红外热像在线测温系统的设计与实现
电气设备红外热像测温技术应用

电气设备红外热像测温技术应用【摘要】在电力系统的各种电气设备中,导流回路部分存在大量接头或连接件,如果导流回路连接不紧或接触面处理不良,会引起接触电阻增大,当负荷电流通过时,必然导致局部过热,严重会烧毁电气设备,甚至造成火灾。
红外热像仪是电力生产人员的“火眼金睛”。
【关键词】红外热像;测温1.红外测温技术简介红外测温仪/热像仪可在远离目标的安全处测量物体的表面温度,成为电气设备维护必不可少的工具。
通过探测电气设备和线路的热缺陷,从而及时发现、处理、预防重大事故的发生。
在《带电设备红外诊断技术应用导则》中关于操作方法中指出:检测时一般先用热像仪对所有应测部位进行全面扫描,找出工况异常部位,然后对于异常部位和重点电气设备进行正确测温。
电气设备/线路的热缺陷通常是指由于其内在或外在原因所造成的的发热现象。
根据缺陷所产生的原因不同,可归纳3种:第一种是长期暴露在空气中的部件,由于温度湿度的影响,或表面结垢而引起的接触不良,或由于外力作用所引起的部件损伤,因而使得的导电截面积减少而产生的发热。
如接头连接不良,螺栓,垫圈未压紧;长期运行腐蚀氧化;大气中的活性气体、灰尘引起的腐蚀;元器件材质不良,加工安装工艺不好造成导体损伤;机械振动等各种原因所造成的导体实际截面降低;负荷电流不稳或超标等。
第二种是由于电器内部本身故障,如内部连接部件接触不良导致的电阻过大;绝缘材料老化、开裂、脱落;内部元件受潮,元气件损耗增大;冷却介质管路阻塞等等。
第三种是因漏磁通产生的涡流损耗。
诊断范围:发电机的定子绕组线棒接头、铁心、电刷、端盖、冷却系统,旋转电机、变压器、套管、断路器、刀闸、互感器、阻波器、电力电容器、避雷器、电力电缆、母线、导线接头、组合电器、绝缘子串、低压电器以及具有电流、电压致热效应或其他致热效应的设备的二次回路等。
1.1判断方法(1)表面温度判断法;(2)相对温差判断法:对电流制热型设备应准确测温,计算相对温度,判断缺陷性质;(3)同类比较法:同一电气回路中,当三相电流对称和三相设备相同时比较对应部位的温升值,判断工况是否正常;同型号的电压制热型设备,可根据对应点温升差异判断设备是否正常;(4)热谱图分析;(5)档案分析法:根据不同时期的数据分析(温度,温升,相对温差和热谱图)。
基于stm32红外非接触体温仪毕业设计

基于STM32红外非接触体温仪毕业设计一、概述随着全球疫情的爆发,人们对于体温监测的需求日益增加。
在这样的大背景下,红外非接触体温仪成为了一种非常重要的工具。
而在这个毕业设计中,我们将结合STM32芯片,设计一款红外非接触体温仪,并将其加以实践。
二、设计思路1. 红外测温原理在设计红外非接触体温仪前,我们首先需要理解红外测温的原理。
红外测温利用红外线能量与物体表面产生的热量之间的关系,通过检测物体的表面温度来确定物体的温度。
我们将通过研究这些原理,来确定我们的测温方案。
2. STM32芯片的选择在选择芯片时,我们需要考虑到性能、功耗、成本等方面的因素。
经过调研和比较,我们最终选择了STM32作为我们的芯片。
因为它具有性能强劲、低功耗等特点,非常适合用于这样的应用场景。
3. 软件设计在软件设计方面,我们将使用C语言来编写嵌入式程序。
我们需要设计一个用户界面,用于显示测量得到的温度数据,并且需要设计相应的算法,用于对红外信号进行处理,最终得到准确的温度值。
4. 硬件设计在硬件设计方面,我们将搭建红外传感器、显示屏、按钮等硬件模块,并且需要设计相应的电路进行连接。
我们也需要考虑到电源管理、EMI等问题,以确保产品的安全可靠。
三、实施步骤1. 系统框图设计先前设计的理念已经明确,我们需要通过系统框图来具体的描述各个模块之间的关系以及通信方式。
