集为3x 2-<≤,在数轴上表示不等式组的解集为:.3AH cot3015︒=1sin302︒答:高架道路旁安装的隔音板至少需要89米.BD CE CD DE=. 2AO PH3x=,30050(13+<AO cos COA∠∴线段OP的长为8.。

广东省广州市花都区2015届中考数学一模试卷【解析版】

广东省广州市花都区2015届中考数学一模试卷一、选择题(本题共9小题,每小题3分,满分27分.下面每小题给出的四个选项中,只有一个是正确的.)1.(3分)4的平方根是()A.±16 B.16 C.±2 D.22.(3分)式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≥1 C.x≤﹣1 D.x>13.(3分)如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是()A.B.C.D.5.(3分)如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D.90°6.(3分)二次函数y=﹣x2+bx+c的图象如图所示:若点A(x1,y1),B(x2,y2)在此函数图象上,x1<x2<1,y1与y2的大小关系是()A.y1≤y2B.y1<y2C.y1≥y2D.y1>y27.(3分)用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3 B.(x﹣2)2=3 C.(x﹣2)2=5 D.(x+2)2=58.(3分)2014-2015学年七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”,下表是从2014-2015学年七年级400名学生中选出10名学生统计各自家庭一个月的节水情况:节水量(m3)0.2 0.25 0.3 0.4 0.5家庭数(个) 1 2 2 4 1那么这组数据的众数和平均数分别是()A.0.4和0.34 B.0.4和0.3 C.0.25和0.34 D.0.25和0.3 13.(3分)一次函数y=kx+k(k≠0)和反比例函数在同一直角坐标系中的图象大致是()A.B. C. D.14.(3分)如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A.200米B.200米C.220米D.100()米二、填空题(本题共6小题,每小题3分,共18分.)15.(3分)太阳的半径约为696 000千米,用科学记数法表示数696 000为.[来源:] 16.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.17.(3分)已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为.18.(3分)关于x的一元二次方程mx2﹣x+1=0有实根,则m的取值范围是.19.(3分)如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为m.20.(3分)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.三、解答题(本题共10小题,共102分.解答要求写出文字说明,证明过程或计算步骤.)4.(4分)图中几何体的左视图是()A.B.C.D.21.(9分)解方程:.22.(9分)先化简,再求值:,其中,a=1+,b=1﹣.23.(10分)(1)如图1,点E、F在AC上,AB∥CD,AB=CD,AE=CF,求证:△ABF≌△CDE (2)如图2,方格纸中的每个小方格是边长为1个单位长度的正方形.①画出将Rt△ABC向右平移5个单位长度后的Rt△A1B1C1②再将Rt△A1B1C1绕点C1顺时针旋转90°,画出旋转后的Rt△A2B2C2,并求出旋转过程中线段A1C1所扫过的面积(结果保留π)24.(10分)“中国梦”关乎每个人的幸福生活,为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品.现将参赛的50件作品的成绩(单位:分)进行统计如下:等级成绩(用s表示)频数频率A 90≤s≤100 x 0.08B 80≤s<90 35 yC s<80 11 0.22合计50 1请根据上表提供的信息,解答下列问题:(1)表中的x的值为,y的值为(2)将本次参赛作品获得A等级的学生依次用A1,A2,A3,…表示,现该校决定从本次参赛作品中获得A等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生A1和A2的概率.25.(12分)如图,已知在Rt△ABC中,∠C=90°,AD是∠BAC的平分线.(1)作一个⊙O使它经过A、D两点,且圆心O在AB边上;(不写作法,保留作图痕迹).(2)判断直线BC与⊙O的位置关系,并说明理由.26.(12分)如图,已知反比例函数的图象经过点(,8),直线y=﹣x+b经过该反比例函数图象上的点Q(4,m).(1)求上述反比例函数和直线的函数表达式;(2)设该直线与x轴、y轴分别相交于A、B两点,与反比例函数图象的另一个交点为P,连接0P、OQ,求△OPQ的面积.27.(12分)星光中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图象,直接写出x的取值范围.28.(14分)如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.29.