高中立体几何表面积体积公式

合集下载

高一数学立体几何知识点归纳

高一数学立体几何知识点归纳

高一数学立体几何知识点归纳(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高一数学立体几何知识点归纳数学,是研究数量、结构、变化、空间以及信息等概念的一门学科。

2023年高考数学(理科)一轮复习课件——空间几何体的表面积和体积

2023年高考数学(理科)一轮复习课件——空间几何体的表面积和体积
解析 (1)锥体的体积等于底面面积与高之积的三分之一,故不正确. (2)球的体积之比等于半径比的立方,故不正确.
索引
2.已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径
为( B )
A.1 cm
B.2 cm
C.3 cm
3 D.2 cm
解析 设圆锥的底面圆的半径为r,母线长为l, 因为侧面展开图是一个半圆, 所以πl=2πr,即l=2r, 所以πr2+πrl=πr2+πr·2r=3πr2=12π,解得r=2.
得的截面是面积为8的正方形,则该圆柱的表面积为( B )
A.12 2π
B.12π
C.8 2π
D.10π
解析 由题意知,圆柱的轴截面是一个面积为 8 的正方形,则圆柱的高与底面 直径均为 2 2. 设圆柱的底面半径为 r,则 2r=2 2,得 r= 2. 所以圆柱的表面积 S 圆柱=2πr2+2πrh=2π( 2)2+2π× 2×2 2=4π+8π=12π.
索引
训练1 (1)(2020·新高考Ⅱ卷)棱长为2的正方体ABCD-A1B1C1D1中,M,N分别
为棱BB1,AB的中点,则三棱锥A1-D1MN的体积为____1____.
解析 如图,由正方体棱长为2及M,N分别为BB1,AB 的中点, 得 S△A1MN=2×2-2×12×2×1-21×1×1=32, 又易知D1A1为三棱锥D1-A1MN的高,且D1A1=2, ∴VA1-D1MN=VD1-A1MN=13·S△A1MN·D1A1=31×32×2=1.
角度1 简单几何体的体积
例1 (1)祖暅是我国南北朝时代的伟大科学家,他提出 的“幂势既同,则积不容异”称为祖暅原理,利用
该原理可以得到柱体的体积公式V柱体=Sh,其中S 是柱体的底面积,h是柱体的高.若某柱体的三视图

立体几何大题中有关体积、面积和距离的求法(教师版)

立体几何大题中有关体积、面积和距离的求法(教师版)

立体几何大题中有关体积、面积和距离的求法(教师版)立体几何大题中有关体积、面积和距离的求法知识点梳理1.柱、锥、台和球的侧面积和体积圆柱:侧面积为$S_\text{侧}=2\pi rh$,体积为$V=\pir^2h$圆锥:侧面积为$S_\text{侧}=\pi rl$,体积为$V=\frac{1}{3}\pi r^2h$圆台:侧面积为$S_\text{侧}=\pi(r_1+r_2)l$,体积为$V=\frac{1}{3}\pi h(r_1^2+r_2^2+r_1r_2)$直棱柱、正棱锥、正棱台、球的表面积和体积公式不再赘述。

2.几何体的表面积直棱柱、棱锥、棱台的表面积就是各面面积之和。

圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和。

一公式法例1.正三棱柱的侧面展开图是边长分别为2和4的矩形,则它的体积为。

解:因为正三棱柱的侧面展开图是边长分别为2和4的矩形,所以有以下两种情况:①:2是下底面的周长,4是三棱柱的高,此时下底面的边长为$\frac{2}{\sqrt{3}}$,所以体积为$V=\frac{4}{3}\sqrt{3}$,面积为$S=2\sqrt{3}$。

②:4是下底面的周长,2是三棱柱的高,此时下底面的边长为$\sqrt{3}$,所以体积为$V=\frac{4}{3}\sqrt{3}$,面积为$S=2\sqrt{3}$。

所以正三棱柱的体积为$\frac{4}{3}\sqrt{3}$。

例2.如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为()。

解:由题意可知此几何体是一个四棱锥,由图可知底面两条对角线的长分别为2和3,底面边长为2,所以底面菱形的面积为$S=\frac{3}{2}$,侧棱为$\sqrt{2^2+3^2}= \sqrt{13}$,则棱锥的高$h=\sqrt{3^2-(\frac{\sqrt{13}}{2})^2}=\frac{\sqrt{35}}{2}$。

