圆周运动-竖直平面内的圆周运动

合集下载

竖直面内的圆周运动(解析版)

竖直面内的圆周运动(解析版)

竖直面内的圆周运动一、竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。

2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。

物理情景最高点无支撑最高点有支撑实例球与绳连接、水流星、沿内轨道的“过山车”等球与杆连接、球在光滑管道中运动等图示异同点受力特征除重力外,物体受到的弹力方向:向下或等于零除重力外,物体受到的弹力方向:向下、等于零或向上受力示意图力学方程mg+F N=mv2R mg±F N=mv2R临界特征F N=0mg=mv2minR即v min=gRv=0即F向=0F N=mg过最高点的条件在最高点的速度v≥gR v≥0【典例1】如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动。

小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示,则()A .小球的质量为aRbB .当地的重力加速度大小为RbC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等 【答案】: ACD【典例2】用长L = 0.6 m 的绳系着装有m = 0.5 kg 水的小桶,在竖直平面内做圆周运动,成为“水流星”。

G =10 m/s 2。

求:(1) 最高点水不流出的最小速度为多少?(2) 若过最高点时速度为3 m/s ,此时水对桶底的压力多大? 【答案】 (1) 2.45 m/s (2) 2.5 N 方向竖直向上【解析】(1) 水做圆周运动,在最高点水不流出的条件是:水的重力不大于水所需要的向心力。

这是最小速度即是过最高点的临界速度v 0。

以水为研究对象, mg =m v 20L解得v 0=Lg =0.6×10 m/s ≈ 2.45 m/s(2) 因为 v = 3 m/s>v 0,故重力不足以提供向心力,要由桶底对水向下的压力补充,此时所需向心力由以上两力的合力提供。

球—绳模型(学生版)--竖直面内三种圆周运动模型

球—绳模型(学生版)--竖直面内三种圆周运动模型

竖直面内三种圆周运动模型精讲精练模型球-绳模型【知识点精讲】球-绳模型实例球与绳连接在竖直面内圆周运动球沿竖直面圆周内轨道运动图示最高点无支撑最高点无支撑最高点受力特征重力、弹力,弹力方向向下或等于零重力、弹力,弹力方向向下、等于零或向上受力示意图力学特征mg+F N=mv2r临界特征F N=0,v min=gr过最高点条件v≥gr速度和弹力关系讨论分析①恰好过最高点时,v=gr,mg=mv2r,F N=0,绳、轨道对球无弹力②能过最高点时,v≥gr,F N+mg=mv2r,绳、轨道对球产生弹力F N③不能过最高点时,v<gr,在到达最高点前小球已经脱离了圆轨道做斜抛运动【方法归纳】(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型物体过最高点的临界条件不同.(2)确定临界点:抓住球-绳模型中球恰好能过最高点时v=gR的临界条件.(3)研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和最低点的运动情况.(4)受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程:F合=F向.(5)过程分析:应用动能定理或机械能守恒定律将初、末两个状态联系起来列方程.【针对性训练】1(2018•高考全国卷Ⅲ)如图,在竖直平面内,一半径为R的光滑圆弧轨道ABC和水平轨道P A在A 点相切。

BC为圆弧轨道的直径。

O为圆心,OA和OB之间的夹角为α,sinα=35,一质量为m的小球沿水平轨道向右运动,经A点沿圆弧轨道通过C点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零。

重力加速度大小为g。

求:(1)水平恒力的大小和小球到达C点时速度的大小;(2)小球到达A点时动量的大小;(3)小球从C点落至水平轨道所用的时间。

2(12分)(2020新高考冲刺仿真模拟)某兴趣小组设计了一个玩具轨道模型如图甲所示,将一质量为m=0.5kg的玩具小车(可以视为质点)放在P点,用弹簧装置将其从静止弹出(弹性势能完全转化为小车初始动能),使其沿着半径为r=1.0m的光滑圆形竖直轨道OAO′运动,玩具小车与水平面PB的阻力为其自身重力的0.5倍(g取10m/s2),PB=16.0m,O为PB中点.B点右侧是一个高h=1.25m,宽L= 2.0m的壕沟.求:(1)要使小车恰好能越过圆形轨道的最高点A,小车在O点受到轨道弹力的大小;(2)要求小车能安全越过A点,并从B点平抛后越过壕沟,则弹簧的弹性势能至少为多少?(3)若在弹性限度内,弹簧的最大弹性势能E pm=40J,以O点为坐标原点,OB为x轴,从O到B方向为正方向,在图乙坐标上画出小车能进入圆形轨道且不脱离轨道情况下,弹簧弹性势能E p与小车停止位置坐标x关系图.3(2024年5月四川宜宾质检)如图所示,在距地面上方h的光滑水平台面上,质量为m=4kg的物块左侧压缩一个轻质弹簧,弹簧与物块未拴接。

教案竖直平面内的圆周运动及实例分析

教案竖直平面内的圆周运动及实例分析

竖直平面内的圆周运动及实例分析说明:竖直平面内的圆周运动一般是变速圆周运动(带电粒子在匀强磁场中运动除外),运动的速度大小和方向在不断发生变化,运动过程复杂,合外力不仅要改变运动方向,还要改变速度大小,所以对此要根据牛顿第二定律的瞬时性解决问题:在变速圆周运动中,虽然物体在各位置受到的向心力分别产生了物体通过各位置的向心加速度,但向心力公式仍是适用的.但要注意,对于物体做匀速圆周运动的情况,只有在物体通过最高点和最低点时,向心力才是合外力.一般不研究任意位置的情况,只研究特殊的临界位置──最高点和最低点。

同时,还可以向学生指出:此问题中出现的对支持面的压力大于或小于物重的现象,是发生在圆周运动中的超重或失重现象.一、教学目标:1.知识与技能:(1)理解匀速圆周运动是变速运动;(2)进一步理解向心力的概念;(3)掌握竖直平面内最高点和最低点的圆周运动。