2. 红外传感器选型及连接我们需要选择适合的红外传感器,并且设计相应的电路来进行连接。
在连接的过程中,我们需要注意信号的稳定性、传输速率等问题,以保证数据的准确性。
3. 软件开发从STM32的数据手册以及相应的参考设计中,我们可以获得一些基础的代码框架来开始我们的开发工作。
我们需要编写测温算法、UI设计、以及异常处理等功能。
4. 硬件搭建在硬件搭建阶段,我们需要进行电路的焊接、模块的搭建等工作。
在这个过程中,我们需要注意安全问题,并且需要进行相应的测试。
四、成果展示在毕业设计结束后,我们获得了一款基于STM32的红外非接触体温仪。
高压设备紫外、红外成像在线监测系统及其检测方法的制作技术

图片简介:本技术涉及一种高压设备紫外、红外成像在线监测系统,包括视频采集模块、视频处理模块、中心测距模块、温湿度测量模块和远程监控终端,视频采集模块包括第一级分光镜、第二级分光镜、紫外视频采集器、红外视频采集器、可见光视频采集器;视频处理模块包括中央处理控制模块、紫外前处理模块、红外前处理模块、视频叠加模块、视频压缩模块和网络通讯模块。
本技术的有益效果:采用这样的结构后,利用分光镜头获得重合的多光谱成像,计算获得设备的温度与紫外线放电数据,可在线监测红外、可见、紫外光叠加视频,并增加激光测距与温湿度传感器,修正红外测温数据。
同时用计算机系统软件进行分析,得出设备的运行状态与健康状况,提高故障检测成功率。
技术要求1.一种高压设备紫外、红外成像在线监测系统,包括视频采集模块、视频处理模块、中心测距模块、温湿度测量模块和远程监控终端,其特征在于:所述视频采集模块包括第一级分光镜、第二级分光镜、紫外视频采集器、红外视频采集器、可见光视频采集器;所述紫外视频采集器、所述红外视频采集器、所述可见光视频采集器分别与所述视频处理模块相连;所述视频处理模块包括中央处理控制模块、紫外前处理模块、红外前处理模块、视频叠加模块、视频压缩模块和网络通讯模块;所述紫外视频采集器、所述红外视频采集器、所述可见光视频采集器分别与所述视频处理模块相连;所述中央处理控制模块分别与所述中心测距模块、所述温湿度测量模块相连;所述网络通讯模块通过无线网络与远程监控终端通信。
2.根据权利要求1所述的高压设备紫外、红外成像在线监测系统,其特征在于:所述紫外视频采集器包括紫外镜头、紫外线滤波器、紫外成像传感器、紫外视频采集模块;所述紫外镜头连接所述紫外线滤波器;所述紫外线滤波器连接紫外成像传感器;所述紫外成像传感器连接紫外视频采集模块;所述紫外视频采集模块连接所述紫外前处理模块。
3.根据权利要求1所述的高压设备紫外、红外成像在线监测系统,其特征在于:所述红外视频采集器包括红外镜头、红外热成像传感器、红外视频采集模块;所述红外镜头连接红外热成像传感器;所述红外热成像传感器连接所述红外视频采集模块;所述红外视频采集模块连接所述红外前处理模块。
红外成像测温方法介绍

红外成像测温方法介绍随着科技的进步,红外成像测温技术在各行各业中得到了广泛的应用。
该技术通过检测物体所发出的红外辐射来测量其表面温度,具有非接触、快速、准确的优点。
本文将介绍几种常见的红外成像测温方法。
一、红外测温原理红外成像测温的基本原理是物体受热后会发出热辐射,其中包括了红外辐射。
红外相机能够将红外辐射转化为热图像,通过分析热图像的颜色和亮度来确定物体表面的温度分布情况。
二、热像仪法热像仪法是最常见的红外成像测温方法之一。
它利用红外相机捕捉物体发出的红外辐射,将其转化为热图像。
热图像以不同的颜色来表示物体的温度,通常采用热色谱图来显示。
热像仪可以快速扫描大面积,适用于工业生产线上的温度检测以及建筑结构的热损失分析等。
三、红外测温仪法红外测温仪是一种手持式温度测量设备,可以单点或多点测温。
它通常包括一个红外探测器和一个显示屏。