空间几何体的表面积及体积计算公式

空间几何体的表面积及体积计算公式

空间几何体的表面积及体积计算公式空间几何体是指在三维坐标系中存在的几何图形,包括立方体、圆锥体、圆柱体、球体等等。

对于这些几何体来说,求其表面积和体积是我们在学习空间几何时需要掌握的核心内容。

下面我们将详细介绍各种空间几何体的表面积及体积的计算公式。

一、立方体立方体是一种六个面都是正方形的几何体,其表面积和体积计算公式如下:表面积 = 6 × a²体积 = a³其中,a为立方体的边长。

二、正方体正方体是一种所有面都是正方形的几何体,其表面积和体积计算公式如下:表面积 = 6 × a²体积 = a³其中,a为正方体的边长。

三、圆锥体圆锥体是一种由一个圆锥顶点和一个底面为圆形的仿射锥面构成的几何体,其表面积和体积计算公式如下:表面积= πr²+πrl体积= 1/3πr²h其中,r为底面圆半径,l为母线长度,h为圆锥体的高。

四、圆柱体圆柱体是一种由平行于固定轴的两个相等且共面的圆面和它们之间的圆柱面所围成的几何体,其表面积和体积计算公式如下:表面积= 2πrh+2πr²体积= πr²h其中,r为底面圆半径,h为圆柱体的高。

五、球体球体是一种由所有到球心的距离等于固定半径的点所组成的几何体,其表面积和体积计算公式如下:表面积= 4πr²体积= 4/3πr³其中,r为球体的半径。

以上就是五种常见空间几何体的表面积及体积计算公式,希望能够对大家在学习空间几何时有所帮助。

同时,我们也需要关注其实际应用,在工程建设和生活中经常会涉及到这些几何体的计算,因此深化这些知识点的学习,将对我们未来的发展产生积极的影响。

圆柱、圆锥、圆台的表面积和体积课件-高一数学人教A版(2019)必修第二册

圆柱、圆锥、圆台的表面积和体积课件-高一数学人教A版(2019)必修第二册

3
球的表面积与体积
问题六
设球的半径为R,你能类比圆的面积公式
推导方法,推导出球的体积公式吗?
提示
分割、求近似和,再由近似和转化为准确和,
得出球的体积公式.
知 识 梳 理
1.球的表面积公式S= 4πR2(R为球的半径).2.球Biblioteka 体积公式V=4 3πR
3
.
例3
(1)一个球的表面积是16π,则它的体积是
3
解析 设圆台较小底面的半径为r,则另一底面的半径为3r.
由S侧=7π(r+3r)=84π,解得r=3.
反思
感悟
圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面
展开为平面图形计算,而表面积是侧面积与底面圆的面积之和.
跟踪训练1
若一个圆柱的轴截面是面积为9的正方形,则这个圆柱的侧面积为
A.9π
直角三角形中列出方程并求解.
跟踪训练2
若一个圆锥的轴截面是等边三角形,其面积为 3,
3
则这个圆锥的体积为________.

解析
画出示意图,如图所示,设圆锥的母线长为 a,
1
3
则由 ·a· a= 3,得 a=2.
2
2
故圆锥的底面圆直径为 2,圆锥的高为 3,
1
3
2
圆锥的体积 V=3π×1 × 3= 3 π.
A.64π
解析
64π
B. 3
C.32π
32π
D. 3

设球的半径为 R,则由题意可知 4πR2=16π,故 R=2.
4 3 32π
所以球的体积 V= πR =
.
3
3
例3
(2)长、宽、高分别为 2, 3, 5的长方体的外接球的表面积为

