金属材料金相检验

合集下载

金相实验过程

金相实验过程

金相实验过程金相实验是金属材料分析中常用的一种方法,用于观察和分析金属材料的组织结构。

通过金相实验,可以揭示金属材料的晶粒大小、晶体结构、组织均匀性以及存在的缺陷等信息。

金相实验通常分为样品制备、腐蚀处理、组织观察和分析几个步骤。

下面将详细介绍金相实验的过程。

1. 样品制备需要从金属材料中切取代表性的样品。

样品应选择尺寸适中、表面平整的部分。

对于大型的金属工件,可以使用切割机或钻孔机进行切割。

对于小型的金属样品,可以使用金相切割机进行切割,保证切口平整。

切割完成后,需要将样品进行封装,以防止氧化和污染。

2. 腐蚀处理经过切割得到的金属样品表面通常有氧化层或其他污染物。

为了能够清晰地观察金属的组织结构,需要对样品进行腐蚀处理。

腐蚀处理的方法有很多种,常用的包括酸蚀和电解腐蚀。

酸蚀是将样品放入适当的酸液中,通过化学反应去除氧化层或其他污染物。

而电解腐蚀是将样品作为阳极,通过电流作用在电解液中进行腐蚀,可以更加精确地控制腐蚀速度和效果。

3. 组织观察经过腐蚀处理后,样品的组织结构就能够清晰地展现出来。

在金相实验中,组织观察通常采用金相显微镜。

金相显微镜是一种专门用于观察金属材料组织结构的光学显微镜,它能够放大样品并产生清晰的图像。

通过金相显微镜,可以观察到金属样品中的晶粒、晶界、孪晶等微观结构。

为了更好地观察,可以使用不同的显微镜放大倍数和不同的光源。

4. 分析与评价观察到金属样品的组织结构后,需要进行进一步的分析与评价。

这里涉及到对金属材料的晶粒大小、晶体结构、组织均匀性等特征进行定性和定量的分析。

可以使用计算机辅助的图像处理软件进行图像分析,例如测量晶粒大小、计算相体积分布等。

还可以结合金属材料的力学性能和使用条件,对组织结构进行定性评价,判断其是否满足要求。

5. 总结及观点金相实验是进行金属材料分析不可或缺的方法之一。

通过金相实验,可以了解金属材料的微观组织结构,并从中获取有关材料性能和加工性能的信息。

金相评级标准(一)

金相评级标准(一)

