等差数列练习题(带解析)
(完整版)等差数列的前n项和练习含答案

课时作业8 等差数列的前n 项和时间:45分钟 满分:100分课堂训练1.已知{a n }为等差数列,a 1=35,d =-2,S n =0,则n 等于( ) A .33 B .34 C .35 D .36【答案】 D【解析】 本题考查等差数列的前n 项和公式.由S n =na 1+n (n -1)2d =35n +n (n -1)2×(-2)=0,可以求出n =36.2.等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则数列前13项的和是( )A .13B .26C .52D .156 【答案】 B【解析】 3(a 3+a 5)+2(a 7+a 10+a 13)=24⇒6a 4+6a 10=24⇒a 4+a 10=4⇒S 13=13(a 1+a 13)2=13(a 4+a 10)2=13×42=26. 3.等差数列的前n 项和为S n ,S 10=20,S 20=50.则S 30=________. 【答案】 90【解析】 等差数列的片断数列和依次成等差数列. ∴S 10,S 20-S 10,S 30-S 20也成等差数列. ∴2(S 20-S 10)=(S 30-S 20)+S 10,解得S 30=90.4.等差数列{a n }的前n 项和为S n ,若S 12=84,S 20=460,求S 28. 【分析】 (1)应用基本量法列出关于a 1和d 的方程组,解出a 1和d ,进而求得S 28;(2)因为数列不是常数列,因此S n 是关于n 的一元二次函数且常数项为零.设S n =an 2+bn ,代入条件S 12=84,S 20=460,可得a 、b ,则可求S 28;(3)由S n =d 2n 2+n (a 1-d 2)得S n n =d 2n +(a 1-d2),故⎩⎨⎧⎭⎬⎫S n n 是一个等差数列,又2×20=12+28,∴2×S 2020=S 1212+S 2828,可求得S 28.【解析】 方法一:设{a n }的公差为d , 则S n =na 1+n (n -1)2d .由已知条件得:⎩⎨⎧12a 1+12×112d =84,20a 1+20×192d =460,整理得⎩⎨⎧2a 1+11d =14,2a 1+19d =46,解得⎩⎨⎧a 1=-15,d =4.所以S n =-15n +n (n -1)2×4=2n 2-17n , 所以S 28=2×282-17×28=1 092.方法二:设数列的前n 项和为S n ,则S n =an 2+bn . 因为S 12=84,S 20=460,所以⎩⎨⎧122a +12b =84,202a +20b =460,整理得⎩⎨⎧12a +b =7,20a +b =23.解之得a =2,b =-17, 所以S n =2n 2-17n ,S 28=1 092. 方法三:∵{a n }为等差数列, 所以S n =na 1+n (n -1)2d ,所以S n n =a 1-d 2+d2n ,所以⎩⎨⎧⎭⎬⎫S n n 是等差数列.因为12,20,28成等差数列, 所以S 1212,S 2020,S 2828成等差数列, 所以2×S 2020=S 1212+S 2828,解得S 28=1 092.【规律方法】 基本量法求出a 1和d 是解决此类问题的基本方法,应熟练掌握.根据等差数列的性质探寻其他解法,可以开阔思路,有时可以简化计算.课后作业一、选择题(每小题5分,共40分)1.已知等差数列{a n }中,a 2=7,a 4=15,则前10项的和S 10等于( )A .100B .210C .380D .400【答案】 B【解析】 d =a 4-a 24-2=15-72=4,则a 1=3,所以S 10=210.2.在等差数列{a n }中,a 2+a 5=19,S 5=40,则a 10=( ) A .27 B .24 C .29 D .48【答案】 C 【解析】由已知⎩⎨⎧2a 1+5d =19,5a 1+10d =40.解得⎩⎨⎧a 1=2,d =3.∴a 10=2+9×3=29.3.数列{a n }的前n 项和为S n =n 2+2n -1,则这个数列一定是( ) A .