立体几何中的体积与表面积计算

立体几何中的体积与表面积计算

立体几何中的体积与表面积计算在我们的数学世界中,立体几何就像是一座神秘而又充满魅力的城堡,而体积与表面积的计算则是打开这座城堡大门的钥匙。

无论是在日常生活中,还是在科学研究、工程建设等领域,准确计算立体几何的体积与表面积都具有极其重要的意义。

首先,让我们来聊聊什么是立体几何。

简单来说,立体几何研究的是空间中各种立体图形的性质和关系。

常见的立体图形有长方体、正方体、圆柱体、圆锥体、球体等等。

而体积和表面积则是描述这些立体图形大小和范围的重要指标。

体积,直观地理解,就是一个立体图形所占空间的大小。

比如说,一个装满水的长方体水箱,里面水的量就是这个长方体的体积。

计算体积的公式因图形的不同而有所差异。

对于长方体,体积等于长乘以宽乘以高。

假设一个长方体的长、宽、高分别为 a、b、c,那么它的体积 V 就等于 a×b×c 。

这很好理解,想象一下把这个长方体切成一个个小方块,每个小方块的体积是1×1×1,那么总的小方块数量就是长、宽、高的乘积,也就是体积。

正方体就更简单了,因为它的长、宽、高都相等,假设边长为 a ,那么体积 V = a³。

圆柱体的体积公式是底面积乘以高。

底面积是一个圆,面积为πr²(r 是底面圆的半径),高为 h ,所以圆柱体体积 V =πr²h 。

可以想象把圆柱体看作是由无数个很薄的圆片堆叠起来的,每个圆片的面积是πr² ,堆叠的高度是 h ,总体积就是这些圆片面积的总和。

圆锥体的体积是圆柱体体积的三分之一,即 V =1/3πr²h 。

球体的体积公式是4/3πr³ ,其中 r 是球体的半径。

接下来,我们再看看表面积。

表面积指的是立体图形外表面的总面积。

长方体的表面积等于各个面的面积之和。

它有六个面,相对的两个面面积相等。

前面和后面的面积都是长乘以高,左面和右面的面积都是宽乘以高,上面和下面的面积都是长乘以宽。

数学立体几何表面积体积公式

数学立体几何表面积体积公式嘿,朋友们!今天咱们来唠唠立体几何那些表面积和体积公式,可有趣了呢!先来说说正方体吧。

正方体就像一个超级规则的魔方,每个面都一模一样。

它的表面积公式啊,那就是6倍的棱长的平方,就好像给这个魔方的六个面都铺上同样大小的毯子,每个面的面积是棱长乘棱长,一共六个面,所以就是6a²(这里a就是棱长啦)。

它的体积公式呢,就是棱长的立方,就好比这个魔方是由好多小正方体组成的,棱长乘棱长再乘棱长,就像堆小方块一样,体积就是a³。

再看看长方体,长方体就像一个长长的盒子。

它的表面积公式是2×(长×宽 + 长×高 + 宽×高),这就像是给这个盒子的六个面分别计算面积然后加起来,长×宽是上下两个面,长×高是前后两个面,宽×高是左右两个面,就像给盒子的每个面都贴上独特大小的贴纸,公式就是2(ab+ac+bc)(这里a 是长,b是宽,c是高)。

体积公式就是长×宽×高,就像往这个盒子里装小正方体,能装多少个就看这个长、宽、高相乘的结果,也就是abc。

圆柱可有意思啦,就像一个超级粗的柱子。

圆柱的表面积是两个底面积加上侧面积。

底面积就是圆的面积πr²(r是底面半径),有两个底面,所以是2πr²,侧面积就像把这个柱子的侧面展开,是一个长方形,长是底面圆的周长2πr,宽是圆柱的高h,所以侧面积是2πrh,那圆柱表面积公式就是2πr² + 2πrh。

圆柱的体积呢,就想象这个圆柱是由好多薄薄的圆片堆起来的,底面积乘以高,也就是πr²h。

圆锥就像一个尖尖的帽子。

圆锥的体积公式是1/3×底面积×高,也就是1/3πr²h,就好像这个帽子里装的东西只有同底等高圆柱的三分之一,感觉圆锥像是圆柱的小跟班,只占了圆柱体积的一小部分呢。

球就像一个超级完美的圆形泡泡。

高中数学 第一章 立体几何初步 1.7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积 1.7.3 球