(14分)如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.(1)求证:KE=GE;(2)若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由;(3)在(2)的条件下,若sinE=,AK=2,求FG的长.广东省广州市花都区2015届中考数学一模试卷参考答案与试题解析一、选择题(本题共9小题,每小题3分,满分27分.下面每小题给出的四个选项中,只有一个是正确的.)1.(3分)4的平方根是()A.±16 B.16 C.±2 D.2考点:平方根.专题:计算题.分析:由于某数的两个平方根应该互为相反数,所以可用直接开平方法进行解答.解答:解:∵4=(±2)2,∴4的平方根是±2.故选C.点评:本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.[来源:学科网ZXXK]2.(3分)式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≥1 C.x≤﹣1 D.x>1考点:二次根式有意义的条件.分析:根据二次根式的性质,被开方数大于等于0,解不等式即可.解答:解:根据题意得:x﹣1≥0,即x≥1时,二次根式有意义.故选:B.点评:主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3.(3分)如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是()A.B.C.D.考点:在数轴上表示不等式的解集.专题:探究型.分析:先根据数轴上表示不等式解集的方法求出此不等式组的解集,再分别求出四个选项中不等式组的解集,找出符合条件的不等式组即可.解答:解:由数轴上不等式解集的表示方法可知,此不等式组的解集为:﹣1<x<3.A、,由①得,x>﹣1,由②得,x>3,所以此不等式组的解集为:x>3,故本选项错误;[来源:学|科|网Z|X|X|K]B、,由①得,x>﹣1,由②得,x<3,所以此不等式组的解集为:﹣1<x <3,故本选项正确;C、,由①得,x<﹣1,由②得,x>3,所以此不等式组无解,故本选项错误;D、,由①得,x<﹣1,由②得,x<3,所以此不等式组的解集为:x<﹣1,故本选项错误.故选B.点评:本题考查的是在数轴上表示不等式组的解集,解答此类题目时一定要注意实心圆点与空心圆点的区别.5.(3分)如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D.90°考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和,知∠ACD=∠A+∠B,从而求出∠A的度数.解答:解:∵∠ACD=∠A+∠B,∴∠A=∠ACD﹣∠B=120°﹣40°=80°.故选:C.点评:本题主要考查三角形外角的性质,解答的关键是沟通外角和内角的关系.6.(3分)二次函数y=﹣x2+bx+c的图象如图所示:若点A(x1,y1),B(x2,y2)在此函数图象上,x1<x2<1,y1与y2的大小关系是()A.y1≤y2B.y1<y2C.y1≥y2D.y1>y2考点:二次函数图象上点的坐标特征.分析:对于二次函数y=﹣x2+bx+c,根据a<0,抛物线开口向下,在x<1的分支上y随x的增大而增大,故y1<y2.解答:解:∵a<0,x1<x2<1,∴y随x的增大而增大∴y1<y2.故选:B.点评:此题主要考查了二次函数图象上点的坐标特征,本题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数y=ax2+bx+c(a≠0)的图象性质.7.(3分)用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3 B.(x﹣2)2=3 C.(x﹣2)2=5 D.(x+2)2=5考点:解一元二次方程-配方法.专题:计算题.分析:方程常数项移到右边,两边加上4变形后,即可得到结果.解答:解:方程移项得:x2+4x=﹣1,配方得:x2+4x+4=3,即(x+2)2=3.故选A.点评:此题考查了解一元二次方程﹣配方法,利用配方法解方程时,首先将方程常数项移到右边,二次项系数化为1,然后方程两边加上一次项系数一半的平方,左边化为完全平方式,右边化为非负常数,开方转化为两个一元一次方程来求解.8.(3分)2014-2015学年七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”,下表是从2014-2015学年七年级400名学生中选出10名学生统计各自家庭一个月的节水情况:节水量(m3)0.2 0.25 0.3 0.4 0.5家庭数(个) 1 2 2 4 1那么这组数据的众数和平均数分别是()A.0.4和0.34 B.0.4和0.3 C.0.25和0.34 D.0.25和0.3考点:众数;加权平均数.分析:根据众数及平均数的定义,结合表格信息即可得出答案.解答:解:将数据按从大到小的顺序排列为:0.2,0.25,0.25,0.3,0.3,0.4,0.4,0.4,0.4,0.5,则众数为:0.4;平均数为:(0.2+0.25+0.25+0.3+0.3+0.4+0.4+0.4+0.4+0.5)=0.34.故选:A.点评:本题考查了众数及平均数的知识,解答本题的关键是熟练掌握中位数及平均数的定义.13.(3分)一次函数y=kx+k(k≠0)和反比例函数在同一直角坐标系中的图象大致是()A.B. C. D.考点:反比例函数的图象;一次函数的图象.