其原理是通过接收物体表面所发出的红外辐射,转化为温度数值并显示出来。
红外测温仪可以实时测温,非常适用于工业领域中的温度监测,如电力设备、管道、锅炉等的故障诊断。
四、红外测温系统红外测温系统是一种集成了红外成像和温度测量功能的设备。
它通常由红外相机、控制器和显示屏组成。
红外相机负责捕捉物体的红外辐射,并转化为热图像。
控制器负责对热图像进行分析处理,计算出物体表面的温度。
显示屏则显示热图像和温度数值。
红外测温系统可以用于大范围的温度监测,如火灾报警系统、医疗诊断等。
五、红外测温的应用领域红外成像测温技术在各个行业中都有广泛的应用。
在工业领域,它可以用于故障诊断、设备运行状态监测等;在医疗领域,它可以用于体温检测、疾病诊断等;在建筑领域,它可以用于检测建筑结构的热损失情况等。
此外,红外测温技术还可以应用于夜视、安防等领域。
总结:红外成像测温技术以其非接触、快速、准确的特点,被广泛应用于各个行业中。
热像仪法、红外测温仪法以及红外测温系统等几种常见的测温方法,能够满足不同领域对温度测量的需求。
毕业设计43智能红外检测系统设计

第一章绪论1.1课题研究的背景随着人类知识的积累和工业生产技术的发展,人类对自然的控制与加工能力越来越强。
在人类社会的各个领域,从工业、农业、商业、国防、通信、交通运输、科学技术直到文化娱乐、教育、医疗乃至家庭生活的每一个角落,自动化设备、智能仪器仪表正延展着人们的感官,精确地执行人的命令,实现着人们过去可望而不可及的愿望。
由于微处理器生产成本的下降,目前各种自动化设备和智能仪器仪表的核心部件通常是由专用的微处理器构成。
这些专用的微处理器在我国一般称为单片机,国外称为微控制器。
单片机广泛用于自动化控制设备、消费电子产品、智能仪器仪表等领域,尤其是在新型智能化小产品开发方面,几乎是单片机一统天下。
单片机是一类特殊的微处理器,它内部的硬件结构与一般为微处理器相同的是都有控制器、运算器和各种专用寄存器。
控制器将时钟振荡器产生的方波脉冲按固定的时间顺序分配给芯片内的各个部件,即产生节拍。
在节拍的作用下控制器按程序计数器中的地址从程序存储器中取回指令进行译码,运算器和各种专用寄存器则根据译码在控制器的控制下有条不紊地进行数据的传递和运算处理。
单片机的应用,打破了人们的传统设计思想。
原来需要使用模拟电路、脉冲数字电路等部件来实现的功能,在应用了单片机以后,无需使用诸多的硬件,可以通过软件来解决问题。
目前单片机已经成为科技、自控等领域的先进控制手段,在人类日常生活中的应用也非常广泛。
(1)工业过程控制中的应用。
单片机的I/O口线多,操作指令丰富,逻辑操作功能强大,特别适用于工业过程控制。
单片机可作主机控制,也可作分布或控制系统的前端机。
单片机具有丰富的逻辑判断和位操作指令,因此广泛应用于开关量控制、顺序控制以及逻辑控制。
(2)家用、民用电器中的应用单片机价格低廉、体积小巧、使用方便,广泛应用在人类生活中的诸多场合,如洗衣机、电冰箱、空调器等。
(3)智能化仪器、仪表中的应用单片机可应用于各类仪器、仪表和设备中,大大地提高了测试的自动化程度与精度,如智能化的示波器、计价器、电表、水表等。
基于红外线测温技术的电力设备温度监测方案

基于红外线测温技术的电力设备温度监测方案介绍:红外线测温技术是一种非接触式测温技术,它通过检测物体的红外辐射来确定其温度。
在电力设备温度监测方面,红外线测温技术具有准确、高效、远距离测温等优点,被广泛应用于电力设备的温度监测和故障预警。
1. 红外线测温原理红外线测温技术基于物体的热辐射现象。
每个物体都会以一定的辐射能量发射热辐射,其强度与温度成正比。
红外线测温设备通过接收物体发射的红外辐射,并转换为温度数值,实现对物体温度的监测和测量。