等差数列 B .非等差数列 C .常数列 D .等差数列或常数列 【答案】 B【解析】 当n ≥2时,a n =S n -S n -1=n 2+2n -1-[(n -1)2+2(n -1)-1]=2n +1,当n =1时a 1=S 1=2.∴a n =⎩⎨⎧2,n =1,2n +1,n ≥2,这不是等差数列.4.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )C .8D .9【答案】 A 【解析】⎩⎨⎧a 1=-11,a 4+a 6=-6,∴⎩⎨⎧a 1=-11,d =2,∴S n =na 1+n (n -1)2d =-11n +n 2-n =n 2-12n . =(n -6)2-36. 即n =6时,S n 最小.5.一个只有有限项的等差数列,它的前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .18【答案】 D【解析】 ∵a 1+a 2+a 3+a 4+a 5=34, a n +a n -1+a n -2+a n -3+a n -4=146, ∴5(a 1+a n )=180,a 1+a n =36, S n =n (a 1+a n )2=n ×362=234. ∴n =13,S 13=13a 7=234.∴a 7=18.6.一个有11项的等差数列,奇数项之和为30,则它的中间项为( )A .8B .7【答案】 D【解析】 S 奇=6a 1+6×52×2d =30,a 1+5d =5,S 偶=5a 2+5×42×2d =5(a 1+5d )=25,a 中=S 奇-S 偶=30-25=5.7.若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知S n T n=7n n +3,则a 5b 5等于( ) A .7 B.23 C.278 D.214【答案】 D【解析】 a 5b 5=2a 52b 5=a 1+a 9b 1+b 9=92(a 1+a 9)92(b 1+b 9)=S 9T 9=214.8.已知数列{a n }中,a 1=-60,a n +1=a n +3,则|a 1|+|a 2|+|a 3|+…+|a 30|等于( )A .445B .765C .1 080D .1 305 【答案】 B【解析】 a n +1-a n =3,∴{a n }为等差数列. ∴a n =-60+(n -1)×3,即a n =3n -63.∴a n =0时,n =21,a n >0时,n >21,a n <0时,n <21. S ′30=|a 1|+|a 2|+|a 3|+…+|a 30|=-a 1-a 2-a 3-…-a 21+a 22+a 23+…+a 30 =-2(a 1+a 2+…+a 21)+S 30 =-2S 21+S 30 =765.二、填空题(每小题10分,共20分)9.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则数列的通项公式a n =________.【答案】 2n【解析】 设等差数列{a n }的公差d ,则⎩⎨⎧a 1+5d =12a 1+d =4,∴⎩⎨⎧a 1=2d =2,∴a n =2n .10.等差数列共有2n +1项,所有奇数项之和为132,所有偶数项之和为120,则n 等于________.【答案】 10【解析】 ∵等差数列共有2n +1项,∴S 奇-S 偶=a n +1=S 2n +12n +1.即132-120=132+1202n +1,求得n =10.【规律方法】 利用了等差数列前n 项和的性质,比较简捷. 三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.在等差数列{a n }中,(1)已知a 6=10,S 5=5,求a 8和S 8; (2)若a 1=1,a n =-512,S n =-1 022,求d .【分析】 在等差数列中,五个重要的量,只要已知三个量,就可求出其他两个量,其中a 1和d 是两个最基本量,利用通项公式和前n 项和公式,先求出a 1和d ,然后再求前n 项和或特别的项.