2.过程与方法:通过对竖直平面内特殊点的研究,培养学生观察能力、抽象概括和归纳推理能力。

3.情感态度价值观:渗透科学方法的教育。

二、重点难点:教学重点:分析向心力来源.教学难点:实际问题的处理方法.向心力概念的建立及计算公式的得出是教学重点,也是难点。

通过生活实例及实验加强感知,突破难点。

三、授课类型:习题课四、上课过程:(一)、情景引入:(二)、两类模型——轻绳类和轻杆类(1)轻绳模型:一轻绳系一小球在竖直平面内做圆周运动.小球能到达最高点(刚好做圆2v mgm,这时的速度是做圆周运=周运动)的条件是小球的重力恰好提供向心力,即r v=动的最小速度. (绳只能提供拉力不能提供支持力).min内侧的圆周运动,水流星的类此模型:竖直平面内的内轨道,竖直(光滑)圆弧运动(水流星在竖直平面内作圆周运动过最高点的临界条件),过山车运动等,word编辑版.刚好做:一轻杆系一小球在竖直平面内做圆周运动,小球能到达最高点((2)轻杆模型(杆既可以提供拉力,也可提供支持力或. )的条件是在最高点的速度圆周运动.)侧向力A v小球的重力;①当=0 时,杆对小球的支持力v0<②当于小球的重力;<时,杆对小球的支持力gr v O于零;③当=时,杆对小球的支持力gr v力. ④当> 时,杆对小球提供gr:汽车过凸形拱桥,小球在竖直平面内的(光滑)圆环内运动,小球套类此模型在竖直圆环上的运动等。

高中物理重要方法典型模型突破11-模型专题(3) -竖直平面内圆周运动 (解析版)

高中物理重要方法典型模型突破11-模型专题(3) -竖直平面内圆周运动 (解析版)

专题十一模型专题(3)竖直面上的圆周运动【典型模型解读】1.竖直面内匀速圆周运动:注意匀速圆周运动的条件2.竖直平面内非匀速圆周运动的两类典型模型分析轻绳模型轻杆模型实例如球与绳连接、沿内轨道运动的球等如球与杆连接、球在内壁光滑的圆管内运动等图示最高点无支撑最高点有支撑最高点受力特征重力、弹力,弹力方向指向圆心重力、弹力,弹力方向指向圆心或背离圆心受力示意图力学方程mg+F N=mrv2mg±F N=mrv2临界特征F N=0,v min=gr竖直向上的F N=mg,v=0过最高点条件v≥gr v≥0速度和弹力关系讨论分析①能过最高点时,v≥gr,F N+mg=mrv2,绳、轨道对球产生弹力F N②不能过最高点时,v<gr,在到达最高点前小球已经脱离了圆轨道做斜抛运动①当v=0时,F N=mg,F N为支持力,沿半径背离圆心②当0<v<gr时,-F N+mg=mrv2,F N背离圆心,随v的增大而减小③当v=gr时,F N=0④当v>gr时,F N+mg=mrv2,F N指向圆心并随v的增大而增大【典例讲练突破】【例1】(2019高考江苏卷物理6)如图所示,摩天轮悬挂的座舱在竖直平面内做匀速圆周运动.座舱的质量为m,运动半径为R,角速度大小为ω,重力加速度为g,则座舱()A.运动周期为2πRω B.线速度的大小为ωRC.受摩天轮作用力的大小始终为mgD.所受合力的大小始终为m ω2R【解析】由于座舱做匀速圆周运动,由公式2πTω=,解得:2πT ω=,故A 错误;由圆周运动的线速度与角速度的关系可知,v R ω=,故B 正确;由于座舱做匀速圆周运动,所以座舱受到摩天轮的作用力是变力,不可能始终为mg ,故C 错误;由匀速圆周运动的合力提供向心力可得:2F m R ω=合,故D 正确。

【答案】BD【练1】在考驾驶证的科目二阶段,有一项测试叫半坡起步,这是一条类似于凸型桥面设计的坡道。

圆周运动中的临界问题

圆周运动中的临界问题
m gmR 2 v临界 Rg (2)小球能过最高点条件: v rg
(当 v rg 时,绳对球产生拉力,轨道对球产生压力)
(3)不能过最高点条件: v rg
(实际上球还没有到最高点时,就脱离了轨道)
如图所示,固定在竖直平点为轨道最高点,DB为竖
特点
在最高点时,没有物体支 撑,只能产生拉力
轻杆对小球既能产生拉 力,又能产生支持力
圆周运动的临界问题
1.竖直平面内的圆周运动 ①轻绳模型 :
能过最高点的临界条件:
小球在最高点时绳子的拉力刚好 等于0,小球的重力充当圆周运 动所需的向心力。
m gmR 2 v临界 Rg
轻绳模型
(1)小球能过最高点的临界条件:绳子和轨道对小球刚好没 有力的作用:
B、的压力 D、24N的压力
例3:长L=,质量可以忽略的的杆,其下端
固定于O点,上端连接着一个质量m=2kg的小 球A,A绕O点做圆周运动(同图5),在A通过 最高点,试讨论在下列两种情况下杆的受力:
①当A的速率v1=1m/s时:
②当A的速率v2=4m/s时:
变式训练
.一轻杆下端固定一质量为M的小球,上端连在轴 上,并可绕轴在竖直平面内运动,不计轴和空气阻 力,在最低点给小球水平速度v0时,刚好能到达最 高点,若小球在最低点的瞬时速度从v0不断增大,
2
双体转动模型
如图所示,轻细杆可绕光滑的水平轴O在竖直 面内转动,杆的两端固定有质量均为m=1kg的 小球A和B,球心到轴O的距离分别为,。已知 A球转到最低点时速度为vA=4m/s,问此时A、B 球对杆的作用力的大小和方向?
B
vB
vA
A
谢谢观赏
N
fA AB mg
变式训练