金相评级标准(一)金相评级标准1. 引言金相评级标准是对金属材料显微组织进行评级的一种指导性规范。

它主要依据金属材料的显微组织特征,对其进行分类与评估,旨在提供一种客观、统一的标准,以便更准确地描述金属材料的品质和性能。

2. 评级标准概述金相评级标准主要包括以下几个方面:组织形貌•晶粒尺寸:根据晶粒的尺寸大小进行评级,如超细晶、细晶、粗晶等。

•晶粒形状:根据晶粒的形状特征进行评级,如均匀晶、方形晶、柱状晶等。

•相比例:根据相的比例进行评级,如单相、双相、多相等。

组织缺陷•夹杂物:根据夹杂物的种类、分布和形态进行评级,如无夹杂物、少量夹杂物、严重夹杂物等。

•气孔:根据气孔的密度和形态进行评级,如无气孔、少量气孔、密集气孔等。

•裂纹:根据裂纹的长度、宽度和分布进行评级,如无裂纹、小裂纹、大面积裂纹等。

组织性能•硬度:根据金属材料的硬度进行评级,如硬度优良、硬度合格、硬度不合格等。

•强度:根据金属材料的拉伸、屈服等力学性能进行评级,如高强度、一般强度、低强度等。

•韧性:根据金属材料的抗冲击性能进行评级,如优异韧性、普通韧性、脆性等。

3. 评级标准应用金相评级标准广泛应用于金属材料的生产和加工过程中。

它对于金属材料的品质控制、产品检验和质量评估具有重要意义。

以下是评级标准的应用示例:钢材生产•根据金相评级标准对炼钢过程中的组织进行分类与评估,以确保钢材的质量和性能。

•对钢材产品进行金相显微镜下的观察和显微组织分析,判断是否符合金相评级标准要求。

材料研究•通过金相评级标准对不同材料的显微组织特征进行对比和评估,研究其性能差异和影响因素。

•在新材料研发过程中,借助金相评级标准对材料的组织进行分析,为进一步优化材料性能提供参考。

产品质量控制•在金属制品的生产过程中,通过金相评级标准对产品的组织缺陷进行评估,及时发现和解决质量问题。

•对出厂产品进行金相评级标准的检验和测试,确保产品达到规定标准,提高产品质量。

4. 结论金相评级标准作为一种重要的金属材料评估方法,为相关领域的科研、生产和质量控制提供了科学的依据和指导。

钢铁零件渗氮层深度测定和金相组织检验

钢铁零件渗氮层深度测定和金相组织检验

钢铁零件渗氮层深度测定和金相组织检验一、引言随着工业化的发展,钢铁材料在各个行业中得到了广泛应用。

而钢铁零件的质量直接关系到机械设备的性能和安全,因此,对钢铁零件进行渗氮层深度测定和金相组织检验就显得尤为重要。

这两项工作可以有效地评估钢铁零件的质量和使用性能,保障设备的正常运行。

本文将对钢铁零件渗氮层深度测定和金相组织检验进行详细介绍。

二、钢铁零件渗氮层深度测定1.渗氮层深度测定的意义钢铁材料在使用过程中需要具备一定的硬度和耐磨性,而渗氮技术可以有效提高钢铁材料的表面硬度和耐磨性。

因此,渗氮层深度测定是评估渗氮工艺效果的重要手段。

通过测定渗氮层的深度,可以了解到渗氮工艺的渗透程度和均匀性,从而判断钢铁零件的质量和性能。

2.渗氮层深度测定的方法目前,常用的渗氮层深度测定方法主要有金相显微镜法、深度硬度测试法和化学分析法等。

其中,金相显微镜法是最为常用的方法之一。

这种方法利用金相显微镜对试样进行金相观察,通过显微镜下清晰的图像可以准确地判断渗氮层的深度和均匀性。

3.渗氮层深度测定的步骤进行渗氮层深度测定时,首先需要选择合适的试样,然后对试样进行金相显微镜观察,测定渗氮层深度。

具体步骤如下:(1)制备试样:根据需要测定的零件类型和表面情况,选择合适的试样并进行制备。

(2)金相显微镜观察:将试样放入金相显微镜中,调节合适的放大倍数,观察渗氮层的深度和均匀性。

(3)测量和记录:利用金相显微镜对渗氮层的深度进行测量和记录,得出准确的数据。

4.渗氮层深度测定结果的分析得到渗氮层深度测定结果后,需要对数据进行仔细分析。

通过分析可以得出渗氮工艺的效果和存在的问题,为进一步改进和优化工艺提供重要参考依据。

三、金相组织检验1.金相组织检验的意义金相组织检验是评估金属材料组织和性能的重要手段。

通过金相组织检验可以了解到钢铁零件的晶粒结构、相含量、析出物和缺陷等情况,从而评估材料的性能和质量。

2.金相组织检验的方法目前,金相组织检验常用的方法主要有腐蚀剥离法、照相显微镜法和扫描电镜法等。

金属金相组织测试

金属金相组织测试

金属金相组织测试
金属金相组织测试是一种用于评估金属样品内部组织结构的实验方法。

这种技术通常用于工程中的材料评估、研发以及质量控制。

以下是常用的金相组织测试方法及其描述:
1. 金相显微镜检测:这是一种基于显微镜观测金属材料组织结构的测试方法。

该方法需要在样品表面上抛光并腐蚀处理后,观察材料内部的晶体组织。

2. 压缩试验:此方法用于测试材料的强度和可塑性。

材料样本通常是环形或圆柱形,并在试验过程中受到压缩力的作用。

通过观察材料的应变和应力之间的关系,可以获取材料的力学性能数据。

3. 热处理:这是一种改变材料组织的方法。

该方法可以通过加热或冷却材料来改变其组织,从而影响其力学性能。

4. 扫描电镜:此方法用于观察材料表面和内部的微观结构。

扫描电镜可以提供更高的分辨率,以显示材料的更细微的结构。

5. 裂纹生长试验:该测试用于测试材料对裂纹的抗性。

材料样品受到载荷作用时会发生裂纹,测试员可以跟踪裂纹的扩展情况,以评估材料的裂纹生长性能。

6. X射线衍射:此方法用于确定材料内部晶格的结构和定量化晶体缺
陷。

总之,金属金相组织测试方法有多种,每种测试方法都有其独特的特点和应用,可以根据需要选择适合的测试方法进行实验。

铸铁的金相实验报告(3篇)

铸铁的金相实验报告(3篇)

第1篇一、实验目的1. 了解铸铁的金相组织特点。

2. 掌握铸铁金相试样的制备方法。

3. 学会使用金相显微镜观察和分析铸铁的金相组织。

4. 识别不同类型铸铁的金相组织差异。

二、实验原理铸铁是一种以铁为主要成分的合金,其金相组织主要由石墨和基体两部分组成。

石墨的存在使得铸铁具有良好的减震性、耐磨性和切削加工性,而基体则决定了铸铁的强度和硬度。

本实验通过观察和分析铸铁的金相组织,了解不同类型铸铁的微观结构特点,从而为铸铁的生产和应用提供理论依据。

三、实验材料与仪器1. 实验材料:灰铸铁、球墨铸铁、可锻铸铁等不同类型的铸铁试样。

2. 实验仪器:金相显微镜、磨床、抛光机、金相腐蚀液、金相显微镜载物台、金相显微镜支架等。

四、实验步骤1. 试样制备(1)将铸铁试样从铸件上切割下来,切割时尽量保持试样的完整性。

(2)将试样进行粗磨、细磨、抛光,直至表面光滑。

(3)将试样进行腐蚀处理,以显示金相组织。

2. 金相显微镜观察(1)将制备好的试样放置在金相显微镜载物台上。

(2)调整显微镜焦距,使试样清晰可见。

(3)观察不同类型铸铁的金相组织,记录观察结果。

3. 结果与分析1)灰铸铁灰铸铁的金相组织主要由石墨和基体组成。

石墨呈片状,分布在基体中。

基体组织为珠光体和铁素体,珠光体呈层片状分布,铁素体呈针状分布。

2)球墨铸铁球墨铸铁的金相组织主要由球状石墨和基体组成。

球状石墨分布在基体中,基体组织为珠光体和铁素体。

与灰铸铁相比,球墨铸铁的石墨形态更加规则,有利于提高其力学性能。

3)可锻铸铁可锻铸铁的金相组织主要由石墨和基体组成。

石墨呈团状,分布在基体中。

基体组织为珠光体和铁素体,珠光体呈层片状分布,铁素体呈针状分布。

五、实验结论1. 灰铸铁的金相组织主要由石墨和基体组成,石墨呈片状,基体组织为珠光体和铁素体。

2. 球墨铸铁的金相组织主要由球状石墨和基体组成,石墨形态更加规则,有利于提高其力学性能。

3. 可锻铸铁的金相组织主要由石墨和基体组成,石墨呈团状,基体组织为珠光体和铁素体。

金属锻件金相实验报告

金属锻件金相实验报告

金属锻件金相实验报告【金属锻件金相实验报告】
一、实验目的:
1. 了解金属锻造工艺的基本原理和方法;
2. 通过金相分析了解金属锻件的金相组织特征。

二、实验仪器与材料:
1. 金相显微镜;
2. 清洁试样的金属锻件;
3. 粗磨、细磨、腐蚀试剂和其他所需材料。

三、实验步骤:
1. 将试样切割成适当的尺寸;
2. 用砂纸将试样表面磨光;
3. 用细砂纸反复擦拭试样表面,直至试样表面光洁无痕;
4. 将磨光的试样用酸吸取器吸取半浓盐酸腐蚀。