【解析】 (1)∵a 6=10,S 5=5,∴⎩⎨⎧a 1+5d =10,5a 1+10d =5.解方程组,得a 1=-5,d =3, ∴a 8=a 6+2d =10+2×3=16, S 8=8(a 1+a 8)2=44. (2)由S n =n (a 1+a n )2=n (-512+1)2=-1 022, 解得n =4.又由a n =a 1+(n -1)d , 即-512=1+(4-1)d , 解得d =-171.【规律方法】 一般地,等差数列的五个基本量a 1,a n ,d ,n ,S n ,知道其中任意三个量可建立方程组,求出另外两个量,即“知三求二”.我们求解这类问题的通性通法,是先列方程组求出基本量a 1和d ,然后再用公式求出其他的量.12.已知等差数列{a n },且满足a n =40-4n ,求前多少项的和最大,最大值为多少?【解析】 方法一:(二次函数法)∵a n =40-4n ,∴a 1=40-4=36, ∴S n =(a 1+a n )n 2=36+40-4n2·n =-2n 2+38n =-2[n 2-19n +(192)2]+1922=-2(n -192)2+1922.令n -192=0,则n =192=9.5,且n ∈N +, ∴当n =9或n =10时,S n 最大,∴S n 的最大值为S 9=S 10=-2(10-192)2+1922=180. 方法二:(图象法)∵a n =40-4n ,∴a 1=40-4=36, a 2=40-4×2=32,∴d =32-36=-4,S n =na 1+n (n -1)2d =36n +n (n -1)2·(-4)=-2n 2+38n , 点(n ,S n )在二次函数y =-2x 2+38x 的图象上,S n 有最大值,其对称轴为x =-382×(-2)=192=9.5,∴当n =10或9时,S n 最大.∴S n 的最大值为S 9=S 10=-2×102+38×10=180. 方法三:(通项法)∵a n =40-4n ,∴a 1=40-4=36,a 2=40-4×2=32,∴d =32-36=-4<0,数列{a n }为递减数列.令⎩⎨⎧a n ≥0,a n +1≤0,有⎩⎨⎧40-4n ≥0,40-4(n +1)≤0,∴⎩⎨⎧n ≤10,n ≥9,即9≤n ≤10.当n =9或n =10时,S n 最大.∴S n 的最大值为S 9=S 10=a 1+a 102×10=36+02×10=180. 【规律方法】 对于方法一,一定要强调n ∈N +,也就是说用函数式求最值,不能忽略定义域,另外,三种方法中都得出n =9或n =10,需注意a m =0时,S m -1=S m 同为S n 的最值.。
三年级数学思维专题训练—等差数列(含答案解析)

三年级数学思维专题训练—等差数列1、一辆公共汽车有78个座位,空车出发,第一站上一位乘客,第二站上两位,第三站上三位,依此下去,站以后,车上坐满乘客。
2、一个剧场设置了30排座位,第一排有28个座位,往后每一排都比前一排多2个座位,这个剧场一共有多少个座位?3、在6和26之间插入三个数,使它们每相邻两个数的差相同,这三个数的和是。
4、九个连续偶数,最大的一个是998,这九个连续偶数的平均数是。
5、下面这列数中,最大的三位数是。
1,8,15,22,29,36…6、计算:2005+2004-2003-2002+2001+2000-1999-1998+1997+1996-…-7-6+5+4-3-2+1= 。
7、思思每年的母亲节都会给妈妈折纸鹤,祝福妈妈健康快乐。
从第二年开始,每年都会比前一年多折七只,八年一共折了212只,那么,思思第一年折了只。
8、王芳大学毕业找工作,她找了两家公司,都要求签工作五年的合同,年薪开始都是一万元,但两个公司加薪的方式不同。
甲公司承诺每年加薪1000元,乙公司答应每半年加薪300元。
以五年计算,王芳应聘公司工作收入更高。
9、小青蛙沿着台阶往上跳,每跳一次都比上一次升高4厘米。
它从离地面10厘米处开始跳,这一处称为小青蛙的第一次的落脚点,那么它的第100个落脚点正好在台阶尽头的亭子内,这亭子高出地面厘米。
10、某校师生共为地震灾区捐款46200元,经统计发现,他们各自所捐的钱数,共有10种不同档次。