第二章 专题强化5 竖直面内的圆周运动

第二章 专题强化5 竖直面内的圆周运动

竖直面内的圆周运动[学习目标] 会分析竖直面内的圆周运动,掌握轻绳、轻杆作用下圆周运动的分析方法并会求临界值.一、竖直面内圆周运动的轻绳模型如图所示,甲图中小球受绳拉力和重力作用,乙图中小球受轨道的弹力和重力作用,二者运动规律相同,现以甲图为例.(1)在最低点有:T 1-mg =m v 12L所以T 1=mg +m v 12L(2)在最高点有:T 2+mg =m v 22L所以T 2=m v 22L-mg(3)最高点的最小速度:由于绳不可能对球有向上的支持力,只能产生向下的拉力,由T 2+mg =m v 22L 可知,当T 2=0时,v 2最小,最小速度为v 2min =gL .讨论:当v 2=gL 时,拉力或压力为零. 当v 2>gL 时,小球受向下的拉力或压力. 当v 2<gL 时,小球不能到达最高点.例1 (多选)如图所示,用长为L 的细绳拴着质量为m 的小球在竖直平面内做完整的圆周运动,重力加速度为g .则下列说法正确的是( )A .小球在最高点时所受向心力一定为小球重力B .小球在最高点时绳子的拉力不可能为零C .小球在最低点时绳子的拉力一定大于小球重力D .小球在最高点的速率至少为gL 答案 CD解析 小球在最高点时,向心力可能等于重力,也可能等于重力与绳子的拉力的合力,取决于小球在该点的瞬时速度的大小,A 错误;小球在最高点时,若只有重力提供向心力,则拉力为零,B 错误;小球在最低点时向心力方向竖直向上,合力一定竖直向上,则拉力一定大于重力,C 正确;当小球刚好到达最高点时,仅有重力提供向心力,则有m v 2L =mg ,解得v=gL ,D 正确.针对训练1 一细绳与水桶相连,水桶中装有水,水桶与细绳一起在竖直平面内做圆周运动,如图所示,水的质量m =0.5 kg ,水的重心到转轴的距离l =50 cm.(g 取10 m/s 2)(1)若在最高点水不流出来,求桶的最小速率;(结果保留三位有效数字,5取2.24) (2)若在最高点水桶的速率v =3 m/s ,求水对桶底的压力大小. 答案 (1)2.24 m/s (2)4 N解析 (1)以水桶中的水为研究对象,在最高点恰好不流出来,说明水的重力恰好提供其做圆周运动所需的向心力,此时桶的速率最小. 由牛顿第二定律有:mg =m v 02l ,得桶的最小速率为:v 0=2.24 m/s.(2)因v >v 0,故此时桶底对水有向下的压力,设为N ,由牛顿第二定律有:N +mg =m v 2l ,得:N =4 N .由牛顿第三定律知,水对桶底的压力大小:N ′=4 N. 二、竖直面内圆周运动的轻杆模型如图所示,细杆上固定的小球和光滑管形轨道内运动的小球在重力和杆(管道)的弹力作用下做圆周运动.(1)最高点的最小速度由于杆或管在最高点能对小球产生向上的支持力,故小球恰能到达最高点的最小速度v =0,此时小球受到的支持力N =mg .(2)小球通过最高点时,轨道对小球的弹力情况①若v >gL ,杆或管的外侧对球产生向下的拉力或弹力,mg +F =m v 2L ,所以F =m v 2L -mg ,F 随v 的增大而增大.②若v =gL ,球在最高点只受重力,不受杆或管的作用力,F =0,mg =m v 2L.③若0≤v <gL ,杆或管的内侧对球产生向上的弹力,mg -F =m v 2L ,所以F =mg -m v 2L ,F随v 的增大而减小.例3 如图所示,长为0.5 m 的轻杆OA 绕O 点在竖直面内做圆周运动,A 端连着一个质量m =2 kg 的小球.求在下述的两种情况下,通过最高点时小球对杆的作用力的大小和方向(g 取10 m/s 2,π2=10):(1)杆做匀速圆周运动的转速为2 r/s ; (2)杆做匀速圆周运动的转速为0.5 r/s. 答案 (1)140 N 方向竖直向上 (2)10 N 方向竖直向下解析 设竖直向下为正方向,小球在最高点的受力如图所示:(1)杆的转速为2 r/s 时,ω=2πn =4π rad/s , 由牛顿第二定律得F +mg =mLω2, 故小球所受杆的作用力F =mLω2-mg =2×(0.5×42×π2-10) N ≈140 N ,即杆对小球有140 N 的拉力,由牛顿第三定律可知,小球对杆的拉力大小为140 N ,方向竖直向上.(2)杆的转速为0.5 r/s 时,ω′=2πn ′=π rad/s ,同理可得小球所受杆的作用力F ′=mLω′2-mg =2×(0.5×π2-10) N ≈-10 N.力F ′为负值表示它的方向与受力分析中所假设的正方向相反,即杆对小球有10 N 的支持力,由牛顿第三定律可知,小球对杆的压力大小为10 N ,方向竖直向下.针对训练2 (多选)如图所示,长为l 的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直面内做圆周运动,重力加速度为g ,关于小球在最高点的速度v ,下列说法正确的是( )A .v 的最小值为glB .v 由零逐渐增大,向心力也增大C .当v 由gl 逐渐增大时,杆对小球的弹力逐渐增大D .当v 由gl 逐渐减小时,杆对小球的弹力逐渐增大 答案 BCD解析 由于是轻杆,在最高点可对小球提供支持力,因此v 的最小值是零,故A 错误.v 由零逐渐增大,由F 向=m v 2l 可知,F 向也增大,故B 正确.当v =gl 时,F =m v 2l =mg ,此时杆恰好对小球无作用力,向心力只由其自身重力提供;当v 由gl 逐渐增大时,m v 2l =mg +F ,故F =m v 2l -mg ,杆对球的力为拉力,且逐渐增大;当v 由gl 逐渐减小时,杆对球的力为支持力,此时,mg -F ′=m v 2l ,F ′=mg -m v 2l ,支持力F ′逐渐增大,杆对球的拉力、支持力都为弹力,故C 、D 正确.例4 质量为m 的小球在竖直平面内的圆管轨道内运动,小球的直径略小于圆管的内径,圆管内径远小于轨道半径,如图所示.已知小球以速度v 通过最高点时对圆管外壁的压力恰好为mg ,则小球以速度v2通过圆管的最高点时( )A .小球对圆管内、外壁均无压力B .小球对圆管外壁的压力等于mg2C .小球对圆管内壁的压力等于mgD .小球对圆管内壁的压力等于mg2答案 D解析 以小球为研究对象,小球通过最高点时,根据牛顿第二定律得mg +mg =m v 2r ;当小球以速度v 2通过圆管的最高点,根据牛顿第二定律得mg +N =m (v 2)2r ;联立解得:N =-12mg ,负号表示圆管对小球的作用力向上,即小球对圆管内壁的压力等于mg2,故D 正确.1.如图所示,某公园里的过山车驶过轨道的最高点时,乘客在座椅里面头朝下,人体颠倒,若轨道半径为R ,人体重为mg ,要使乘客经过轨道最高点时对座椅的压力等于自身的重力,则过山车在最高点时的速度大小为( )A .0 B.gR C.2gR D.3gR答案 C解析 由题意知F +mg =2mg =m v 2R,故速度大小v =2gR ,C 正确.2.(多选)(2021·河北省高二学业考试)如图所示,轻杆一端固定在水平转轴O 上,另一端固定一个小球,轻杆随转轴在竖直平面内做圆周运动,当小球运动至最高点时,轻杆对小球的作用力( )A .方向一定竖直向上B .方向可能竖直向下C .大小可能为0D .大小不可能为0答案 BC解析 设杆长为R ,小球运动至最高点处,当重力刚好提供小球做圆周运动的向心力时,杆对小球无作用力,此时有mg =m v 2R ,解得v =gR ,当v >gR 时,杆对小球提供竖直向下的拉力,当v <gR 时,杆对小球提供竖直向上的支持力,故B 、C 正确,A 、D 错误. 3.杂技演员在表演“水流星”时的示意图如图所示,长为1.6 m 的轻绳的一端,系着一个总质量为0.5 kg 的盛水容器,以绳的另一端为圆心,在竖直平面内做圆周运动,若“水流星”通过最高点时的速度为4 m/s ,g 取10 m/s 2,则下列说法正确的是( )A .“水流星”通过最高点时,有水从容器中流出B .