2. 电力设备温度监测方案(1)设备选择:选择合适的红外线测温设备,根据需求选择不同型号和规格,确保测温设备的准确度和可靠性。
(2)设备部署:根据电力设备的特点和布局,合理安排红外线测温设备的布置位置。
可以选择固定或可移动式设备,确保能够有效覆盖设备的各个部位。
(3)测温点位设置:根据电力设备的热点分布和重要部位,设置合理的测温点位。
重要的设备部位和连接口,如变压器、断路器、接线端子等,应设置独立的测温点位进行监测。
(4)测温数据采集:使用红外线测温设备对设备进行定期测量,采集温度数据。
可以根据需要设置自动化测温或手动测温模式,确保数据的及时性和准确性。
(5)数据分析与处理:对采集到的温度数据进行分析和处理,识别潜在的异常温度和故障预警信号。
结合设备历史数据和温度曲线变化,进行数据比对和趋势分析,发现设备的异常情况。
(6)故障预警与报警:根据设定的温度阈值和故障预警规则,当监测到异常温度时,自动触发报警机制,及时通知相关人员,以便进行故障排查和处理。
(7)维护与保养:定期对红外线测温设备进行维护和保养,检查设备的正常运行和准确性。
同时对设备的电源供应进行监测和保护,确保设备的稳定运行。
3. 红外线测温技术的优势(1)非接触式测温:红外线测温技术无需与被测物体接触,避免了传统测温方法中可能存在的安全隐患和设备损坏的风险。
(2)准确度高:红外线测温设备能够快速、准确地实时测量温度,并将结果以数值显示。
人脸测温方案
人脸测温方案简介人脸测温是一种非接触式温度测量技术,通过使用红外热像仪和人脸识别技术,能够在短时间内准确测量出人体的体表温度。
人脸测温方案被广泛应用于公共场所、企事业单位、交通枢纽、医疗机构等地,作为预防疫情传播和提供安全管理的一种重要手段。
技术原理人脸测温方案主要依赖于红外热像仪和人脸识别技术,并结合温度测量算法来实现。
具体的技术原理如下:1.红外热像仪:红外热像仪能够通过红外波段捕捉人体发射的红外辐射,根据不同的红外辐射强度来推算出人体表面的温度。
红外热像仪可以快速扫描大量人员,并将人脸区域的温度数据提取出来。
2.人脸识别技术:人脸识别技术通过摄像头采集到的图像,识别出人脸并将其与预先存储的人脸数据进行比对。
通过对比分析,可以准确地识别出每个人的身份。
3.温度测量算法:根据红外热像仪采集到的人体表面温度数据,结合环境温度和修正系数等因素,经过一定的数学模型计算,得出最终的体温值。
通常采用的算法包括平均温度算法、颜色匹配算法等。
系统组成人脸测温方案主要由硬件设备和软件系统两部分组成。
硬件设备硬件设备包括红外热像仪、摄像头、显示屏和服务器等组成。
1.红外热像仪:红外热像仪是人脸测温方案的核心设备,用于采集人体表面的红外辐射数据,并将其转化为温度值。
2.摄像头:摄像头用于采集人脸图像,供人脸识别技术进行分析和比对。
3.显示屏:显示屏用于显示测温结果,通常会显示人员的姓名、体温值和识别结果等信息。
4.服务器:服务器用于存储人脸数据和温度数据,并进行数据的处理和分析。
软件系统软件系统是人脸测温方案的核心,主要包括人脸识别算法和温度测量算法。
1.人脸识别算法:人脸识别算法用于对采集到的人脸图像进行分析和识别,可以通过与已有的人脸数据进行比对,准确地判断出每个人的身份。
2.温度测量算法:温度测量算法根据红外热像仪采集到的红外辐射数据,结合环境温度和修正系数等因素,计算出人体的体温值。
3.界面显示:软件系统还包括用户界面的设计和实现,通过显示屏和用户的交互,提供测温结果的展示和管理。
红外高温热成像仪养殖业动物体温监控方案
一、猪群体温在线监控系统优势:
1.猪群批量筛查,成像清晰、测温精准;
2.个体体温异常部位区分标记,毫秒级响应;
3.24小时远程实时监控,异常快速自动报警;
4.温度追踪,可见光辅助定位查找异常生猪.