5. 将试样放入显微镜下观察,并进行金相组织分析。

四、实验结果与分析:
1. 对不同锻造工艺下的试样进行金相观察。

2. 观察试样的金相组织结构,包括晶粒大小、晶界、孔隙等。

3. 分析锻造工艺对金相组织的影响。

五、实验结论:
1. 锻造工艺对金相组织有着重要的影响。

2. 通过金相观察及分析,可以了解金属锻件的品质与性能。

六、实验总结:
通过本次实验,我深入了解了金属锻造工艺的基本原理和方法,并学会了金相显微镜的使用。

实验中,我还能够准确地观察和分析金属锻件的金相组织特征,对其品质与性能有了更深的认识。

通过实验结果与分析,我认识到锻造工艺对金相组织的影响是巨大的,不同工艺下产生的金相组织特征也存在显著的差异。

在今后的学习和实践中,我会进一步探索金属锻造工艺,不断提升我的实验技能和金相观察能力,为提高金属锻件的品质与性能做出贡献。

金属材料金相分析

金属材料金相分析金相分析是金属材料分析中的一项重要技术,它通过对金属材料的显微组织进行观察和分析,来揭示材料的组织结构、成分、性能和加工工艺等信息。

金相分析是金属材料学和材料工程领域中的基础性工作之一,对于研究材料的性能和应用具有重要的意义。

金相分析的基本原理是利用金相显微镜对金属材料的组织进行观察和分析。

金相显微镜是一种专门用于金属材料观察的显微镜,它能够在高倍放大下观察材料的显微组织结构,包括晶粒、晶界、孪晶、包体相等。

通过金相显微镜的观察,可以对金属材料的组织特征进行分析,揭示材料的组织类型、晶粒大小、相分布情况等重要信息。

金相分析的方法主要包括金相显微镜观察、腐蚀组织显微镜观察、电子显微镜观察、X射线衍射分析等。

其中,金相显微镜观察是金相分析的基本方法,通过金相显微镜可以清晰地观察到金属材料的组织特征,包括晶粒形状、晶粒大小、晶界分布等。

腐蚀组织显微镜观察是通过在金属材料表面施加腐蚀剂,将材料的表面腐蚀,从而显现出材料的组织结构。

电子显微镜观察和X射线衍射分析是对金相显微镜观察结果的进一步分析,可以获得更加详细和准确的组织信息。

金相分析的应用范围非常广泛,涉及到金属材料的研究、生产和应用等方面。

在材料研究领域,金相分析可以帮助科研人员了解材料的组织特征,揭示材料的性能和加工工艺等信息,为新材料的研发提供重要参考。

在材料生产领域,金相分析可以帮助生产工艺人员监测材料的组织质量,指导生产工艺的优化和改进。

在材料应用领域,金相分析可以帮助工程师了解材料的组织结构和性能特点,指导材料的选择和设计。

总之,金相分析作为金属材料分析的重要技术,对于揭示材料的组织结构、成分、性能和加工工艺等信息具有重要的意义。

通过金相分析,可以深入了解金属材料的内部结构和特性,为材料的研究、生产和应用提供重要的支撑。

希望通过本文的介绍,读者对金相分析有了更加全面和深入的了解,为相关领域的工作和研究提供帮助和参考。

合金钢金相组织检测标准

合金钢金相组织检测标准一、检测标准本标准规定了合金钢金相组织检测的方法和要求,适用于合金钢材料的金相组织检测。

二、试样制备1.按照GB/T 13298-2015《金属显微组织检验方法》的规定,采用切割、研磨、抛光等方法制备试样。

2.试样应具有代表性,其表面应平整、光洁,无划痕和缺陷。

3.试样制备过程中应避免产生热处理效应,如淬火、回火等。

三、金相显微镜观察1.采用光学显微镜进行观察,观察面为试样的横截面或纵截面。

2.观察时,应选择合适的倍数和光源,确保观察到的组织清晰、色彩真实。

3.对显微组织进行拍照、测量等操作时,应保证操作正确、准确。

四、组织定量分析1.采用图像分析仪进行定量分析,包括晶粒大小、相组成等参数的测量和计算。

2.对每个观察面进行定量分析,并取平均值作为最终结果。

3.对定量分析的结果进行统计和处理,得出组织分布、组成等信息。

五、组织定性分析1.根据观察到的显微组织形态和相组成,结合相关标准进行定性分析。

2.对组织中的各相进行鉴别和区分,判断其分布特点和形态特征。

3.对组织中的析出相、沉淀相等进行识别和分析,确定其类型和分布情况。

六、组织评级1.按照相关标准或客户要求,对金相组织进行评级。

2.评级应综合考虑晶粒大小、相组成、析出相等因素,确保评级结果的准确性和客观性。

3.评级结果应按照标准或客户要求进行记录和报告。

七、力学性能试验1.根据客户或相关标准要求,对试样进行力学性能试验,如拉伸、冲击、硬度等试验。

2.力学性能试验应按照相关标准或客户要求进行操作和数据处理。

金属材料缺陷金相检测实例及缺陷金相图谱

《金属材料缺陷金相检测实例及缺陷金相图谱》[编著]:本书编委会[出版社]:中国知识出版社[卷册数]:四册[光盘数]:一张[开本]:16开[出版日期]:2006年[定价]:¥1,080.00元详细目录第一篇金属材料基础第一章金属材料的分类与牌号的表示方法第二章通用技术资料第三章钢材的品种规格第二篇金属材料中外牌号对照第一章金属原料及制品中外牌号对照第二章结构钢中外牌号对照第三章工具与模具钢中外牌号对照第四章特殊钢于合金中外牌号对照第五章有色金属加工产品中外牌号对照第六章专用合金中外牌号对照第三篇金属材料热处理质量控制第一章待热处理工件的核算或验收第二章加热质量控制第三章正火与退火质量控制第四章淬火与回火质量控制第五章感应加热与火焰加热表面淬火质量控制第六章化学热处理质量控制第七章铝合金及钛合金执处理质量控制第四篇金属材料缺陷控制第一章热处理裂纹缺陷控制第二章热处理变形缺陷控制第三章残余内应力缺陷控制第四章组织不合格缺陷控制第五章力学性能不合格缺陷控制第六章脆缺陷控制第七章其他热处理缺陷控制第五篇金属材料的固态相变第一章金属固态相变的基本规律第二章钢中的奥氏体第三章珠光体共析分解第四章马氏体相变第五章贝氏体转变第六章马氏体的回火转变第七章脱溶及时效第八章钢中相变产物的力学性能第九章金属系统及相变的复杂性第六篇金属材料金相缺陷图谱分析实例第七篇金属材料缺陷金相图谱第一章缩孔缺陷金相图谱第二章气泡缺陷金相图谱第三章疏松缺陷金相图谱第四章偏析缺陷金相图谱第五章夹杂物缺陷金相图谱第六章表面缺陷金相图谱第七章自点缺陷金相图谱第八章氧化与脱碳缺陷金相图谱第九章过热缺陷金相图谱第十章过烧缺陷金相图谱第十一章裂纹缺陷金相图谱第十二章脆性缺陷金相图谱第十三章渗碳与氧化缺陷金相图谱第十四章镀层缺陷金相图谱第十五章腐蚀与磨损缺陷金相图谱第十六章疲劳缺陷金相图谱第十七章断口缺陷金相图谱第十八章铸铁缺陷金相图谱第十九章其他缺陷金相图谱第二十章试验操作不当引起的缺陷金相图谱第八篇相关标准规范。

金属材料金相分析检验标准大全,你知多少?