7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积7.3 球的表面积和体积学习目标 1.理解柱体、锥体、台体的体积公式(重点);2.理解球的表面积和体积公式(重点);3.能运用体积公式求解有关的体积问题,并且熟悉台体与柱体和锥体之间的转换关系(重、难点).知识点一 柱、锥、台体的体积公式几何体体积公式柱体圆柱V 柱体=ShS —柱体底面积 h —柱体的高棱柱 锥体圆锥V 锥体=13ShS —锥体底面积 h —锥体的高 棱锥 台体圆台V 台体=13(S 上+S 下+S 上·S 下)·hS 上、S 下—台体的上、下底面面积,h —高棱台【预习评价】简单组合体分割成几个几何体,其表面积如何变化?其体积呢? 提示 表面积变大了,体积不变. 知识点二 球的体积公式与表面积公式 1.球的体积公式V =43πR 3(其中R 为球的半径).2.球的表面积公式S =4πR 2. 【预习评价】球有底面吗?球面能展开成平面图形吗? 提示 球没有底面,球的表面不能展开成平面.题型一 柱体、锥体、台体的体积【例1】 (1)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.解析 由所给三视图可知,该几何体是由相同底面的两个圆锥和一个圆柱组成,底面半径为1 m ,圆锥的高为1 m ,圆柱的高为2 m ,因此该几何体的体积V =2×13×π×12×1+π×12×2=83π(m 3). 答案 83π(2)在四棱锥E -ABCD 中,底面ABCD 为梯形,AB ∥CD ,2AB =3CD ,M 为AE 的中点,设E -ABCD 的体积为V ,那么三棱锥M -EBC 的体积为多少?解 如图,设点B 到平面EMC 的距离为h 1,点D 到平面EMC 的距离为h 2. 连接MD .因为M 是AE 的中点, 所以V M -ABCD =12V .所以V E -MBC =12V -V E -MDC .而V E -MBC =V B -EMC ,V E -MDC =V D -EMC , 所以V E -MBC V E -MDC =V B -EMC V D -EMC =h 1h 2. 因为B ,D 到平面EMC 的距离即为到平面EAC 的距离,而AB ∥CD ,且2AB =3CD ,所以h 1h 2=32.所以V E -MBC =V M -EBC =310V .规律方法 (1)求柱体的体积关键是求其底面积和高,底面积利用平面图形面积的求法,常转化为三角形及四边形,高常与侧棱、斜高及其在底面的投影组成直角三角形,进而求解. (2)锥体的体积公式V =13Sh 既适合棱锥,也适合圆锥,其中棱锥可以是正棱锥,也可以不是正棱锥.(3)三棱锥的体积求解具有较多的灵活性,因为三棱锥的任何一个面都可以作为底面,所以常常需要根据题目条件对其顶点和底面进行转换,这一方法叫作等积法.(4)台体的体积计算公式是V =13(S 上+S 下+S 上S 下)h ,其中S 上,S 下分别表示台体的上、下底面的面积.计算体积的关键是求出上、下底面的面积及高,求解相关量时,应充分利用台体中的直角梯形、直角三角形.另外,台体的体积还可以通过两个锥体的体积差来计算. 【训练1】 某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1 B.π2+3 C.3π2+1 D.3π2+3 解析 由三视图可知原几何体为半个圆锥和一个三棱锥的组合体,半圆锥的底面半径为1,高为3,三棱锥的底面积为12×2×1=1,高为3.故原几何体体积为:V =12×π×12×3×13+1×3×13=π2+1.答案 A【训练2】 四边形ABCD 中,A (0,0),B (1,0),C (2,1),D (0,3),绕y 轴旋转一周,求所得旋转体的体积.解 ∵C (2,1),D (0,3), ∴圆锥的底面半径r =2,高h =2. ∴V 圆锥=13πr 2h =13π×22×2=83π. ∵B (1,0),C (2,1),∴圆台的两个底面半径R =2,R ′=1,高h ′=1. ∴V 圆台=13πh ′(R 2+R ′2+RR ′)=13π×1×(22+12+2×1)=73π, ∴V =V 圆锥+V 圆台=5π.【训练3】 如图,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明PQ ⊥平面DCQ ;(2)求棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值. (1)证明 由条件知PDAQ 为直角梯形. 因为QA ⊥平面ABCD ,所以平面PDAQ ⊥平面ABCD ,交线为AD . 又四边形ABCD 为正方形,DC ⊥AD , 所以DC ⊥平面PDAQ ,可得PQ ⊥DC . 在直角梯形PDAQ 中可得DQ =PQ =22PD ,则PQ ⊥QD .又DC ∩QD =D .所以PQ ⊥平面DCQ . (2)解 设AB =a .由题设知AQ 为棱锥Q -ABCD 的高, 所以棱锥Q -ABCD 的体积V 1=13a 3.由(1)知PQ 为棱锥P -DCQ 的高. 而PQ =2a ,△DCQ 的面积为22a 2, 所以棱锥P -DCQ 的体积V 2=13a 3.故棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值为1.题型二 球的表面积和体积【例2】 (1)已知球的表面积为64π,求它的体积; (2)已知球的体积为5003π,求它的表面积.解 (1)设球的半径为R ,则4πR 2=64π,解得R =4, 所以球的体积V =43πR 3=43π·43=2563π.(2)设球的半径为R ,则43πR 3=5003π,解得R =5,所以球的表面积S =4πR 2=4π×52=100π.规律方法 (1)已知球的半径,可直接利用公式求它的表面积和体积. (2)已知球的表面积和体积,可以利用公式求它的半径.【训练4】 (1)若圆锥与球的体积相等,且圆锥底面半径与球的直径相等,则圆锥侧面积与球面面积之比是________.(2)如图是一个几何体的三视图,根据图中的数据可得该几何体的表面积为________.