“水流星”通过最高点时,绳的张力及容器的底部受到的压力均为零C .“水流星”通过最高点时处于完全失重状态,不受力的作用D .“水流星”通过最高点时,绳子的拉力大小为5 N 答案 B解析 设水的质量为m ,当水对容器底压力为零时,有mg =m v 2r ,解得v =gr =4 m/s ,“水流星”通过最高点的速度为4 m/s ,知水对容器底压力为零,不会从容器中流出;设水和容器的总质量为M ,有T +Mg =M v 2r ,解得T =0,知此时绳子的拉力为零,故A 、D 错误,B 正确;“水流星”通过最高点时,仅受重力,处于完全失重状态,C 错误.4.如图所示,半径为R ,内径很小的光滑半圆管道竖直放置,小球直径略小于管道内径,质量为m 的小球从管道最低点以某一速度v 1进入管内,在圆管道最低点时,对管道的压力为7mg ,小球通过最高点P 时,对管外壁的压力为mg ,此时小球速度为v 2,则v 1∶v 2为(g 为重力加速度)( )A .7∶2 B.3∶ 2 C.3∶1 D.7∶ 2答案 C解析 在圆管道最低点时,有7mg -mg =m v 12R ,小球通过最高点P 时,有mg +mg =m v 22R ,解得v 1∶v 2=3∶1,选项C 正确.5.(多选)如图所示,一个内壁光滑的弯管道处于竖直平面内,其中管道半径为R .现有一个半径略小于弯管横截面半径(远小于 R )的光滑小球在弯管里运动,当小球通过最高点时速率为v 0,重力加速度为g ,则下列说法中正确的是( )A .若v 0=gR ,则小球对管内壁无压力B .若v 0>gR ,则小球对管内上壁有压力C .若0 <v 0<gR ,则小球对管内下壁有压力D .不论v 0多大,小球对管内下壁都有压力 答案 ABC解析 在最高点,只有重力提供向心力时,由mg =m v 02R ,解得v 0=gR ,因此小球对管内壁无压力,选项A 正确.若v 0>gR ,则有mg +N =m v 02R ,表明小球对管内上壁有压力,选项B 正确.若0<v 0<gR ,则有mg -N =m v 02R ,表明小球对管内下壁有压力,选项C 正确.综上分析,选项D 错误.6.如图所示,一个可以视为质点的小球质量为m ,以某一初速度冲上光滑半圆形轨道,轨道半径为R =0.9 m ,直径BC 与水平面垂直,小球到达最高点C 时对轨道的压力是重力的3倍,重力加速度g =10 m/s 2,忽略空气阻力,求:(1)小球通过C 点的速度大小;(2)小球离开C 点后在空中的运动时间; (3)小球落地点距B 点的距离. 答案 (1)6 m/s (2)0.6 s (3)3.6 m解析 (1)小球通过最高点C ,重力和轨道对小球的压力提供向心力,有F +mg =m v C 2R ,F =F ′=3mg ,解得小球通过C 点的速度v C =6 m/s.(2)小球离开C 点后在空中做平抛运动,在竖直方向上做自由落体运动有2R =12gt 2,解得小球离开C 点后在空中的运行时间t =0.6 s.(3)小球在水平方向上做匀速直线运动有x =v C t ,得小球落地点距B 点的距离x =3.6 m.7.某飞行员的质量为m ,驾驶飞机在竖直面内以速度v 做匀速圆周运动,圆的半径为R ,在圆周的最高点和最低点比较,飞行员对座椅的压力在最低点比最高点大(设飞行员始终垂直于座椅的表面,重力加速度为g )( ) A .mg B .2mg C .mg +m v 2RD .2m v 2R答案 B解析 在最高点有:F 1+mg =m v 2R ,解得:F 1=m v 2R -mg ;在最低点有:F 2-mg =m v 2R ,解得:F 2=mg +m v 2R,所以F 2-F 1=2mg ,B 正确.8.(多选)如图甲所示,小球用不可伸长的轻绳连接后绕固定点O 在竖直面内做圆周运动,小球经过最高点时的速度大小为v ,此时绳子的拉力大小为T ,拉力T 与速度的平方v 2的关系如图乙所示,图中的数据a 、b 及重力加速度g 都为已知量,下列说法正确的是( )A .数据a 与小球的质量无关B .数据b 与小球的质量无关C .比值ba 只与小球的质量有关,与圆周轨道半径无关D .利用数据a 、b 和g 能够求出小球的质量和圆周轨道半径答案 AD解析 当v 2=a 时,绳子的拉力为零,小球的重力提供向心力,则mg =m v 2r,解得v 2=gr ,故a =gr ,与小球的质量无关,故A 正确;当v 2=2a 时,对小球受力分析,则mg +b =m v 2r,解得b =mg ,与小球的质量有关,故B 错误;根据A 、B 可知b a =mr ,与小球的质量和圆周轨道半径都有关,故C 错误;由A 、B 的分析可知,b =mg ,a =gr ,故m =b g ,r =ag ,故D 正确.9.(多选)如图甲所示,轻杆一端固定在O 点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动.小球运动到最高点时,杆与小球间弹力大小为F ,小球在最高点的速度大小为v ,其F -v 2图像如图乙所示.则( )A .小球的质量为aRbB .当地的重力加速度大小为RbC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等 答案 ACD解析 当小球受到的弹力F 方向向下时,F +mg =m v 2R ,解得F =mR v 2-mg ,当弹力F 方向向上时,mg -F =m v 2R ,解得F =mg -m v 2R ,对比F -v 2图像可知,b =gR ,a =mg ,联立解得g=b R ,m =aRb ,A 正确,B 错误.v 2=c 时,小球受到的弹力方向向下,则小球对杆的弹力方向向上,C 正确.v 2=2b 时,由F =m R v 2-mg 及g =bR 可知小球受到的弹力与重力大小相等,D 正确.10.如图所示,长均为L 的两根轻绳,一端共同系住质量为m 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间的距离也为L .重力加速度大小为g .现使小球在竖直平面内以AB 为轴做圆周运动,若小球在最高点速率为v 时,两根绳的拉力恰好均为零,则小球在最高点速率为2v 时,每根绳的拉力大小为( )A.3mgB.433mg C .3mg D .23mg答案 A解析 设小球在竖直面内做圆周运动的半径为r ,小球运动到最高点时轻绳与圆周运动轨道平面的夹角为θ=30°,则r =L cos 30°.根据题述小球在最高点速率为v 时,两根绳的拉力恰好均为零,有mg =m v 2r ;小球在最高点速率为2v 时,设每根绳的拉力大小为F ,则有2F cosθ+mg =m (2v )2r,联立解得:F =3mg ,故A 正确.11.(2021·湘潭一中月考)现有一根长L =1 m 的不可伸长的轻绳,其一端固定于O 点,另一端系着质量m =0.5 kg 的小球(可视为质点),将小球提至O 点正上方的A 点处,此时绳刚好伸直且无弹力,如图所示.不计空气阻力,g 取10 m/s 2.(1)为保证小球能在竖直面内做完整的圆周运动,在A 点至少应施加给小球多大的水平速度? (2)在小球以速度v 1=4 m/s 水平抛出的瞬间,绳所受拉力为多少?(3)在小球以速度v 2=1 m/s 水平抛出的瞬间,绳若受拉力,求其大小;若不受拉力,试求绳子再次伸直时所经历的时间.答案 (1)10 m/s (2)3 N (3)不受拉力 0.6 s解析 (1)小球做完整的圆周运动的临界条件为在最高点重力刚好提供小球所需的向心力,则 mg =m v 02L解得施加给小球的最小速度v 0=10 m/s(2)因为v 1>v 0,故绳受拉力.根据牛顿第二定律有T +mg =m v 12L代入数据得绳所受拉力T ′=T =3 N(3)因为v 2<v 0,故绳不受拉力.小球将做平抛运动,其运动轨迹如图所示, 设经过时间t 绳子再次伸直,则L 2=(y -L )2+x 2x =v 2ty =12gt 2代入数据联立解得t =0.6 s.。