金属材料金相分析检验标准大全,你知多少?1、金属平均晶粒度【001】金属平均晶粒度测定…GB6394-2002【010】铸造铝铜合金晶粒度测定…GB10852-89【019】珠光体平均晶粒度测定…GB6394-2002【062】金属的平均晶粒度评级…ASTM E112【074】黑白相面积及晶粒度评级…BW2003-01【149】彩色试样图像平均晶粒度测定…GB6394-2002【304】钨、钼及其合金的烧结坯条、棒材晶粒度测试方法(面积法)【305】钨、钼及其合金的烧结坯条、棒材晶粒度测试方法(切割线法)【322】铜及铜合金_平均晶粒度测定方法…YS/T347-2004【328】彩色试样图像平均晶粒度测定方法22、非金属夹杂物显微评定【002】非金属夹杂物显微评定…GB10561-89【252】钢中非金属夹杂物含量的测定标准评级图显微检验法…GB/T10561-2005/ISO 4967:19983、贵金属氧化亚铜金相检验【003】贵金属氧化亚铜金相检验…GB3490-834、脱碳层深度测定【004】钢的脱碳层深度测定法…GB/T224-2008【130】脱、渗碳层深度测定…GB224-875、铁素体晶粒延伸度测定【005】铁素体晶粒延伸度测定…GB4335-846、工具钢大块碳化物评级【006】工具钢大块碳化物评级…GB4462-847、不锈钢相面积含量测定【007】不锈钢相面积含量测定…GB6401-868、灰铸铁金相【008】铸铁共晶团数量测定…GB7216-87【056】贝氏体含量测定…GB7216-87【058】石墨分布形状…GB7216-87【059】石墨长度…GB7216-87【065】珠光体片间距…GB7216_87【066】珠光体数量…GB7216_87【067】灰铸铁过冷石墨含量…SS2002-01【185】碳化物分布形状…GB7216-87【186】碳化物数量…GB7216-87【187】磷共晶类型…GB7216-87【188】磷共晶分布形状…GB7216-87【189】磷共晶数量…GB7216-87【190】基本组织特征…GB7216-87【235】石墨长度(自动分析)…GB7216-87【251】灰铸铁多图多模块评级:石墨分布&石墨长度&基体组织&共晶团【255】灰铸铁金相_基本组织特征(灰度法)【256】石墨分布&石墨长度&基体组织&共晶团(灰度法)…GB7216-87【316】灰铁金相等级图_石墨类型…SS2007-6【317】灰铁金相等级图_石墨尺寸…SS2007-7【318】灰铁金相等级图_铁素体的大约百分含量…SS2007-8【319】灰铁金相等级图_珠光体的大概间隔…SS2007-9【320】灰铁金相等级图_碳化物及磷化物共晶体大致含量…SS2007-109、定量金相测定方法【009】定量金相测定方法…GB/T15749-9510、钢的显微组织评定方法(GB/T13299-91)【011】游离渗碳体组织分析…GB/T13299-91【012】低碳变形钢的珠光体组织分析…GB/T13299-91【013】带状组织分析…GB/T13299-91【014】魏氏组织分析…GB/T13299-91【16】屈氏体含量计算…SG-197911、汽车渗碳齿轮金相检验(QC/T262-1999)【015】马氏体针叶长度评级…QC/T262-1999【017】碳化物评级…QC/T262-1999【018】残余奥氏体评级…QC/T262-1999【055】奥氏体含量测定…QC/T262-1999【150】马氏体针叶长度评级(测量法)QC/T262-199912、球墨铸铁金相检验【020】球化分级…GB9441-88【021】石墨大小分级…GB9441-88【022】珠光体数量分级…GB9441-88【023】铁素体和珠光体数量分级(含石墨、渗碳体百分比)…GB9441-88【063】球墨铸铁__磷共晶数量…GB9441-88【064】球墨铸铁__渗碳体数量…GB9441-88【250】球墨铸铁多图多模块评级:球化分级&石墨大小&基体组织【301】球墨铸铁金相_石墨大小分级(鼠标选择)【312】球铁金相等级图_碳化物等级…SS2007-2【313】球铁金相等级图_球化率等级…SS2007-3【314】球铁金相等级图_单位面积球墨数量…SS2007-4【315】球铁金相等级图_珠光体含量…SS2007-5【321】珠光体粗细…GB9441-8813、计算孔度的大小和分布【024】计算孔度的大小和分布…BJYF-200114、铸造铝硅合金(JB/T7946)【025】钠变质…JB/T7946.1-1999【026】磷变质…JB/T7946.1-1999【027】过烧…JB/T7946.2-1999【028】针孔…JB/T7946.3-199915、履带车辆渗碳齿轮(WJ730-82)【029】碳化物…WJ730-82【030】马氏体及残余奥氏体…WJ730-8216、履带车辆传动齿轮(GY674-75)【031】车体传动齿轮_碳氮化合物…GY674-75【032】发动机齿轮_碳氮化合物…GY674-7517、内燃电力机车渗碳淬硬齿轮(HBJ-2000)【033】1_碳化物分级…HBJ-2000【034】2_马氏体片长分级…HBJ-2000【035】3_残余奥氏体分级…HBJ-2000【036】4_心部组织分级…HBJ-2000【037】5_内氧化分级…HBJ-2000【038】6_表面脱碳分级…HBJ-200018、铬轴承钢(YB9-68)【039】1_中心疏松…YB9-68【040】2_一般疏松…YB9-68【041】3_偏析…YB9-68【042】4_非金属夹杂物…YB9-68【043】5_退火组织…YB9-68【044】6_碳化物网状…YB9-68【045】7_碳化物带状…YB9-68【046】8_碳化物液析…YB9-6819、高速工具钢(GB9942-88)【047】高速工具钢_大截面锻制钢材_共晶碳化物20、高速工具钢棒(GB9943-88)【048】1_钨系_共晶碳化物_网系【049】1_钨系_共晶碳化物_带系【050】2_钨钼系_共晶碳化物_网系【051】2_钨钼系_共晶碳化物_带系21、铝及铝合金加工制品(GB/T3246-2000)【052】显微组织【053