解析 (1)设圆锥的底面半径为R , 由题意知球的半径为R2, V 圆锥=13πR 2h (h 为圆锥的高),V 球=43π(R 2)3=16πR 3,∴13πR 2h =16πR 3,h =12R ,则圆锥的母线l =R 2+h 2=52R , 圆锥的侧面积为π×R ×52R =52πR 2. 球的表面积为4π×(R2)2=πR 2. ∴圆锥的侧面积与球面面积之比为5∶2.(2)由三视图知该几何体由圆锥和半球组成,且球的半径和圆锥底面半径都等于3,圆锥的母线长等于5,所以该几何体的表面积为S =2π×32+π×3×5=33π. 答案 (1)52(2)33π【例3】 已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的直径为( )A.3172B.210C.13D.310解析 因为三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,所以三棱柱的底面是直角三角形,侧棱与底面垂直.△ABC 的外心是斜边的中点,上下底面的中心连线垂直底面ABC ,其中点是球心,即侧面B 1BCC 1,经过球的球心,球的直径是侧面B 1BCC 1的对角线的长,因为AB =3,AC =4,BC =5,BC 1=52+122=13,所以球的直径为13.答案 C【迁移1】 本例若将直三棱柱改为“棱长为4的正方体”,则此正方体外接球和内切球的体积各是多少?解 由题意可知,此正方体的体对角线长即为其外接球的直径,正方体的棱长即为其内切球的直径.设该正方体外接球的半径为R ,内切球的半径为r . 又正方体的棱长为4,故其体对角线长为43, 从而V 外接球=43πR 3=43π×(23)3=323π,V 内切球=43πr 3=43π×23=32π3. 【迁移2】 本例若将直三棱柱改为“正四面体”,则此正四面体的表面积S 1与其内切球的表面积S 2的比值为多少?解 设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径r 为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa 26=63π. 【迁移3】 本例中若将直三棱柱改为“侧棱和底面边长都是32的正四棱锥”,则其外接球的半径是多少?解 依题意得,该正四棱锥的底面对角线的长为32×2=6,高为(32)2-(12×6)2=3,因此底面中心到各顶点的距离均等于3,所以该正四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3.规律方法 空间几何体与球接、切问题的求解方法:(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解. (2)若球面上四点P ,A ,B ,C 构成的三条线段PA ,PB ,PC 两两互相垂直,且PA =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解(其R为球的半径).课堂达标1.设正方体的表面积为24,那么其外接球的体积是( ) A.43π B.8π3C.43πD.323π解析 由题意可知,6a 2=24,∴a =2. 设正方体外接球的半径为R ,则3a =2R ,∴R =3,∴V 球=43πR 3=43π.答案 C2.已知高为3的直棱柱ABC -A 1B 1C 1的底面是边长为1的正三角形,则三棱锥B 1-ABC 的体积为( ) A.14 B.12 C.36D.34解析 S 底=12×1×1-⎝ ⎛⎭⎪⎫122=34,所以V 三棱锥B 1-ABC =13S 底·h =13×34×3=34.答案 D3.某几何体的三视图如图所示,则其表面积为________.解析 由三视图可知,该几何体为一个半径为1的半球,其表面积为半个球面面积与截面圆面积的和,即12×4π+π=3π.答案 3π4.一个几何体的三视图(单位:m)如图所示,则该几何体的体积为________ m 3.解析 由三视图知,几何体下面是两个球,球半径为32;上面是长方体,其长、宽、高分别为6、3、1, 所以V =43π×278×2+1×3×6=9π+18(m 3).答案 9π+185.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,求该球的表面积. 解 如图,设球心为O ,半径为r ,则Rt△AOF 中,(4-r )2+(2)2=r 2,解得r =94,∴该球的表面积为4πr 2=4π×(94)2=814π.课堂小结1.柱体、锥体、台体的体积之间的内在关系为2.在三棱锥A -BCD 中,若求点A 到平面BCD 的距离h ,可以先求V A -BCD ,h =3VS △BCD.这种方法就是用等体积法求点到平面的距离,其中V 一般用换顶点法求解,即V A -BCD =V B -ACD =V C -ABD =V D -ABC ,求解的原则是V 易求,且△BCD 的面积易求.3.求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.4.利用球的半径、球心到截面圆的距离、截面圆的半径可构成直角三角形,进行相关计算.5.解决球与其他几何体的切接问题,通常先作截面,将球与几何体的各量体现在平面图形中,再进行相关计算.基础过关1.某三棱锥的三视图如图所示,则该三棱锥的体积是( )A.16B.13C.23D.1解析 如图,三棱锥的底面是一个直角边长为1的等腰直角三角形,有一条侧棱和底面垂直,且其长度为2,故三棱锥的高为2,故其体积V =13×12×1×1×2=13,故选B. 答案 B2.已知长方体的过一个顶点的三条棱长的比是1∶2∶3,对角线的长是214,则这个长方体的体积是( ) A.6B.12C.24D.48解析 设长方体的过一个顶点的三条棱长分别为x 、2x 、3x (x >0),又对角线长为214,则x 2+(2x )2+(3x )2=(214)2,解得x =2,∴三条棱长分别为2、4、6,∴V 长方体=2×4×6=48. 答案 D3.