专题:探究型.分析:分别根据反比例函数及一次函数图象的特点对各选项进行逐一分析即可.解答:解:A、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象过二、四象限可知k<0,两结论相矛盾,故本选项错误;[来源:学科网ZXXK]B、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象与y轴交点在y轴的正半轴可知k>0,两结论相矛盾,故本选项错误;C、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象过二、三、四象限可知k<0,两结论一致,故本选项正确;D、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象与y轴交点在y轴的负半轴可知k<0,两结论相矛盾,故本选项错误.故选C.点评:本题考查的是一次函数与反比例函数图象的特点,熟知一次函数与反比例函数的性质是解答此题的关键.14.(3分)如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A.200米B.200米C.220米D.100()米考点:解直角三角形的应用-仰角俯角问题.专题:压轴题.分析:图中两个直角三角形中,都是知道已知角和对边,根据正切函数求出邻边后,相加求和即可.解答:解:由已知,得∠A=30°,∠B=45°,CD=100,∵CD⊥AB于点D.∴在Rt△ACD中,∠CDA=90°,tanA=,∴AD===100在Rt△BCD中,∠CDB=90°,∠B=45°∴DB=CD=100米,∴AB=AD+DB=100+100=100(+1)米.故选D.点评:本题考查了解直角三角形的应用,解决本题的关键是利用CD为直角△ABC斜边上的高,将三角形分成两个三角形,然后求解.分别在两三角形中求出AD与BD的长.二、填空题(本题共6小题,每小题3分,共18分.)15.(3分)太阳的半径约为696 000千米,用科学记数法表示数696 000为6.96×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:696 000=6.96×105,故答案为:6.96×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.考点:多边形内角与外角.专题:计算题.分析:利用多边形的外角和以及多边形的内角和定理即可解决问题.解答:解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.点评:本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.17.(3分)已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为10.考点:角平分线的性质.分析:根据角平分线上的点到角的两边距离相等可得PE=PD.解答:解:∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB,∴PE=PD=10.故答案为:10.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.18.(3分)关于x的一元二次方程mx2﹣x+1=0有实根,则m的取值范围是m≤.考点:根的判别式.分析:由于x的一元二次方程mx2﹣x+1=0有实根,那么二次项系数不等于0,并且其判别式△是非负数,由此可以建立关于m的不等式组,解不等式组即可求出m的取值范围.解答:解:∵关于x的一元二次方程mx2﹣x+1=0有实根,∴m≠0,并且△=b2﹣4ac=1﹣4m≥0,∴m≤且m≠0.故填空答案:m≤且m≠0.点评:总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.此题切记不要忽略一元二次方程二次项系数不为零这一隐含条件.19.(3分)如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为0.2 m.考点:垂径定理的应用;勾股定理.分析:过O作OC垂直于AB,利用垂径定理得到C为AB的中点,在直角三角形AOC 中,由水面高度与半径求出OC的长,即可得出排水管内水的深度.解答:解:过O作OC⊥AB,交AB于点C,可得出AC=BC=AB=0.4m,由直径是1m,可知半径为0.5m,在Rt△AOC中,根据勾股定理得:OC===0.3(m),则排水管内水的深度为:0.5﹣0.3=0.2(m).故答案为:0.2.点评:此题考查了垂径定理的应用,以及勾股定理,熟练掌握定理是解本题的关键.20.(3分)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是﹣1.考点:正方形的性质.专题:压轴题.分析:根据正方形的性质可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS”证明△ADG和△CDG全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB=90°,取AB的中点O,连接OH、OD,根据直角三角形斜边上的中线等于斜边的一半可得OH=AB=1,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H三点共线时,DH的长度最小.