最低档次共有10人,而每上升一个档次,捐款人数就减少1人;且从第二档次开始,以后各档次的每人捐款钱数,分别为最低档次的2倍、3倍、4倍……10倍,那么捐款最多的人捐款元。
11、有37个人排成一行依次报数,第一个人报1,以后每人报的数都是把前一人报的数加3。
报数过程中有一个人报错了,把前一个人报的数减3报了出来,最后这37个人报的数加起来恰好等于2011。
那么是第个报数的人报错了。
等差数列求和练习题以及答案解析

等差数列求和练习题以及答案解析练题1已知等差数列的首项为5,公差为3,请求前10项的和。
解析根据等差数列求和公式:其中:a 是首项,d 是公差,n 是项数。
代入已知条件,得到:所以,前10项的和为245。
练题2一等差数列的首项为7,公差为2,已知前6项的和为90,请求这个等差数列的第7项。
解析可利用等差数列求和公式和已知条件来解答该问题。
根据等差数列求和公式:已知前6项的和为90,代入公式得到:90 = (6/2)(2a + (6-1)d)其中,a 是首项,d 是公差。
将已知条件代入方程中,得到:90 = 3(2a + 5d)进一步整理得到:2a + 5d = 30由已知条件可得到方程组:{a = 72a + 5d = 30}解方程组可得到 a = 7,d = 4。
根据等差数列的通项公式:其中,a 是首项,d 是公差,n 是项数。
代入已知条件,得到:an = a + (n-1)da7 = 7 + (7-1)4a7 = 7 + 6*4a7 = 7 + 24a7 = 31所以,该等差数列的第7项为31。
练题3已知等差数列的前15项的和为135,公差为1,请求该等差数列的首项。
解析可利用等差数列求和公式和已知条件来解答该问题。
根据等差数列求和公式:已知前15项的和为135,代入公式得到:135 = (15/2)(2a + (15-1)1)整理得到:270 = 15(2a + 14)进一步整理得到:2a + 14 = 18解方程可得到 a = 2。
所以,该等差数列的首项为2。
练题4一等差数列的首项为3,公差为4,已知该等差数列的前n项和为49n,请问 n 的值是多少?解析可利用等差数列的前n项和公式来解答该问题。
根据等差数列的前n项和公式:已知该等差数列的前n项和为49n,代入公式得到:49n = (n/2)(2a + (n-1)d)其中,a 是首项,d 是公差。
代入已知条件,得到:49n = (n/2)(2*3 + (n-1)*4)整理得到:49n = n(6 + 4n - 4)进一步整理得到:49n = n(4n + 2)解方程可得到 n = 7。
等差数列练习题(含答案)

等差数列练习题(含答案)2019年04⽉12⽇数学试卷姓名:___________班级:___________考号:___________⼀、选择题1.在等差数列{}n a 中,已知4816a a +=,则该数列前11项和11S =( ) A.58 B.88 C.143 D.1762.设n S 是等差数列{}n a 的前n 项和,已知263,11a a ==,则7S 等于( ) A.13 B.35 C.49 D.633在数列中,,则=( )A. B. C. D.4.《九章算术》“⽵九节”问题:现有⼀根9节的⽵⼦,⾃上⽽下各节的容积成等差数列,上⾯4节的容积共3升,下⾯3节的容积共4升,则第5节的容积为( ) A. 1升 B.6766升 C.4744升 D.3733升5.若等差数列{}n a 的前5项和525S =,且23a =,则7a = ( )A.12B.13C.14D.156.已知{}n a 是等差数列, 311 40a a +=,则6?7?8 a a a -+等于( ).A.5B.6C.7D.不存在 7.设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S 等于( ). A.5 B.7 C.9 D.118.已知{}n a 是等差数列, 311 40a a +=,则6?7?8 a a a -+等于( ).A.20B.48C.60D.72⼆、填空题9.