高中物理-曲线运动-竖直平面内的圆周运动例题解析

竖直平面内的圆周运动 一、分析圆周运动要注意以下几个问题1、 首先要明确物体做圆周运动的圆轨道在哪里?圆心在哪里?2、对物体进行正确的受力分析,确定向心力。

由牛顿运动定律可知,有力才会有加速度。

产生向心加速度的力称做向心力,向心力一般是由合力提供,在具体问题中也可以是由某个实际的力提供,如拉力、重力、摩擦力等。

3、确定圆周运动各物理量之间的关系描述圆周运动的物理量主要是线速度、角速度、轨道半径、周期和向心加速度。

4、要注意虽然圆周运动向心加速度公式a=rv 2是从匀速圆周运动推出的,但是它也适用于非匀速圆周运动情况,可以是瞬时关系。

二、竖直平面内圆周运动应用实例分析(一)汽车过桥分析汽车匀速率过凸形桥和凹形桥两种情况,主要分析汽车在拱形桥最高点和凹形桥最低点对桥面的压力情况。

(1)汽车匀速过凸形路面时在最高点,重力mg 和地面支持力的合外力是使物体做圆周运动的向心力:mg N m v R-=2通过公式可以看出:汽车过拱形桥时,处于失重状态;且当汽车的速度增大时,对地面的压力在逐渐的减小,若汽车刚要脱离路面,此时,N=0, v gR =(2)汽车匀速过凹形最低点时N mg m v R N mg m v R-==+22,即车处于超重状态。

例1、如图所示,汽车质量为1.5×104kg ,以不变的速率先后驶过凹形桥面和凸形桥面,桥面圆弧半径为15 m,如果桥面承受的最大压力不得超过2.0×105 N ,汽车允许的最大速率是多少?汽车以此速率驶过桥面的最小压力是多少?(g=10 m/s 2)解析:首先要确定汽车在何位置时对桥面的压力最大,汽车经过凹形桥面时,向心加速度方向向上,汽车处于超重状态;经过凸形桥面时,向心加速度方向向下,汽车处于失重状态,所以当汽车经过凹形桥面的最低点时如图2,汽车对桥面的压力最大。