解答:解:在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°﹣90°=90°,取AB的中点O,连接OH、OD,则OH=AO=AB=1,[来源:Z§xx§]在Rt△AOD中,OD===,根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,最小值=OD﹣OH=﹣1.(解法二:可以理解为点H是在Rt△AHB,AB直径的半圆上运动当O、H、D三点共线时,DH长度最小)故答案为:﹣1.点评:本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,确定出DH最小时点H的位置是解题关键,也是本题的难点.三、解答题(本题共10小题,共102分.解答要求写出文字说明,证明过程或计算步骤.)4.(4分)图中几何体的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解答:解:从左面看易得左视图为.故选C.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.21.(9分)解方程:.考点:解分式方程.专题:计算题.分析:观察方程可得最简公分母是:(x﹣1)(x+1),两边同时乘最简公分母可把分式方程化为整式方程来解答.解答:解:方程两边同乘以(x﹣1)(x+1),得x+1=3(x﹣1),解得x=2,经检验:把x=2代入(x﹣1)(x+1)=1×3=3≠0,是原方程的解,∴x=2是方程的根.点评:本题主要考查了解分式方程的一般方法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,(2)解分式方程一定注意要验根,难度适中.22.(9分)先化简,再求值:,其中,a=1+,b=1﹣.考点:分式的化简求值.专题:计算题.分析:先把括号内通分,再把分子分母因式分解和除法运算化为乘法运算,然后约分得到原式=,再把a和b的值代入计算.解答:解:原式=÷=•=,当a=1+,b=1﹣,原式===.点评:本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.23.(10分)(1)如图1,点E、F在AC上,AB∥CD,AB=CD,AE=CF,求证:△ABF≌△CDE (2)如图2,方格纸中的每个小方格是边长为1个单位长度的正方形.①画出将Rt△ABC向右平移5个单位长度后的Rt△A1B1C1②再将Rt△A1B1C1绕点C1顺时针旋转90°,画出旋转后的Rt△A2B2C2,并求出旋转过程中线段A1C1所扫过的面积(结果保留π)考点:作图-旋转变换;全等三角形的判定;扇形面积的计算;作图-平移变换.分析:(1)由AB∥CD可知∠A=∠C,再根据AE=CF可得出AF=CE,由AB=CD即可判断出△ABF≌CDE;(2)根据图形平移的性质画出平移后的图形,再根据在旋转过程中,线段A1C1所扫过的面积等于以点C1为圆心,以A1C1为半径,圆心角为90度的扇形的面积,再根据扇形的面积公式进行解答即可.解答:(1)证明:∵AB∥CD∴∠A=∠C.∵AE=CF∴AE+EF=CF+EF,即AF=CE∵AB=CD∴∴△ABF≌CDE(SAS).(2)解:①如图所示;②如图所示:在旋转过程中,线段A1C1所扫过的面积等于=4π.点评:本题考查的是作图﹣旋转变换、全等三角形的判定及扇形面积的计算,熟知图形平移及旋转不变性的性质是解答此题的关键.24.(10分)“中国梦”关乎每个人的幸福生活,为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品.现将参赛的50件作品的成绩(单位:分)进行统计如下:等级成绩(用s表示)频数频率A 90≤s≤100 x 0.08B 80≤s<90 35 yC s<80 11 0.22合计50 1请根据上表提供的信息,解答下列问题:(1)表中的x的值为4,y的值为0.7(2)将本次参赛作品获得A等级的学生依次用A1,A2,A3,…表示,现该校决定从本次参赛作品中获得A等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生A1和A2的概率.考点:频数(率)分布表;列表法与树状图法.分析:(1)用50减去B等级与C等级的学生人数,即可求出A等级的学生人数x的值,用35除以50即可得出B等级的频率即y的值;(2)由(1)可知获得A等级的学生有4人,用A1,A2,A3,A4表示,画出树状图,通过图确定恰好抽到学生A1和A2的概率.解答:解:(1)∵x+35+11=50,∴x=4,或x=50×0.08=4;y==0.7,或y=1﹣0.08﹣0.22=0.7;(2)依题得获得A等级的学生有4人,用A1,A2,A3,A4表示,画树状图如下:由上图可知共有12种结果,且每一种结果可能性都相同,其中抽到学生A1和A2的有两种结果,所以从本次参赛作品中获得A等级学生中,随机抽取两名学生谈谈他们的参赛体会,恰好抽到学生A1和A2的概率为:P=.点评:本题考查读频数(率)分布表的能力和利用图表获取信息的能力.利用统计图表获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.用到的知识点为:各小组频数之和等于数据总数;各小组频率之和等于1;频率=频数÷数据总数;概率=所求情况数与总情况数之比.25.(12分)如图,已知在Rt△ABC中,∠C=90°,AD是∠BAC的平分线.(1)作一个⊙O使它经过A、D两点,且圆心O在AB边上;(不写作法,保留作图痕迹).(2)判断直线BC与⊙O的位置关系,并说明理由.