】低倍组织【297】铝合金包覆层厚度测定【349】晶粒度评级(比较法及截距法)【355】晶粒度评级(平均晶粒计算法)22、钢材断口检验法【054】钢材断口检验法…GB1814-7923、高碳钢盘条索氏体含量【057】高碳钢盘条索氏体含量…YB/T169-2000自动评级24、一般工程用铸造碳钢(GB8493-87)【060】显微组织…GB8493-87比较评级【061】混有珠光体的铁素体晶粒度…GB8493-8725、碳钢【068】碳钢__石墨化评级…DL/T786-2001比较评级26、20号钢珠光体球化评级【069】20号钢__珠光体球化评级…DL/T674-1999比较评级27、15CrMo钢珠光体球化评级【070】15CrMo钢__珠光体球化评级…DJ4547-1985比较评级28、12Cr1MoV钢珠光体球化评级【071】12Cr1MoV钢__珠光体球化评级…DJ3544-1985比较评级29、硬质合金金相检验【072】硬质合金__碳化物晶粒度测定…GB3488-1983自动评级【073】硬质合金__孔隙度和非化合碳的金相测定…GB/T3489-1983辅助评级30、内燃机_活塞销_金相检验(JB/T8118.2-1999)【075】马氏体分级…JB/T8118.2-1999辅助评级【076】碳化物分级…JB/T8118.2-1999辅助评级31、钢的感应淬火【077】钢的感应淬火或火焰淬火后有效硬化层深度的测定…GB5617-2005辅助评级32、钢件感应淬火【078】钢件感应淬火金相检验…JB/T9204-1999辅助评级33、珠光体球墨铸铁零件金相检验(JB/T9205-1999)【079】珠光体球墨铸铁零件感应淬火金相检验…JB/T9205-1999比较评级【080】珠光体球墨铸铁零件感应淬火金相检验__硬化层深度的检验…JB/T9205-1999辅助评级34、钢铁零件_渗氮层深度测定和金相组织检验(GB11354-2005)【081】钢铁零件_渗氮层深度测定和金相组织检验_原始组织的检验比较评级【082】钢铁零件_渗氮层深度测定和金相组织检验_渗氮层深度测定辅助评级【083】钢铁零件_渗氮层深度测定和金相组织检验_渗氮层脆性检验比较评级【084】钢铁零件_渗氮层深度测定和金相组织检验_渗氮层疏松检验【085】钢铁零件_渗氮层深度测定和金相组织检验_渗氮扩散层中氮化物检验35、铁基粉末冶金烧结制品金相标准(JB/T2798-1999)【086】珠光体…JB/T2798-1999辅助评级【087】渗碳体…JB/T2798-199936、铁素体可锻铸铁金相标准(JB2122-77)【088】石墨形状…JB2122-77比较评级【089】石墨形状分级…JB2122-77【090】石墨分布…JB2122-77比较评级【091】石墨颗数…JB2122-77辅助评级【092】珠光体形状…JB2122-77比较评级【093】珠光体残余量分级…JB2122-77辅助评级【094】渗碳体残余量分级…JB2122-77【095】表皮层厚度…JB2122-7737、内燃机进排气门金相检验(JB/T8188.2-1999)【096】奥氏体晶粒度〈按GB6394标准〉JB/T8188.2-1999自动评级【097】游离铁素体…JB/T8188.2-1999辅助评级【098】奥氏体耐热钢层状析出物…JB/T8188.2-199938、镁合金加工制品显微组织检验方法【099】镁合金加工制品显微组织检验方法_晶粒度测定…GB4296-84自动评级39、蠕墨铸铁金相(JB/T3829-1999)【100】石墨形态…JB/T3829-1999比较评级【101】蠕化率…JB/T3829-1999【102】珠光体数量…JB/T3829-1999自动评级【103】蠕墨铸铁金相__磷共晶类型…JB/T3829-1999比较评级【104】磷共晶数量…JB/T3829-1999自动评级【105】碳化物类型…JB/T3829-1999比较评级【106】碳化物数量…JB/T3829-1999自动评级【298】蠕化率评定(SS2006-24)自动评级40、铝合金铸件_表面质量【107】铝合金铸件_表面质量_针孔级别HB963-90辅助评级41、内燃机单体铸造活塞环金相检验(JB/T6016-92)【108】石墨的评级…JB/T6016-92自动评级【109】磷共晶的分布评级…JB/T6016-92辅助评级【110】磷共晶大小的评级…JB/T6016-92【111】磷共晶复合物的评级…JB/T6016-92【112】游离铁素体的评级…JB/T6016-92自动评级【113】珠光体的评级…JB/T6016-9242、内燃机球墨铸铁活塞环金相检验(JB/T6016.3-2008)【114】第一级别图_石墨球化率评级自动评级【115】第二级别图__石墨大小评级【116】第三级别图_游离铁素体评级43、汽车摩托车发动机单体铸造活塞环金相检验(QC/T555-2000)【117】石墨类别…QC/T555-2000辅助评级【118】游离铁素体类别…QC/T555-2000自动评级【119】磷共晶分布与网孔…QC/T555-2000辅助评级【120】磷共晶大小…QC/T555-2000【121】磷共晶复合物…QC/T555-2000【122】基体组织…QC/T555-2000比较评级44、汽车摩托车发动机球墨铸铁活塞环金相标准(QC/T284-1999)【123】石墨球化率…QC/T284-1999自动评级【124】石墨大小与数量…QC/T284-1999【125】游离铁素体…QC/T284-1999【126】游离渗碳体、碳化物和磷共晶…QC/T284-1999自动评级45、钢质模锻件、金相组织评级图及评定方法(GB/T13320-2007)【127】中碳结构钢正火组织比较评级【128】渗碳钢正火组织【129】调质钢调质组织比较评级46、高碳铬轴承钢滚动轴承零件热处理技术条件(JB/T1255-2001)【131】第一级别图_退火组织…JB/T1255-2001比较评级【132】第二级别图_淬回火马氏体组织…JB/T1255-2001【133】第三级别图_淬回火屈氏体组织…JB/T1255-2001【134】第四级别图_碳化物网状组织…JB/T1255-2001【135】第五级别图_断口照片…JB/T1255-2001【136】第六级别图_贝氏体淬火组织…JB/T1255-200147、钢的感应淬火或火焰淬火后有效硬化层深度的测定【137】钢的感应淬火或火焰淬火后有效硬化层深度的测定…GB5617-85辅助评级48、钢件渗碳淬火有效硬化层深度的测定和校核【138】钢件渗碳淬火有效硬化层深度的测定和校核…GB9450-2005辅助评级49、珠光体面积百分比含量测定【139】珠光体面积百分比含量测定QB