《九章算术》“⽵九节”问题:现有⼀根9节的⽵⼦,⾃上⽽下各节的容积成等差数列,上⾯4节的容积共3升,下⾯3节的容积共4升,220x x m x x n -+-+=的四个根组成⼀个⾸项为14的等差数列, 则m n -=__________.11.已知△A B C 的⼀个内⾓为120,并且三边长构成公差为4的等差数列,则△A B C 的⾯积为__________.12.在等差数列{}n a 中,若4681012240a a a a a ++++=,则91113a a -的值为__________.13.在等差数列{}n a 中, 315,a a 是⽅程2610x x --=的两根,则7891011a a a a a ++++=__________.14.已知数列{}n a 是等差数列,若1591317117a a a a a -+-+=,则315a a +=__________. 三、解答题15.已知等差数列{}n a 的前n 项和为n S ,等⽐数列{}n b 的前n 项和为n T ,11a =-,11b =,222a b +=.1).若335a b +=,求{}n b 的通项公式; 2).若321T =,求3S .16.在公差为d 的等差数列{}n a 中,已知110a =,且1a ,222a +,35a 成等⽐数列. 1).求d ,n a ;2).若0d <,求123n a a a a ++++.17.n S 为等差数列{}n a 的前n 项和,且1=1a ,728S =.记[]=lg n n b a ,其中[]x 表⽰不超过x 的最⼤整数,如[]0.9=0,[]lg 99=1.1).求1b ,11b ,101b ;2).求数列{}n b 的前1000项和.18.已知{}n a 为等差数列,且36a =-,60a = 1).求{}n a 的通项公式;2).若等⽐数列{}n b 满⾜18?b =-,2123b a a a =++,求{}n b 的前n 项和公式19.已知数列{}n a 的⾸项为1, n S 为数列{}n a 的前n 项和, 11n n S q S +=+其中0q >,*n N ∈若232,,2a a a +成等差数列,求n a 的通项公式.20.已知b 是,a c 的等差中项, ()lg 5b -是()lg 1a -与()lg 6c -的等差中项,⼜,,a b c 三数之和为33,求这三个数.21.4个数成等差数列,这4个数的平⽅和为94.第1个数与第4个数的积⽐第2个数与第3个数的积少18.求这四个数.22.已知{}n a 是等差数列,且12312a a a ++=,816a = 1).求数列{}n a 的通项公式2).若从列{}n a 中,⼀次取出第2项,第4项,第6项, 第2n 项,按原来顺序组成⼀个新数列{}n b ,试求出{}n b 的通项公式.23.设{}n a 是公差不为零的等差数列, n S 为其前n 项和,满⾜222223457,7a a a a S +=+=. 1).求数列{}n a 的通项公式及前n 项和n S ; 2).试求所有的正整数m ,使得12⼀、选择题1.答案:B解析:由等差数列性质可知, 4811116a a a a +=+=,所以1111111() 882a a S ?+==.2.答案:C解析:根据等差数列性质及求和公式得:故选C答案: A 解析:因为,数列在中,, ,,所以,, 从⽽有,,……,上述n-1个式⼦两边分别相加得,,所以,故选A 。
等差数列通项公式基础训练题(含详解)

学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.等差数列 中,已知 , ,则 ()
A.16B.17C.18D.19
2.设 为等差数列,若 ,则
A.4B.5C.6D.7
3.设数列 是公差为 的等差数列,若 ,则 ()
A.4B.3C.2D.1
4.已知数列 满足 ,且 ,那么 ()
A.8B.9C.10D.11
5.在数列{an}中,若 ,a1=8,则数列{an}的通项公式为()
A.an=2(n+1)2B.an=4(n+1)C.an=8n2D.an=4n(n+1)
6.在数列 中, =1, ,则 的值为()
A.99B.49C.101D.102
7.在数列 中, , , ,则 ()
A.6B.7C.8D.9
8.等差数列 中, ,则 ( ).