考点:作图—复杂作图;直线与圆的位置关系.分析:(1)作出AD的垂直平分线,交AB于点O,进而利用AO为半径求出即可;(2)首先得出利用等腰三角形的性质得出OD∥AC,进而求出OD⊥BC,进而得出答案.解答:解:(1)如图所示:(需保留线段AD中垂线的痕迹).(2)直线BC与⊙O相切.理由如下:连结OD,∵OA=OD,∴∠OAD=∠ODA.∵AD平分∠BAC,∴∠OAD=∠DAC.∴∠ODA=∠DAC.∴OD∥AC.∵∠C=90°,∴∠ODB=90°,即OD⊥BC.∴BC为⊙O的切线.点评:此题主要考查了切线的判定以及线段垂直平分线的作法与性质等知识,掌握切线的判定方法是解题关键.26.(12分)如图,已知反比例函数的图象经过点(,8),直线y=﹣x+b经过该反比例函数图象上的点Q(4,m).(1)求上述反比例函数和直线的函数表达式;(2)设该直线与x轴、y轴分别相交于A、B两点,与反比例函数图象的另一个交点为P,连接0P、OQ,求△OPQ的面积.考点:反比例函数综合题.专题:综合题.分析:(1)把点(,8)代入反比例函数,确定反比例函数的解析式为y=;再把点Q(4,m)代入反比例函数的解析式得到Q的坐标,然后把Q的坐标代入直线y=﹣x+b,即可确定b的值;(2)把反比例函数和直线的解析式联立起来,解方程组得到P点坐标;对于y=﹣x+5,令y=0,求出A点坐标,然后根据S△OPQ=S△AOB﹣S△OBP﹣S△OAQ进行计算即可.解答:解:(1)把点(,8)代入反比例函数,得k=×8=4,∴反比例函数的解析式为y=;又∵点Q(4,m)在该反比例函数图象上,∴4•m=4,解得m=1,即Q点的坐标为(4,1),而直线y=﹣x+b经过点Q(4,1),∴1=﹣4+b,解得b=5,∴直线的函数表达式为y=﹣x+5;(2)联立,解得或,∴P点坐标为(1,4),对于y=﹣x+5,令y=0,得x=5,[来源:学.科.网]∴A点坐标为(5,0),∴S△OPQ=S△AOB﹣S△OBP﹣S△OAQ=×5×5﹣×5×1﹣×5×1=.点评:本题考查了点在图象上,点的横纵坐标满足图象的解析式以及求两个图象交点的方法(转化为解方程组);也考查了利用面积的和差求图形面积的方法.27.(12分)星光中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图象,直接写出x的取值范围.考点:二次函数的应用.分析:(1)根据题意即可求得y与x的函数关系式为y=30﹣2x与自变量x的取值范围为6≤x<15;(2)设矩形苗圃园的面积为S,由S=xy,即可求得S与x的函数关系式,根据二次函数的最值问题,即可求得这个苗圃园的面积最大值;(3)根据题意得﹣2(x﹣7.5)2+112.5≥88,根据图象,即可求得x的取值范围.解答:解:(1)y=30﹣2x(6≤x<15).(2)设矩形苗圃园的面积为S则S=xy=x(30﹣2x)=﹣2x2+30x,∴S=﹣2(x﹣7.5)2+112.5,由(1)知,6≤x<15,∴当x=7.5时,S最大值=112.5,即当矩形苗圃园垂直于墙的一边的长为7.5米时,这个苗圃园的面积最大,这个最大值为112.5.(3)∵这个苗圃园的面积不小于88平方米,即﹣2(x﹣7.5)2+112.5≥88,∴6≤x≤11,由(1)可知6≤x<15,∴x的取值范围为6≤x≤11.点评:此题考查了二次函数的实际应用问题.解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.28.(14分)如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.考点:二次函数综合题.专题:压轴题;动点型;数形结合;分类讨论.分析:(1)根据折叠图形的轴对称性,△CED、△CBD全等,首先在Rt△CEO中求出OE的长,进而可得到AE的长;在Rt△AED中,AD=AB﹣BD、ED=BD,利用勾股定理可求出AD的长.进一步能确定D点坐标,利用待定系数法即可求出抛物线的解析式.(2)由于∠DEC=90°,首先能确定的是∠AED=∠OCE,若以P、Q、C为顶点的三角形与△ADE相似,那么∠QPC=90°或∠PQC=90°,然后在这两种情况下,分别利用相似三角形的对应边成比例求出对应的t的值.(3)由于以M,N,C,E为顶点的四边形,边和对角线都没明确指出,所以要分情况进行讨论:①EC做平行四边形的对角线,那么EC、MN必互相平分,由于EC的中点正好在抛物线对称轴上,所以M点一定是抛物线的顶点;②EC做平行四边形的边,那么EC、MN平行且相等,首先设出点N的坐标,然后结合E、C的横、纵坐标差表示出M点坐标,再将点M代入抛物线的解析式中,即可确定M、N的坐标.解答:解:(1)∵四边形ABCO为矩形,∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10.由题意,△BDC≌△EDC.∴∠B=∠DEC=90°,EC=BC=10,ED=BD.由勾股定理易得EO=6.∴AE=10﹣6=4,设AD=x,则BD=ED=8﹣x,由勾股定理,得x2+42=(8﹣x)2,解得,x=3,∴AD=3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年广州市中考数学试题
2015年广东省广州市中考数学试卷(解析版)
一、选择题(本大题共10小题,每小题3分,满
分30分。在每小题给出的四个选项中,只有一
项是符合题目要求的)
1.(3分)(2015•广州)四个数﹣3.14,0,1,2
中为负数的是( )
A. ﹣3.14 B. 0 C. 1 D. 2