当汽车经过凹桥面最低点时,设桥面支持力为1N F ,由牛顿第二定律有Rv m mg F N 21=- 要求51100.2⨯≤N F N解得允许的最大速度v m =7.07 m/s由上面的分析可知,汽车经过凸桥顶点时对桥面的压力最小,设为2N F .如图所示由R v m F mg m N 22=-解得52100.1⨯=N F N. 由牛顿第三定律知, 2N F 与2N F ′等值反向.(二)轻绳模型和轻杆模型这类问题的特点是:物体做圆周运动的速率是时刻变化的,先从简单的开始研究,只研究小球通过最高点和最低点时绳子或杆的受力情况。

竖直平面内圆周运动的脱轨问题

竖直平面内圆周运动的脱轨问题在日常生活中,我们经常看到一些游乐园中的过山车或者摩天轮等设施,它们都是以圆周运动为基础的。

然而,有时候我们会想,如果竖直平面内的圆周运动速度过快会发生什么呢?是否会发生脱轨的现象呢?我们来了解一下什么是圆周运动。

圆周运动是指物体沿着一个圆形轨道运动的过程。

在竖直平面内的圆周运动中,物体沿着一个半径固定的圆圈做匀速运动。

当物体保持一定的速度和半径时,它将始终受到一个向心力的作用,使其保持在圆周运动中。

那么,如果圆周运动的速度过快,物体是否会脱离轨道呢?答案是肯定的。

当物体的速度超过一定的临界值时,它将无法保持在圆周运动中,发生脱轨现象。

为了更好地理解这个问题,我们可以通过一个简单的例子来说明。

假设有一辆小汽车在一个竖直平面内的圆形赛道上进行运动。

当小汽车的速度逐渐增大时,它会受到向心力的作用而向内偏转,保持在圆形赛道上。

然而,当小汽车的速度超过一定的临界值时,向心力无法提供足够的向心加速度,小汽车将无法保持在圆形赛道上,发生脱轨现象。

那么,如何计算圆周运动的临界速度呢?在竖直平面内的圆周运动中,向心力由重力提供。

因此,我们可以根据向心力与重力的平衡关系来计算临界速度。

向心力由以下公式给出:F = m * a = m * v^2 / r,其中m为物体的质量,v为物体的速度,r为圆形赛道的半径。

重力由以下公式给出:F = m * g,其中m为物体的质量,g为重力加速度。

当物体处于脱轨状态时,向心力无法提供足够的向心加速度,即向心力小于重力。

因此,我们可以得到以下关系:m * v^2 / r < m * g。

通过整理上述不等式,我们可以得到圆周运动的临界速度公式:v < √(g * r)。

这个公式告诉我们,当圆周运动的速度小于√(g * r)时,物体可以保持在圆周运动中;当速度大于√(g * r)时,物体将发生脱轨现象。

在这个公式中,g为重力加速度,r为圆形赛道的半径。

竖直平面内的圆周运动 教案

竖直平面内的圆周运动模型1:无支撑模型如图所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点...的情况: 注意:绳对小球只能产生沿绳收缩方向的拉力(1)临界条件:绳子或轨道对小球没有力的作用:mg=mv 2/R →v 临界=Rg(可理解为恰好转过或恰好转不过的速度)(2)能过最高点的条件:v ≥Rg ,当V >Rg 时,绳对球产生拉力,轨道对球产生压力.(3)不能过最高点的条件:V <V 临界(实际上球还没到最高点时就脱离了轨道)例1:把盛水的水桶拴在长为L 的绳子一端,使这水桶在竖直平面做圆周运动,要使水桶转到最高点时不从桶里流出来,这时水桶的线速度至少应该是多少?【针对训练】1、如图所示,质量为m 的小球在竖直平面内的光滑圆轨道上做圆周运动,圆半径为R ,小球经过轨道最高点时刚好不脱离圆轨道,则其通过最高点时( )A .小球对圆轨道的压力大于等于mgB .小球受到的向心力等于重力mgC .小球的线速度大于等于gRD .小球的向心加速度大于等于g2、如图所示,用细绳拴着质量为m 的物体,在竖直平面内做圆周运动,圆周半径为R .则下列说法正确的是( )A.小球过最高点时,绳子张力可以为零B.小球过最高点时的最小速度为零C.小球刚好过最高点时的速度是gRD.小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相反3、绳系着装有水的水桶,在竖直平面内做圆周运动,水的质量m=0.5kg ,绳长为L=60cm, 求:(1)最高点水不流出的最小速率;(2)水在最高点速率v=3m/s 时,水对桶底的压力。

模型2:有支撑模型如图,球过最高点时,轻质杆(管)对球产生的弹力情况: 注意:杆与绳不同,杆对球既能产生拉力,也能对球产生支持力.0 R(1)当v =0时,N =mg (N 为支持力)(2)当 0<v <Rg 时, N 随v 增大而减小,且mg >N >0,N 为支持力.(3)当v=Rg 时,N =0(4)当v >Rg 时,N 为拉力,N 随v 的增大而增大(此时N 为拉力,方向指向圆心) 例2:长度为L=0.50m 的轻质细杆OA ,A 端有一质量为m=3.0kg 的小球,小球以O 点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是 2.0m/s ,(g=10m/s 2)则此时细杆OA 受的( )A. 6.0N 的拉力B. 6.0N 的压力C.24N 的压力D. 24N 的拉力【针对训练】1、如图所示,细杆的一端与小球相连,可绕过O 点的水平轴自由转动,先给小球一初速度,使它做圆周运动。