JC-01-2003辅助评级50、高碳铬轴承钢金相检验(GB/T18254-2002)【140】第一级别图_中心疏松…GB/T18254-2002【141】第二级别图_一般疏松…GB/T18254-2002【142】第三级别图_偏析…GB/T18254-2002比较评级【143】第四级别图_非金属夹杂物GB/T18254-2002自动评级【144】第五级别图_显微孔隙…GB/T18254-2002辅助评级【145】第六级别图_显微组织…GB/T18254-2002比较评级【146】第七级别图_碳化物网状…GB/T18254-2002辅助评级【147】第八级别图_碳化物带状…GB/T18254-2002比较评级【148】第九级别图_碳化物液析…GB/T18254-2002辅助评级51、柴油机喷油嘴偶件、喷油泵柱塞偶件、喷油泵出油阀偶件金相检验(JB/T9730-1999)【151】GCr15钢精密偶件金相检验_马氏体分级_第一级别图…JB/T9730-1999比较评级【152】合金结构钢针阀体渗碳、热处理_碳化物_第二级别图…JB/T9730-1999【153】合金结构钢针阀体渗碳、热处理_马氏体及残余奥氏体_第三级别图…JB/T9730-1999【154】W6Mo5Cr4V2、W18Cr4V钢针阀金相检验_淬火后晶粒度_第四级别图…JB/T9730-1999【155】W6Mo5Cr4V2、W18Cr4V钢针阀金相检验_过热程度_第五级别图…JB/T9730-199952、渗碳、碳氮共渗、氮化零件金相组织检验标准(HB5022-77)【156】渗碳、碳氮共渗零件非渗层(中心)组织标准…HB5022-77比较评级【157】渗碳、碳氮共渗层残余奥氏体标准…HB5022-77【158】渗碳、碳氮共渗碳化物标准…HB5022-77【159】38CrMoAlA钢氮化零件调质处理金相标准…HB5022-77【160】38CrMoAlA钢零件氮化层金相标准…HB5022-7753、汽车碳氮共渗齿轮金相检验(QCn29018-91)【161】碳氮化合物…QCn29018-91比较评级【162】残余奥氏体及马氏体…QCn29018-9154、工具热处理金相检验标准【163】工具热处理金相检验标准…ZB J36003-87比较评级55、游离铁素体和奥氏体钢层状析出物评级【164】游离铁素体和奥氏体钢层状析出物评级…NJ354-85比较评级56、奥氏体不锈钢中α-相面积含量金相测定法【165】奥氏体不锈钢中α-相面积含量金相测定法…GB/T13305-91自动评级57、纤维直径测定【166】纤维直径测定…SS2004-0808辅助评级58、低、中碳钢球化体评级(JB/T5074-2007)【167】低碳结构钢及低碳合金结构钢球化体分级…JB/T5074-2007比较评级【168】中碳结构钢球化体分级…JB/T5074-2007【169】中碳合金结构钢球化体分级…JB/T5074-200759、不锈钢铁素体含量百分比测定【170】不锈钢铁素体含量百分比测定…GB/T13298-91辅助评级60、汽车感应淬火零件金相检验【171】汽车感应淬火零件金相检验QC/T502-1999自动评级61、结构钢低倍组织缺陷评级图【172】结构钢低倍组织缺陷评级图GB/T1979-2001比较评级62、薄层碳氮共渗或薄层渗碳钢件显微组织检测【173】薄层碳氮共渗或薄层渗碳钢件显微组织检测…JB/T7710-2007自动评级63、汽车渗碳齿轮金相检验【174】汽车渗碳齿轮金相检验…JB1673-75比较评级64、内燃机连杆螺栓金相检验【175】内燃机连杆螺栓金相检验标准…NJ309-83比较评级65、钢件感应淬火金相检验【176】钢件感应淬火金相检验…ZB J36009-88比较评级66、高镍铬无限冷硬离心铸铁轧辊金相检验(YB4052-91)【177】石墨形态…YB4052-91比较评级【178】石墨数量…YB4052-91自动评级【179】基体组织特征…YB4052-91比较评级【180】碳化物数量…YB4052-91自动评级67、合金工具钢【181】合金工具钢…GB/T1299-2000比较评级68、铍青铜的金相试验方法(QJ2337-92)【182】铍青铜的金相试验方法_晶粒度标准图…QJ2337-92自动评级【183】铍青铜的金相试验方法_晶界反应量标准图…QJ2337-92辅助评级【184】铍青铜的金相试验方法_β相形态分布标准级别…QJ2337-9269、渗碳齿轮感应加热淬火金相检验(NJ305-83)【191】碳化物分级…NJ305-83辅助评级【192】马氏体及残余奥氏体分级…NJ305-83比较评级【193】铁素体分布…NJ305-83【194】淬火层深度分级…NJ305-83【195】渗碳层测量…NJ305-83辅助评级70、柴油机喷油泵、喷油器总成主要零件金相检验(JB5175-2006)【196】碳化物分级…JB5175-2006比较评级【197】马氏体和奥氏体分级…JB5175-2006【198】有效硬化层深度测量…JB5175-2006【199】喷油器体金相检验…JB5175-200671、汽车碳氮共渗齿轮金相检验(JB2782-79)【200】碳氮化合物分级比较评级【201】马氏体及残余奥氏体分级【202】心部铁素体分级【203】碳氮共渗层测试图辅助评级72、珠光体球墨铸铁零件感应淬火金相检验(ZB J36010-88)【204】组织评级比较评级【205】硬化层深度测量辅助评级73、中碳钢与中碳合金结构钢(ZB