一空间几何体的三视图如图所示,则该几何体的体积为( )A.2π+2 3B.4π+2 3C.2π+233D.4π+233解析 该空间几何体由一圆柱和一四棱锥组成,圆柱的底面半径为1,高为2,体积为2π,四棱锥的底面边长为2,高为3,所以体积为13×(2)2×3=233,所以该几何体的体积为2π+233.答案 C4.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________cm.解析 设球的半径为r ,则圆柱形容器的高为6r ,容积为πr 2×6r =6πr 3,高度为8 cm 的水的体积为8πr 2,3个球的体积和为3×43πr 3=4πr 3,由题意6πr 3-8πr 2=4πr 3,解得r =4 cm. 答案 45.如图为某个几何体的三视图,则该几何体的体积为________.解析 由三视图可知,该几何体是由一个正四棱柱挖掉一个半圆锥所得到的几何体,其直观图如图所示,其中正四棱柱的底面正方形的边长a =2,半圆锥的底面半径r =1,高h =3,所以正四棱柱的体积V 1=a 2h =22×3=12,半圆锥的体积V 2=12×π3r 2h =π6×12×3=π2,所以该几何体的体积V =V 1-V 2=12-π2. 答案 12-π26.如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,求A 到平面A 1BD 的距离d .解 在三棱锥A 1-ABD 中,AA 1⊥平面ABD ,AB =AD =AA 1=a ,A 1B =BD =A 1D =2a ,∵V A 1-ABD =V A -A 1BD ,∴13×12a 2×a =13×12×2a ×32×2a ×d . ∴d =33a . 7.已知底面半径为 3 cm ,母线长为 6 cm 的圆柱,挖去一个以圆柱上底面圆心为顶点,下底面为底面的圆锥,求所得几何体的表面积及体积.解 作轴截面如图,设挖去的圆锥的母线长为l ,底面半径为r ,则l =(6)2+(3)2=9=3(cm),r = 3 (cm).故几何体的表面积为 S =πrl +πr 2+2πrAD=π×3×3+π×(3)2+2π×3× 6=33π+3π+62π=(33+3+62)π(cm 2).几何体的体积为V =V 圆柱-V 圆锥=πr 2AD -13πr 2AD =π×3×6-13×π×3× 6 =26π(cm 3).能力提升8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.πB.3π4C.π2D.π4 解析 如图画出圆柱的轴截面ABCD ,O 为球心.球半径R =OA =1,球心到底面圆的距离为OM =12. ∴底面圆半径r =OA 2-OM 2=32,故圆柱体积V =πr 2h =π⎝ ⎛⎭⎪⎫322×1=3π4. 答案 B9.如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器厚度,则球的体积为( )A.500π3cm 3 B.866π3 cm 3 C.1 372π3 cm 3 D.2 048π3 cm 3 解析 作出该球的轴截面图如图所示,依题意BE =2,AE =CE =4,设DE =x ,故AD =2+x ,因为AD 2=AE 2+DE 2,解得x =3,故该球的半径AD =5,所以V =43πR 3=500π3(cm 3). 答案 A10.若球的半径由R 增加为2R ,则这个球的体积变为原来的________倍,表面积变为原来的________倍.解析 球的半径为R 时,球的体积为V 1=43πR 3,表面积为S 1=4πR 2,半径增加为2R 后,球的体积为V 2=43π(2R )3=323πR 3,表面积为S 2=4π(2R )2=16πR 2. 所以V 2V 1=323πR 343πR 3=8,S 2S 1=16πR 24πR 2=4, 即体积变为原来的8倍,表面积变为原来的4倍.答案 8 411.已知三棱锥A -BCD 的所有棱长都为2,则该三棱锥的外接球的表面积为________. 解析 如图,构造正方体ANDM -FBEC .因为三棱锥A -BCD 的所有棱长都为2,所以正方体ANDM -FBEC 的棱长为1.所以该正方体的外接球的半径为32. 易知三棱锥A -BCD 的外接球就是正方体ANDM -FBEC 的外接球,所以三棱锥A -BCD 的外接球的半径为32.所以三棱锥A -BCD 的外接球的表面积为S 球=4π⎝ ⎛⎭⎪⎫322=3π. 答案 3π12.已知过球面上A 、B 、C 三点的截面和球心的距离等于球半径的一半,且AB =18,BC =24,AC =30,求球的表面积和体积.解 ∵AB ∶BC ∶AC =18∶24∶30=3∶4∶5,∴△ABC 是直角三角形,∠B =90°.∵球心O 到截面△ABC 的投影O ′为截面圆的圆心,也即是Rt△ABC 的外接圆的圆心,∴斜边AC 为截面圆O ′的直径(如图所示).设O ′C =r ,OC =R ,则球半径R ,截面圆半径r ,在Rt△O ′CO 中,由题设知sin∠O ′CO =OO ′OC =12, ∴∠O ′CO =30°,∴rR =cos 30°=32,即R =23r ,① 又2r =AC =30⇒r =15,代入①得R =10 3.∴球的表面积为S =4πR 2=4π(103)2=1 200π.球的体积为V =43πR 3=43π(103)3=4 0003π. 13.(选做题)有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r 的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度. 解 由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面.根据切线性质知,当球在容器内时,水深为3r ,水面的半径为3r ,则容器内水的体积为V=V 圆锥-V 球=13π·(3r )2·3r -43πr 3=53πr 3, 而将球取出后,设容器内水的深度为h ,则水面圆的半径为33h , 从而容器内水的体积是V ′=13π·(33h )2·h =19πh 3,由V =V ′,得h =315r . 即容器中水的深度为315r .。