我们利用精准的红外测温技术及专业的智能算法,积极帮助一些大型生猪养殖企业探索高效的养殖模式,为企业转型、扩大产能,实现科学养殖提供了得力帮助。
(详情点击进入官网或来电咨询)严禁盗图,违者必究
二、动物温控双光热像仪应用案例:
为某大型生猪养殖场提供猪群红外体温监控设备及方案
(详情点击进入官网或来电咨询)严禁盗图,违者必究
该项目采用我司特有的双光热像仪,专注人体及动物体温检测,测温精度可提升至±0.3℃,对猪群进行体温批量精准筛查,对个体体温异
常部位进行明显标记,快速找出发烧的猪,及时遏制猪瘟扩散,减少病死率,减少经济损失。
案例介绍:利用精准的红外测温技术及专业的智能算法,积极帮助一些大型生猪养殖企业探索高效的养殖模式,为企业转型、扩大产能,实现科学养殖提供了得力帮助。
(更多详情点击进入官网或来电咨询)严禁盗图,违者必究
四、猪群体温在线监控系统介绍:
(详情点击进入官网或来电咨询)严禁盗图,违者必究
(详情点击进入官网或来电咨询)严禁盗图,违者必究
(详情点击进入官网或来电咨询)严禁盗图,违者必究
五、为什么选择我们的红外热像仪?
更多详细方案介绍,请关注格物优信官网,咨询网站技术人员或来电咨询。
电力设备红外精确测温规范及图谱库的建立与应用(最新)
电力设备红外精确测温规范及图谱库的建立与应用(最新)一、引言电力系统作为现代社会的基石,其安全稳定运行至关重要。
电力设备在长期运行过程中,由于各种因素的影响,可能会出现局部过热现象,进而引发设备故障甚至事故。
红外精确测温技术作为一种非接触式检测手段,能够有效识别设备的热异常,提前预警潜在风险。
本文将详细探讨电力设备红外精确测温的规范、图谱库的建立及其应用,旨在为电力系统的安全运行提供有力保障。
二、电力设备红外精确测温技术概述1. 红外测温原理红外测温技术基于物体的热辐射原理,通过检测物体表面发射的红外辐射能量,计算出物体的表面温度。
其核心原理遵循斯特藩玻尔兹曼定律和维恩位移定律。
2. 红外测温设备常见的红外测温设备包括红外热像仪和红外点温仪。
红外热像仪能够提供被测物体的二维温度分布图像,而红外点温仪则主要用于测量单一点的温度。
3. 红外测温的优势非接触性:无需接触被测物体,安全性高。
实时性:能够实时监测设备温度变化。
直观性:通过热像图直观显示温度分布,便于分析和判断。
三、电力设备红外精确测温规范1. 设备选择与校准设备选择:根据被测设备的类型、尺寸和测温精度要求,选择合适的红外测温设备。
例如,对于大型变电站,建议使用高分辨率、高精度的红外热像仪。
设备校准:定期对红外测温设备进行校准,确保其测量精度。
校准应遵循国家相关标准和规程。
2. 测量环境要求环境温度:测量时应避免环境温度剧烈变化,最佳测量环境温度为20℃至50℃。
湿度:相对湿度应控制在85%以下,避免水汽对红外辐射的干扰。
风速:风速不宜超过3m/s,防止风速影响测量精度。
3. 测量距离与角度测量距离:根据设备的尺寸和红外测温设备的性能,选择合适的测量距离。
一般建议测量距离为设备直径的35倍。
测量角度:尽量保持红外测温设备与被测设备表面垂直,避免角度过大导致的测量误差。
4. 测量流程前期准备:检查设备状态,确保红外测温设备电量充足,校准无误。
变电站热像在线测温系统模型构建及温度修正
c r s o dn mpo e n au e o jrfcos or p n ig i rv me tme srs fr mao a tr e
afci g t e p e iin o tm p r tr me s r me t fe t h r cso f e eau e n a ue n ,
ic u ig m isv t o lcrc l q i me t a in n l dn e s ii y f e e t a e u p n , mbe t i
tmp rt r a d t s h rc r n m isvt a e ie . e e au e n amo p e i ta s sii y r gv n