J36016-90)【206】马氏体等级比较评级74、稀土镁球墨铸铁等温淬火金相标准(JB3021-81)【207】组织形态比较评级【208】下贝氏体分级辅助评级【209】上贝氏体分级辅助评级【210】白区数量分级辅助评级【211】铁素体数量分级辅助评级75、焊缝熔深度测量(SS0501-2005)【212】焊缝熔深度测量辅助评级76、铸造铝硅合金变质(GB10849-89)【213】钠变质比较评级【214】磷变质比较评级77、中碳钢与中碳合金结构钢(JB/T9211-1999)【215】中碳钢与中碳合金结构钢_马氏体等级比较评级78、钢的共晶碳化物不均匀度评定法(GB/T14979-94)【216】钢的共晶碳化物不均匀度评定法比较评级79、铁素体级别图(SS1117-2005)【217】铁素体级别图辅助评级80、不锈钢10%草酸浸蚀试验方法(GB/T4334.1-2000)【218】不锈钢10%草酸浸蚀试验方法比较评级81、铸造铝硅合金过烧(GB10850-89)【219】铸造铝硅合金过烧比较评级82、铸造铝合金针孔(GB10851-89)【220】铸造铝合金针孔比较评级83、变形铝合金过烧金相试验方法(QJ1675-89)【221】变形铝合金过烧金相试验方法比较评级84、铸造铝合金过烧金相试验方法(QJ1676-89)【222】铸造铝合金过烧金相试验方法比较评级85、碳素工具钢(GB/T1298-2008)【223】碳素工具钢_第一级别图_珠光体比较评级【224】碳素工具钢_第二级别图_碳化物比较评级86、变形镁合金显微组织检验方法(GB/T4296-2004)【225】变形镁合金显微组织检验方法比较评级87、变形镁合金低倍组织检验方法(GB/T4297-2004)【226】变形镁合金低倍组织检验方法比较评级88、两相钛合金高低倍组织检验方法(GB5168-85)【227】两相钛合金高低倍组织检验方法比较评级89、内燃机铸造铝活塞金相检验(JB/T6289-2005)【228】分散性孔洞评定比较评级【229】集中性孔洞评定比较评级【230】共晶铝-硅合金(钠盐变质)评定比较评级【231】共晶铝-硅合金(磷变质)评定比较评级【232】铝-硅-铜-镁合金显微组织评定比较评级【233】鱼骨状铁相夹杂物评定比较评级【234】针状铁相夹杂物评定比较评级90、内燃机高磷铸铁气缸套_金相检验(JB/T2330-93)【236】第一级别图_石墨评级辅助评级【237】第二级别图_磷共晶网孔评级比较评级【238】第三级别图_分散分布,枝晶状及聚集状磷共晶评级比较评级【239】第四级别图_复合物磷共晶的评级自动评级【240】第五级别图_游离渗碳体含量的评级自动评级【241】第六级别图_游离铁素体含量的评级辅助评级91、内燃机硼铸铁气缸套_金相检验(JB/T5082.1-2008)【242】第一级别图_石墨的评级辅助评级【243】第二级别图_硬度相分布及数量的评级自动评级【244】第三级别图_硬度相呈聚集状,枝晶状分布评级比较评级【245】第四级别图_硬度相大小评级自动评级【246】第五级别图_含硼复合物的组织评级比较评级【247】第六级别图_含硼渗碳体评级自动评级【248】第六级别图_含硼莱氏体评级自动评级【249】第七级别图_基体中游离铁素体的评级辅助评级【263】内燃机硼铸铁气缸套__含硼莱氏体评级(取色法)辅助评级92、DL/T884-2004火电厂金相检验与评定技术导则【253】10CrMo910钢蠕变损伤评定级别图比较评级【254】T91钢组织老化评定级别图比较评级93、JB/T9173-1999【257】烧结金属摩擦材料金相检验法比较评级94、内燃机进、排气门金相检验(JB/T6720-93)【258】第一级别图自动评级【259】第二级别图95、弹条金相组织评级图(TB/T2478-93)【260】第一级别图比较评级【261】第一级别图【262】第一级别图96、热作模具钢显微组织评级(JB/T8420-96)【264】5CrNiMo钢马氏体评级辅助评级【265】5Cr4W5Mo2V钢马氏体评级【266】3Cr2W8V钢马氏体评级【267】3Cr3Mo3W2V钢马氏体评级【268】4Cr5MoSiV钢马氏体评级【269】4Cr3Mo2NiVNbB钢马氏体评级97、铝合金晶间腐蚀测定方法(GB/T7998-2005)【270】铝合金晶间腐蚀测定方法辅助评级98、液化石油气钢瓶金相组织评定(CJ/T31-1999)【271】液化石油气钢瓶金相组织评定比较评级99、金相教学(SS2006)【272】金相教学(SS2006-01)比较评级【274】还原粉末的金相图谱(SS2006-03)比较评级【275】电解粉末的金相图谱(SS2006-04)比较评级【276】羰基粉末的金相图谱(SS2006-05)比较评级【277】雾化粉末的金相图谱(SS2006-06)比较评级【278】机械破碎粉末的金相图谱(SS2006-07)比较评级【279】包覆粉末的金相图谱(SS2006-08)比较评级【280】其他粉末的金相图谱(SS2006-09)比较评级【281】空隙和石墨图谱(SS2006-10)比较评级【282】珠光体形态图谱(SS2006-11)比较评级【283】渗碳体形态图谱(SS2006-12)比较评级【284】珠光体含量图谱(SS2006-13)比较评级【285】渗碳体含量图谱(SS2006-14)比较评级【286】烧结后的显微组织图谱(SS2006-15)比较评级【287】热处理后的显微组织图谱(SS2006-16)比较评级【288】高速钢的金相图谱(SS2006-17)比较评级【289】后续处理图谱(SS2006-18)比较评级【290】夹杂物图谱(SS2006-19)比较评级【291】缺陷图谱(SS2006-20)比较评级【292】钢基零件图谱(SS2006-21)比较评级【293】触头材料图谱(SS2006-22)比较评级【294】摩擦材料图谱(SS2006-23)比较评级100、通用分析模块【273】多项组织分析(SS2006-02)辅助评级。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属材料金相检验
导言:金相检验是对金属材料进行组织结构观察和分析的一种方法,通过显微镜观察样品的金相组织,可以了解材料的晶粒大小、晶界分布、相含量以及存在的缺陷等信息。