空间几何体的表面积和体积公式大全

空间几何体的表面积与体积公式大全一、全(表)面积(含侧面积)①棱柱、②圆柱.2・锥体①棱锥:S^ = ^h [②圆锥:= /3、台体①棱台• S梭台侧=空(6?上底+c下底)方'» S全= s±+s『s下②圆台:S杭台側=*(6底+cQZ -4、球体①球:S球=勿/②球冠:略③球缺:略二、体积1、柱体①棱柱} V,=S h②圆柱S S 2、锥体①棱锥} v.=\sh②圆锥S S3、 台体V 台肓//(S 匕+ JS 上S F + S 下)台=齐方(厂上+Jr 上厂下+厂下) 4、 球体①球:V 球② 球冠:略VyT/③ 球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高力计算;而圆锥、圆台的 侧面积计算时使用母线/计算。

三、拓展提高1、 祖眶原理:(祖璀:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。

最早推导出球体体积的祖冲之父子便是运用这个原理实现的。

2、 阿基米德原理:(圆柱容球)圆柱容球原理:在一个高和底面直径都是2厂的圆柱形容器内装一个最大 的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的?。

①棱台 ②圆台丿分析:圆柱体积:V H1 = s h =(^r)x2r = 2^/圆柱侧面积:S叭削= c/z = (2岔)X2广=4兀/2 彳4 彳因lit :球体体积:|/厅=—x2/r^ =_龙厂球体表面积:S球=4兀厂通过上述分析,我们可以得到一个很重要的关系(如图)即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和3、台体体积公式公式:几冷〃(S上+、恳瓦+ S』证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD。