Absr c Th h r li a ig o l e e au e ta t e t e ma m gn n i tmp rt r ne
前 对不 同 的 电气 设 备 已经 提 出 了众 多 电气 量 在 线 监 测 方法 _ 。 与此 同 时 ,电 气 设 备 正 在 由传 统 的计 划 维 7 , 修 转 向 预 知 的状 态 维 修 .由于 红 外 检 测 技 术 具 有 不 接 触 、不 停 运 、不 取 样 、不 解 体 的优 点 ,是 适 合 电力 设
为 了保 障 电 网 的 运 行 安 全 ,提 高 供 电 质 量 ,人 们 致 力 于 变 电 站 监 视 、控 制 和 保 护 系 统 的研 究 与 开 发 ,并 辅 以各 种 手 段 保 障 电气 设 备 的运 行 安 全 。 目
me s e n d l Te p r tr o cin Elcrc l a urme tmo e m ea u e c  ̄e t o e t a i
e up n q i meБайду номын сангаасt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
红外热像在线测温系统的设计与实现作者:孙帅,杨星来源:《现代电子技术》2009年第20期摘要:结合目前最新的红外热像技术,设计一种新型输电线路在线测温系统。
阐述红外热像技术在输电线路温度监测中的应用模型。
重点论述该系统的工作原理、系统结构、功能、工作流程以及各部分组成,主要包括硬件和软件方面设计的框架结构。
该系统采用JPEG压缩编码技术对红外热像图进行处理,并结合GPRS无线网络进行实时数据传输,实现了对输电线路温度的监测。
经过输电线路现场运行与测试,各项技术指标已达到设计要求。
关键词:GPRS;输电线路;红外热像;监测中图分类号:TM733文献标识码:A文章编号:1004-373X(2009)20-212-04Design and Implementation of Infrared Imaging On-Line Thermal Measurement SystemSUN Shuai,YANG Xing(Taiyuan University of Technology,Taiyuan,030024,China)Abstract:According to the latest infrared imaging technology,a new transmission line on-line thermal measurement system is designed.The application model of infrared imaging technology in monitoring temperature of transmission line is explained.The working principle,the systematic structure,the functions,the operation process and the composition of various parts of this system are discussed particularly,mainly including the frame structure of the hardware design and software design.This system adopts JPEG compression coding technology to deal with the infrared thermography,combining with the GPRS wireless network to transport the real-time data,and temperature monitoring