竖直平面内的圆周运动

竖直平面内的圆周运动专题一、竖直平面内的圆周运动的特点竖直平面内的圆周运动一般是变速圆周运动,其合外力一般不指向圆心, 它产生两个方向的效果:因此变速圆周运动的合外力不等于向心力,只是在半径方向的分力F 1提供向心力.但在最高点和最低点时合外力沿半径指向圆心,全部提供向力,这类问题经常出现临界状态. 二、圆周运动的临界问题竖直平面内的圆周运动一般是变速圆周动物,其合外力一般不指向圆心,但在最高点和最低点时合外力沿半径指向圆心,全部提供向力,这类问题经常出现临界状态,下面对临界状态进行分析:1. 没有物体支撑的小球(绳类约束)讨论在竖直平面内做圆周运动过最高点的情况,如图所示:①临界速度0v :小球运动在最高点时,受的重力和弹力方向都向下,当弹力等于零时,向心力最小,仅由重力提供.由牛顿运动定律知mg=m Rv 2,得小球过圆周轨道最高点的临界速度为0v =gR ,它是小球能过圆周最高点的最小速度.②当mg<m Rv 2,即v>gR ,小球能过圆周的最高点,此时绳和轨道分别对小球产生拉力和压力.③当mg>m Rv 2,即v<gR ,小球不能过圆周的最高点,小球在达到最高点之前就已经脱离了圆轨道.小球脱离圆周的临界条件是弹力为零.【例题1】如图所示,一质量为0.5kg 的小球,用0.4m 长的细线拴住在竖直面内作圆周运动,求:(1)当小球在圆上最高点速度为4m/s 时,细线的拉力是多少?(2)当小球在圆上最低点的速度为6m/s ,细线的拉力是多少?(g=10m/s 2)练1.用长为l 的细线拴一个小球使其绕细线的加一端在竖直平面内做圆周运动,当球通过圆周的最高点时,细线受到的拉力等于球重的2倍,已知重力加速度为g ,则球此时的速度大小为___ ,角速度大小为_ _,加速度大小为_ __。

2. 有物体支撑的小球(杆类约束)讨论在竖直平面内做圆周运动的情况,如图所示.①临界速度0v :由于轻杆或管状轨道对小球有支撑作用,因此小球在最高点的速度可以为零,不存在“掉下来”的情况.小球恰能达到最高点的临界速度0v =0.②小球过最高点时,所受弹力情况:A .小球到达最高点的速度v=0,此时轻杆或管状轨道对小球的弹力N=mg .B .当小球的实际速度v>gR 时,产生离心趋势,要维持小球的圆周运动,弹力方向应向下指向圆心,即轻杆对小球产生竖直向下的拉力,管状轨道对小球产生竖直向下的压力,因此N F =m Rv 2-mg ,所以弹力的大小随v 的增大而增大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、细线拴着的小球 1、基本模型 2、等效模型

总结: 1、 __________ 2、 __________ 3、 __________

1、用细绳拴着质量为m的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的 是 [AC ]

A.小球过最高点时,绳子中张力可以为零 B.小球过最高点时的最小速度为零 C.小球刚好过最高点时的速度是 D.小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相反 2、质量为m的小球用一条绳子系着在竖直平面内做圆周运动,小球到达最低点和最高点时,

绳子所受拉力之差是: [A ]

A、6mg B、5mg C、2mg D、条件不充分,不能确定 3、小球在竖直放置的光滑圆轨道内做圆周运动,圆环半径为厂,且刚能通过最高点,则球 在最低点时的速度和对圆轨道的压力分别为: [D ]

A、4rg, 16mg B、,5mg C、2gr, 5mg D、 , 6mg

4、图所示,在倾角a=30的光滑斜面上,有一根长L=0.8m的细绳:一端固定在O点,另 一端系一质量为m=0.2kg的小球,沿斜面作圆周运动,试计算: (1)小球通过最高点A的最小速度。 (2)细绳抗拉力不得低于多少?若绳的抗拉力为Fma=10N,小球在最低点B的最大速度是 多少? 5、如图所示,质量为1kg的小球用长0.8 m不可抻长的细线,悬于固定点O。现将小沿圆 周拉至右上方距最低点1.2m高处后松手。试求小球运动到最低点时对细线的拉力。 (g=9.8m/s2)

6、某宇航员到达一星球表面,其体重减为他在地球表面的1/5。他在该星球上用一根长为L 的细绳一端拴住一个小球,另一端固定于空间一点,细绳自由下垂后,他给小球一个水平方 向的初速度v0,使小球向上摆动,要使小球在向上摆动的过程中,细绳会松驰,则宇航员 所给小球初速度v0的范围多大?(设地球表面的重力加速度为g)

7、质量为m的小球,由长为l的细线系住,细线的另一端固定在A点,AB是过A的竖直 线,E为AB上的一点,且AE=l/2,过E作水平线EF,在EF上钉一铁钉D,如图所示。 若线能承受的最大拉力是9mg,现将小球悬线拉至水平,然后由静止释放,若小球能绕钉子 在竖直平面内做圆周运动,求钉子位置在水平线上的取值范围(不计线与钉子碰撞时的能量 损失)。P89

8、如图一摆长为l的摆,摆球质量为m,带电量为-q,如果在悬点A放一正电荷q,要使 摆球在竖直平面内做完整的圆周运动,则摆球在最低点的速度最小值应为多少?

9、(2004上海)在光滑的平面上的O点系一长为l的绝缘细线,线的另一端系一质量为m、 带电量为q的小球。当沿细线方向加上场强为E的匀强电场后,小球处于平衡状态。现给 小球一垂直于细线方向的初速度v0,使小球在水平面上开始运动,若v0很小,则小球第一 次回到平衡位置所需要的时间为多少?

10、一个质量为m、带电量为+q的小球,用长为L的绝缘细线悬挂在水平方向的匀强电场 中。开始时把悬线拉到水平,小球在位置A点,然后小球由静止释放,小球沿弧摆到。=60

的B点,如图所示,此时小球的速度恰好为零。试求:

(1)小球在B点时,悬线受到的拉力是多大? (2)小球运动中的最大速度是多大? 二、轻杆连接的小球 1、如图所示,质量可忽略,长为l的轻棒,末端固定一质量为m的小球,要使小球绕O点 在竖直平面内做圆周运动,那么小球在最低点A时的速度vA必须足什么条件?