延长两侧棱相交于一点P 0设台体上底面积为Si,下底面积为S下高为// °易知:\PDCs 型AB,设卩£ =人,则Pf+h由相似三角形的性质得:孚=袋AB PF即:(相似比等于面积比的算术平方根)、用hi整理得:人=尺刃又因为台体的体积二大锥体体积一小锥体体积u台=§s下(九+力r s上人人(S下-S上)+§s下方即:(、瓦+丫瓦)+扣下力=|/z $ + 应7+S卜)4、球体体积公式推导分析:将半球平行分成相同高度的若干层(兀层),〃越大,每一层越近似于圆柱'"T -HZ)时»每一层都可以看作是一个圆柱。

空间几何体的表面积和体积公式大全

空间几何体的表面积与体积公式大全全(表)面积(含侧面积)1、柱体①棱柱]----------------A S侧=Ch ■ S全=2S底* S侧②圆柱J _______ ___2、锥体①棱锥:S棱锥侧=^2c底h②圆锥:S圆锥侧=托底l3、台体①棱台:②圆台:S棱台侧S棱台侧_ 1二2(C上底C下底)h_ 1=2 (C上底.C下底)1* S全=S上+ S侧+ S下4、球体①球:S球=4r2②球冠:略③球缺:略S下S下体积1、柱体①棱柱]--------------卜V柱=Sh②圆柱J2、锥体①棱锥r②圆锥」1V柱=3S h3、台体1①棱台]V台=gh (S上NS上S^ +S下)②圆台J V圆台=3兀h (r上+Q r上r下+ r下)4、球体①球:V球=4二r'②球冠:略③球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高h计算;而圆锥、圆台的侧面积计算时使用母线I计算。

三、拓展提高1、祖暅原理:(祖暅:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。

最早推导出球体体积的祖冲之父子便是运用这个原理实现的2、阿基米德原理:(圆柱容球)圆柱容球原理:在一个高和底面直径都是2r的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的-。

3分析:圆柱体积:V圆柱=Sh =(二「2)2r=2^r'圆柱侧面积:S圆柱侧=C h =(2 r) 2r = 4二「因此:球体体积:V球=2 2二J=4二r33 3球体表面积:S球=4 r2即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和3、台体体积公式公式:V台=1h (S上+ S下)证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 延长两侧棱相交于一点P设台体上底面积为S上,下底面积为S下P 高为h。

易知:PDC s .>PAB ,设PE = h i,则PF =h i h由相似三角形的性质得:CD PEAB PFA整理得:h 1 : =S上hPS 下-VS上又因为台体的体积=大锥体体积一小锥体体积1 11 1 二V台=3S 下(h 1h K3S 上h^3h 1(S下一S上) 下h代入:h= i S 上芬得: V台=3胪L(S下—S"3S 下hJS下3*SrS31 ___ I ------ ------ 1即: V 台=3 S上h (S下S上)3S下人二 V 台=3h (S 上S 上S 下S下)球体体积公式推导即:ShiS 下-h lh (相似比等于面积比的算术平方根)1 ______________=3h (S上S 上S 下S下)4、分析:将半球平行分成相同高度的若干层( n 层),n 越大,每一层越近似于圆柱,n “ •「时,每一层都可以看作是个圆柱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中立体几何表面积体积公式
高中立体几何涉及到多种多面体的表面积和体积计算,以下是一些常见的立体图形的面积和体积计算公式:
1. 正方体:表面积 S = 6a^2,体积 V = a^3。

2. 长方体:表面积 S = (ab + bc + cd) × 2,体积 V = ab ×bc × cd。

3. 圆柱:表面积 S = 2πrl,体积 V = πr^2h。

其中,r 是圆柱的底面半径,l 是圆柱的底面周长,h 是圆柱的高。

4. 圆锥:表面积 S = 2πrl,体积 V = πr^2h/3。

其中,r 是圆锥的底面半径,l 是圆锥的底面周长,h 是圆锥的高。

5. 球:表面积 S = 4πr^2,体积 V = πr^3。

其中,r 是球的半径。

6. 棱锥:表面积 S = (1/2) ×π× (rs + th)^2,体积 V = (1/3) ×π× (rs + th)^3。

其中,rs 是棱锥的底面半径,th 是棱锥的高。

7. 棱柱:表面积 S = 2 ×π× (rs + th),体积 V = π×(rs + th)^2。

其中,rs 是棱柱的底面半径,th 是棱柱的高。

这些公式是高中立体几何中非常重要的基础知识,对于解决立体几何问题有着重要的作用。

相关文档
最新文档