of the transmission line is implemented.All technical targets of this system have reached design demands through operating and testing the transmission line on the spot.Keywords:GPRS;transmission line;infrared imaging;monitoring0 引言在供电网络发展极为迅速和网架结构日趋合理化的今天,国家对电力系统供电可靠性的要求越来越高。
红外热像测温技术在电力工业设备状态检测领域得到了广泛的应用。
但红外热像图数据的大容量与传输方式有限性之间的矛盾也越来越突出,而发展到目前,中国移动强大的GPRS无线通信网络为这一问题提供了很好的解决方案[1]。
因此,研究输电线路红外热像在线测温是一项迫切而艰巨的任务。
输电线路红外热像在线测温系统运用先进的红外热像技术,对输电线路运行温度进行状态在线监测;利用已有的GPRS无线通信网络实现热像图数据的传输,具有覆盖面广,无需增加传输设备和线路的特点,特别适用于无法架设线路的偏远地域的输电线路场合[2]。
系统图像采集与传输终端由红外热像图采集模块、图像数据压缩模块、GPRS网络通信模块、图像数据传输模块和太阳能供电装置等组成,其中图像数据压缩模块采用JPEG硬件压缩编码技术,对静态图像进行压缩编码[7],最大限度地减少了网络传输的数据量,节省了网络资源,提高了图片的传输速度。
为了解决设计中的高速率图像采集、压缩控制与数据传输速度相对较慢带来的变速率采样问题,系统硬件结构采用微控制器加可编程逻辑控制芯片(MCU+CPLD)的方案,各项子功能由标准通用模块完成,降低了系统复杂度,提高了系统整体性能,用户可以利用PC机通过Internet上实现热像图的远端采集与现场监控。
1 红外热像技术在输电线路温度监测中的应用模型1.1 红外热像技术简介红外热像技术是探测输电线路中各种电气设备表面辐射的不为人眼所见的红外线的技术。
它反映设备表面的红外辐射场,即温度场。
并根据设备表面的温度场,测量设备某一部分的平均温度。
是一种被动的、非接触式的检测手段。
红外热像仪就是利用该技术制作而成的检测设备,目前已在电力设备故障诊断领域得到广泛应用[4]。
其简单工作示意图如图1所示。
图1 红外热像仪简单工作示意图1.2 红外热像技术在输电线路温度监测中的应用输电线路的温度信息可以通过红外图像进行有效反映。
红外成像是惟一一种可以将热信息瞬间可视化,并加以验证的诊断技术。
红外热像仪可揭示热故障,并通过非接触温度测量加以定性分析,在专业的红外分析软件的帮助下,数秒内便可自动完成分析报告。
所有利用或者发射能量的设备在发生故障前都会产生发热现象。
保证电气设备运行可靠性的关键便是对能源的有效管理,而红外热像技术已成为预防性维护领域最有效的检测工具,它能够在设备发生故障之前,快速、准确、安全地发现故障。
在电气接点发生故障之前及时发现并进行维修,可以避免输电线路因高温热故障造成断电掉电所带来的高昂代价[5]。
红外热像仪能够正确引导预防性维护专家对电气设备的运行情况进行准确判断。
可以将测量温度值与历史温度进行比较,或者与相同时间同类设备的温度读数进行比较,以准确判断是否发生了显著的温升,是否会导致部件失效,带来生产隐患。
主要用于电力预防性维护等用途。
特别是用于输电线路预防性维护、检测方面,具有很大的优越性。
2 输电线路红外热像在线测温系统的实现方案2.1 系统的工作原理安装在输电线路现场的前端采集终端利用高精度数字式温度传感器对环境温度参数值进行采集;利用高精度红外热像仪对准需要进行温度监测的电气设备。
前端系统定时地采集到各种电气设备有关温度分布的热像图后,将数据传送给电路系统,电路系统经过分析处理后将热像图进行压缩和打包处理,然后通过GPRS无线网络的方式发送到监控中心的计算机数据服务器上。