2、轻杆一端固定在光滑的水平轴O上,另一端固定一质量为m的小球,如图所示,给小球 一初速度,使其在竖直平面内做圆周运动,且刚好能通过最高点P。下列说法正确的是:

A、小球在最高点时对杆的压力为零 B、小球在最高点时对杆的压作用力的大小为mg C、若增大小球的初速度,则在最高点时球对杆的力一定增大 D、若增大小球的初速度,则在最高点时球对杆的力可能增大

1、基本模型 2、等效模型 最高点 一向外减小?向内增大N

最低点—— 0

总: 1、 2、

完整胆周 3、(99高).如图所示,细杆的一端与一小球相连,可绕过O点的水平轴自由转动,现给小 球一初速度,使它在竖直平面内做圆周运动,图中a、b分别表示小球轨道的最低点和最高 点,则杆对球的作用力可能是 [AB ]

A. a处为拉力,b处为拉力 B. a处为拉力,b处为推力 C. a处为推力,b处为拉力 D. a处为推力,b处为推力

lb 4、一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R (比细管的半径大得多)。 在圆管中有两个直径与细管内径相同的小球(可视为质点)。A球的质量为m1, B球的质 量为m2。它们沿环形圆管顺时针运动,经过最低点时的速度都为v0。设A球运动到最低点 时,B球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m1, m2, R与v

0

应满足的关系式。

5、如图所示,在场强为E的水平匀强电场中,竖直固定着一个半径为R的光滑绝缘圆环。 环上穿着一个质量为m,电量为q的小球,沿顺时针方向绕环作圆周运动,若小球通过环的 水平直径端点a时,对环刚好无压力,且qE=mg,则小球通过环的最高点b时,对环的压 力大小为多少?通过环的能低点C时,对环的压力大小为多少?

6、半径为R的绝缘光滑圆环,固定在竖直平面内,环上套有一质量为m、带正电的珠子, 空间存在水平向右的匀强电场,如图所示,珠子所受静电力是其重力的3/4倍。将珠子从环 上最低点位置A点静止释放,则珠子所能获得的最大动能是多少?

7、如图所示,在光滑水平地面上有一辆质量为M的小车,车上装有一个半径为R的光滑 圆环。一个质量为m的小滑块从跟车等高的平台上以速度v0滑入圆环。试问:小滑块满足 什么条件才能使它运动到环顶时恰好对环顶无压力? 注:此题中在最高点用的是相对速度,因半径是相对半径 8、(97高)在方向水平的匀强电场中,一不可伸长的不导电细线的一端连着一个质量为m 的带电小球,另一端固定于O点。把小球拉起直至细线与场强平行,然后无初速释放。已知 小球摆到最低点的另一侧,线与竖直方向的最大夹角为。(如图)。求小球经过最低点时细 线对小球的拉力。 如图所示,用长l的细绳悬挂着质量为M的小球。今有一质量为m的子弹以水平速度%击 中小球并留在其中,为保证小球能在竖直平面内运动而悬线不会松驰,%必须满足什么条 件?

9、如图所示,M为固定在水平桌面上的有缺口的方形木块,abcd为圆周的光滑轨道,a为 轨道的最高点,de面水平且有一定长度。今将质量为m的小球在d点的正上方高为h处由 静止释放,让其自由下落到d处切入轨道内运动,不计空气阻力,则(CD)

A.在h一定的条件下,释放后小球的运动情况与小球的质量有关 B.只要改变h的大小,就能使小球通过a点后,既可能落回轨道内,又 可能落到de面上 C无论怎样改变h的大小,都不可能使小球通过a点后落回轨道内 D.调节h的大小,使小球飞出de面之外(即e的右面)是可能的

10.如图所示,在场强大小为E的匀强电场中,一根不可伸长的绝缘细线一端拴一个质量为 m电荷量为q的带负电小球,另一端固定在0点。把小球拉到使细线水平的位置A,然后 将小球由静止释放,小球沿弧线运动到细线与水平成仇60°的位置B时速度为零。以下说法 正确的是(BC )

A.小球重力与电场力的关系是mg = Eq B.小球重力与电场力的关系是Eq = mg C.球在B点时,细线拉力为T = mg D.球在B点时,细线拉力为T =2Eq 11、如图所示,一物体以初速度%冲向光滑斜面AB,并能沿斜面升高h,下列说法中正确 的是 (D)

A.若把斜面从。点锯断,由机械能守恒定律可知,物体冲出。点后仍能升高h B.若把斜面变成圆弧形AB,,物体仍能沿AB升高h C.无论是把斜面从。点锯断或把斜面弯成圆弧形,物体都不能升高h,因为机械能不守 恒 D.无论是把斜面从。点锯断或把斜面弯成圆弧形,物体都不能升高h,但机械能守恒

12、如图所示,内径很小的光滑管道固定在水平桌面上,ABC部分为半圆形管道,CD部分 为水平直管道,两部分接触处相切,管道平面在竖直平面内,上进口A处距地面的高度为 H,下出口处与桌子的边缘相对齐,今有两个大小相同、质量均为m的弹性金属小球。和b,

它们的半径略小于管道内径且可视为质点,先将b球静止放于D处,再将。球从A处由静 止释放,让其开始沿管道运动,并与b球发生无能量损失的碰撞,求:

(1)当4球即将与b球碰撞时,4球对管道的压力为多少? (2)当管道半径R取何值时,4球与b球碰撞后,b球离开桌子边缘的水平距离最大?最 大值为多少?

13、如图所示,ABDO是处于竖直平面内的光滑轨道,AB是半径为R=15m的1/4圆周轨道, 半径OA处于水平位置,BDO是直径为15m的半圆形轨道,D为BDO轨道的中央。一个 小球P从A点的正上方距水平半径OA高H处自由下落,沿竖直平面内的轨道通过D

点时 对轨道的压力等于其重力的14/3倍,取g=10m/s2。

(1)求H的大小; (2)试讨论此球能否到达BDO轨道上的O点,并说明理由; (3)小球沿轨道运动后再次落到轨道上的速度大小是多少?

相关文档
最新文档