2.(3分)(2015•广州)将图中所示的图案以圆
心为中心,旋转180°后得到的图案是( )

A. B. C. D.
3.(3分)(2015•广州)已知⊙O的半径为5,
直线l是⊙O的切线,则点O到直线l的距离是
( )
A. 2.5 B. 3 C. 5 D. 10
7.(3分)(2015•广州)已知a,b满足方程组
,则a+b的值为( )

A. ﹣4 B. 4 C. ﹣2 D. 2

8.(3分)(2015•广州)下列命题中,真命题的
个数有( )
①对角线互相平分的四边形是平行四边形;
②两组对角分别相等的四边形是平行四边形;
③一组对边平行,另一组对边相等的四边形是平
行四边形.
A. 3个 B. 2个 C. 1个 D. 0个

9.(3分)(2015•广州)已知圆的半径是2,则
该圆的内接正六边形的面积是( )
A. 3 B. 9 C. 18 D. 36
10.(3分)(2015•广州)已知2是关于x的方程
x2﹣2mx+3m=0的一个根,并且这个方程的两个
根恰好是等腰三角形ABC的两条边长,则三角
形ABC的周长为( )
A. 10 B. 14 C. 10或14 D. 8或10

二、填空题(本大题共6小题,每小题3分,满
分18分)
11.(3分)(2015•广州)如图,AB∥CD,直线
l分别与AB,CD相交,若∠1=50°,则∠2的度
数为 .