本文将从金相检验的原理、方法和应用等方面进行阐述。

一、金相检验的原理
金相检验的原理是利用金相显微镜对金属材料进行观察和分析。

金相显微镜是一种特殊的显微镜,它可以放大样品的组织结构,使人眼可以清晰地观察到金属材料的晶粒、相和孔隙等微观结构。

金相显微镜通常采用光学显微镜和电子显微镜两种类型,其中光学显微镜是最常用的金相检验仪器。

通过金相显微镜的观察和分析,可以得到金属材料的组织特征和性能信息。

二、金相检验的方法
1. 样品准备:金相检验的第一步是制备样品,通常需要将金属材料切割成适当大小的试样,并进行粗磨和细磨处理,最后进行抛光以得到光滑的试样表面。

2. 腐蚀显色:为了使金属材料的组织结构能够在显微镜下观察到,需要对试样进行腐蚀显色处理。

腐蚀液的选择根据金属材料的类型和需要观察的组织结构而定,常用的腐蚀液有酸性腐蚀液和碱性腐蚀液。

3. 显微观察:腐蚀显色后的试样可以放入金相显微镜中进行观察。

观察时需要选择适当的放大倍数,以保证观察到的结构清晰可见。

观察时可以通过调整显微镜的焦距、光源亮度和对比度等参数,使观察到的图像更加清晰。

4. 图像分析:观察到的金相图像可以通过图像分析软件进行处理和分析,以得到更准确的结果。

常用的图像分析方法包括晶粒大小测量、相含量计算和颗粒分布分析等。

三、金相检验的应用
金相检验广泛应用于金属材料的研究和工程实践中。

具体应用包括:1. 材料研究:金相检验可以用于研究金属材料的晶粒生长规律、相变行为和力学性能等。

通过观察和分析金相组织,可以揭示材料的微观结构特征和性能变化规律。

2. 质量控制:金相检验可以用于对金属材料的质量进行控制和评估。

通过观察和分析金相组织,可以判断材料是否存在缺陷、杂质和非金属夹杂物等。

3. 故障分析:金相检验可以用于对金属材料的故障进行分析和判断。

通过观察和分析金相组织,可以找出材料的疲劳裂纹、腐蚀损伤和焊接缺陷等问题,为故障分析和事故调查提供依据。

4. 材料鉴定:金相检验可以用于对金属材料的种类和质量进行鉴定。

通过观察和分析金相组织,可以判断材料的成分、热处理状态和加工工艺等。

总结:金属材料金相检验是一种重要的材料分析方法,通过观察和分析金相组织,可以了解材料的微观结构和性能。

金相检验在材料研究、质量控制、故障分析和材料鉴定等方面都有广泛的应用。

未来随着科学技术的不断发展,金相检验方法将进一步完善和提高,为金属材料的研究和应用提供更多有力的支持。

相关文档
最新文档