数据服务器安装相应的应用软件程序进行数据的自动处理,主要完成热像图的接收与解压还原,之后以图像和图形的形式将各种电气设备的温度分布情况直观的显示在客户端,不同温度以不同颜色显示。
系统结合数据软件系统和各种修正理论模型分析各种电气设备存在的热缺陷和故障状态,及时给出诊断信息,有效预防输电线路高温热故障的发生。
系统集成了环境温度在线监测和输电线路温度分布的在线红外热像监测等,并借助现有中国移动强大的GPRS无线通信网络进行实时数据传输,实现了对输电线路温度状态的监测。
2.2 系统的结构整个监控系统主要分为两个部分:图像采集与传输终端(前端);监控中心计算机数据服务器(中心端)。
在系统构成上可分为上位机(监控中心计算机数据服务器)和下位机(图像采集与传输终端)两大部分。
计算机数据服务器负责对图像采集与传输终端进行管理和控制,处于管理层次的上层,因此称为上位机。
图像采集与传输终端处在数据中心的控制下,负责对数据进行采集和传输,处于管理层次的下层,因此称为下位机。
系统结构如图2所示。
图2 系统结构图像采集与传输终端包括以图像采集芯片处理器为核心的图像采集与JPEG压缩部分和GPRS网络传输部分以及红外报警部分。
图像采集部分由视频A/D芯片实现模拟图像的数字化转换,使用专用芯片实现JPEG图像压缩编码[6]。
GPRS无线网络传输部分由专用GPRS模块实现网络传输功能,它与图像采集部分的接口是通用异步串行接口(UART)。
红外报警部分实现输电线路温度出现异常状况的报警功能。
下位机主要实现输电线路现场原始图像的采集和压缩以及压缩图像数据的GPRS无线信道传输,这些功能都由相应的软件支持系统实现。
服务器包括硬件和软件,硬件为具有公网IP地址的计算机,软件即为服务器程序,由服务器程序实现GPRS网络传输模块和中心间的命令传递和数据传输。
监控中心计算机数据服务器也包括硬件和软件部分。
硬件为一台能接入Internet的计算机,软件为监控程序,电脑的网络状态为公网、动态IP[7]。
在这里特别指出,因为监控中心端满足服务器的网络要求,所以该系统将服务器和监控中心端放到一台计算机上,以节约硬件和网络资源。
上位机主要实现压缩图像数据的接收及解码和接收图像数据的数据库保存和处理。
2.3 系统的功能描述2.3.1 上位机(监控中心计算机数据服务器)上位机系统在用户计算机上实现和运行并将相关数据存入数据库。
主要完成对各个监测点数据的收集,并将下位机的相关配置信息、设置状态信息和环境数据存储到数据库中,方便用户进行数据处理和分析。
上位机系统主要功能如下:(1) 显示:数据的显示包含多项内容,包括:温度传感器采集数据和红外热像监控器热像图的显示、历史值的显示、按照时间显示数据等。
(2) 存储内容:实时数据、历史数据、运行记录、当前状态(3) 历史数据整理:该系统可以对历史数据文件进行整理,删除选定的历史数据文件,删除某段时间以前的历史数据。
(4) 打印报表:可以打印两种报表,选择日期,再选择报表类型,即可打印。
2.3.2 下位机(前端图像采集与传输终端)下位机系统通过专用的传感和变送装置,对输电线路环境温度、输电线路温度分布的红外热图像等信息进行监测,并转化为可以被计算机处理的电信号(电压、电流、频率等),再由CPU 对电信号进行二次化处理转化为符合一定标准的数据,并存储在存储芯片中,以供保存和分析使用。
下位机中的数据无线通信模块起桥梁作用,连接监控中心端(上位机系统)与前端采集终端,并实现它们之间的通信。
它负责将数据根据上位机系统请求或主动上报方式通过GPRS通信方式上传给上位机,并将上位机发送的控制命令传输给前端采集终端。
2.4 系统的工作流程该系统是为满足现场监控而设计,下面对系统的工作过程加以叙述。
该系统具有定时观察、即时观察以及现场报警触发等功能[8],具体工作过程如下:(1) 启动阶段:前端安装并启动以后,GPRS模块自动通过预先设定的服务器地址与中心端进行连接。