12.(3分)(2015•广州)根据环保局公布的广州
市2013年至2014年PM2.5的主要来源的数据,
制成扇形统计图,其中所占百分比最大的主要来
源是 .(填主要来源的名称)
13.(3分)(2015•广州)分解因式:2mx﹣
6my= .

14.(3分)(2015•广州)某水库的水位在5小时
内持续上涨,初始的水位高度为6米,水位以每
小时0.3米的速度匀速上升,则水库的水位高度
y米与时间x小时(0≤x≤5)的函数关系式
为 .

15.(3分)(2015•广州)如图,△ABC中,DE
是BC的垂直平分线,DE交AC于点E,连接
BE.若BE=9,BC=12,则cosC= .
16.(3分)(2015•广州)如图,四边形ABCD
中,∠A=90°,AB=3,AD=3,点M,N分别
为线段BC,AB上的动点(含端点,但点M不
与点B重合),点E,F分别为DM,MN的中
点,则EF长度的最大值为 .

三、解答题(本大题共9小题,满分102分,解
答应写出文字说明、证明过程或演算步骤)
17.(9分)(2015•广州)解方程:5x=3(x﹣4)

18.(9分)(2015•广州)如图,正方形ABCD
中,点E,F分别在AD,CD上,且AE=DF,
连接BE,AF.求证:BE=AF.
19.(10分)(2015•广州)已知A=﹣
(1)化简A;
(2)当x满足不等式组,且x为整数时,

求A的值.
20.(10分)(2015•广州)已知反比例函数y=
的图象的一支位于第一象限.
(1)判断该函数图象的另一支所在的象限,并
求m的取值范围;
(2)如图,O为坐标原点,点A在该反比例函
数位于第一象限的图象上,点B与点A关于x
轴对称,若△OAB的面积为6,求m的值.
21.(12分)(2015•广州)某地区2013年投入教
育经费2500万元,2015年投入教育经费3025
万元.
(1)求2013年至2015年该地区投入教育经费
的年平均增长率;
(2)根据(1)所得的年平均增长率,预计2016
年该地区将投入教育经费多少万元.

22.(12分)(2015•广州)4件同型号的产品中,
有1件不合格品和3件合格品.
(1)从这4件产品中随机抽取1件进行检测,
求抽到的是不合格品的概率;
(2)从这4件产品中随机抽取2件进行检测,
求抽到的都是合格品的概率;
(3)在这4件产品中加入x件合格品后,进行
如下试验:随机抽取1件进行检测,然后放回,
多次重复这个试验,通过大量重复试验后发现,
抽到合格品的频率稳定在0.95,则可以推算出x
的值大约是多少?
23.(12分)(2015•广州)如图,AC是⊙O的
直径,点B在⊙O上,∠ACB=30°
(1)利用尺规作∠ABC的平分线BD,交AC
于点E,交⊙O于点D,连接CD(保留作图痕
迹,不写作法)
(2)在(1)所作的图形中,求△ABE与△CDE
的面积之比.

24.(14分)(2015•广州)如图,四边形OMTN
中,OM=ON,TM=TN,我们把这种两组邻边
分别相等的四边形叫做筝形.
(1)试探究筝形对角线之间的位置关系,并证
明你的结论;
(2)在筝形ABCD中,已知AB=AD=5,
BC=CD,BC>AB,BD、AC为对角线,BD=8
①是否存在一个圆使得A,B,C,D四个点都
在这个圆上?若存在,求出圆的半径;若不存
在,请说明理由;
②过点B作BF⊥CD,垂足为F,BF交AC于
点E,连接DE,当四边形ABED为菱形时,求
点F到AB的距离.

25.(14分)(2015•广州)已知O为坐标原点,
抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,
0),B(x2,0),与y轴交于点C,且O,C两
点间的距离为3,x1•x2<0,|x1|+|x2|=4,点A,C
在直线y2=﹣3x+t上.
(1)求点C的坐标;
(2)当y1随着x的增大而增大时,求自变量x
的取值范围;
(3)将抛物线y1向左平移n(n>0)个单位,
记平移后y随着x的增大而增大的部分为P,直
线y2向下平移n个单位,当平移后的直线与P
有公共点时,求2n2﹣5n的最小值.

相关文档
最新文档