A.110B.120C.130D.140
9.已知数列 是等差数列, ,则 ( )
A.36B.30C.24 D.1
10.在等差数列 中,若 ,则 ()
A.10B.5C. D.
11.等差数列 满足 ,则其前10项之和为( )
【详解】
根据题意,设 ,数列 是等差数列,
则 , ,
则 ,
即 ;
解可得 ;
故答案为:
【点睛】
本题考查等差数列的性质,关键是求出数列 的通项公式.
19.
【解析】
【分析】
本次考察的是等差数列通项公式的求法。
【详解】
,
【点睛】
等差数列通项公式除了掌握 ,考生还应掌握
等差数列测试题含答案

等差数列测试题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.等差数列1+x ,2x +2,5x +1,…的第四项等于( ) A .10B .6C .8D .122.在等差数列{}n a 中,若2810a a +=.,则()24652a a a +-=( ) A .100B .90C .95D .203.已知数列{}n a 是等差数列,数列{}n b 分别满足下列各式,其中数列{}n b 必为等差数列的是( ) A .||n n b a =B .2n n b a =C .1n nb a =D .2nn a b =-4.在等差数列{}n a 中,11a =,513a =,则数列{}n a 的前5项和为( ) A .13B .16C .32D .355.在等差数列{}n a 中,若39717,9a a a +==,则5a =( ) A .6B .7C .8D .96.在等差数列{}n a 中,124a a +=,7828a a +=,则数列的通项公式n a 为( ) A .2nB .21nC .21n -D .22n +7.已知数列{}n a 是等差数列,71320a a +=,则91011a a a ++= ( ) A .36B .30C .24D .18.已知数列{}n a 是首项为2,公差为4的等差数列,若2022n a =,则n = ( ) A .504B .505C .506D .5079.已知数列{}n a 满足13n n a a +=-,127a =,*n ∈N ,则5a 的值为( ) A .12B .15C .39D .4210.已知等差数列{}n a 满足3456790a a a a a ++++=,则28a a +等于( ) A .18B .30C .36D .4511.在等差数列{}n a 中,143,24a a ==,则7a = A .32B .45C .64D .9612.设数列{}n a 是公差为d 的等差数列,若244,6a a ==,则d = ( )A .4B .3C .2D .113.在等差数列{}n a 中,若3712a a +=,则5a =( ) A .4B .6C .8D .1014.在等差数列{}n a 中,若3691215120a a a a a ++++=,则12183a a -的值为( ) A .24B .36C .48D .6015.在等差数列{}n a 中,51340a a +=,则8910a a a ++=( ) A .72B .60C .48D .3616.已知数列{}n a 是等差数列,且66a =,108a =,则公差d =( ) A .12B .23C .1D .2二、填空题17.在数列{}n a 中,12a =,13n n a a +-=则数列{}n a 的通项公式为________________. 18.已知数列{}n a 中,12a =,25a =,212n n n a a a +++=,则100a =________ 19.在等差数列{}n a 中,47a =,2818a a +=,则公差d =__________.20.己知等差数列{}n a 满足:10a =,54a =,则公差d =______;24a a +=_______. 21.已知数列{}n a 对任意的,m n N +∈有mn m n a a a ++=,若12a =,则2019a =_______.参考答案1.C 【解析】 【分析】根据等差中项的性质求出x ,进而求出公差,得出答案. 【详解】解:由题意可得,(1+x )+(5x +1)=2(2x +2) 解得x =1∴这个数列为2,4,6,8,… 故选C. 【点睛】本题考查了等差数列及等差中项的性质. 2.B 【解析】 【分析】利用等差数列的性质,即下标和相等对应项的和相等,得到28465210a a a a a +=+==. 【详解】数列{}n a 为等差数列,28465210a a a a a +=+==,∴()24652a a a +-=2101090-=.【点睛】考查等差数列的性质、等差中项,考查基本量法求数列问题. 3.D 【解析】 【分析】对每一个选项逐一分析判断得解. 【详解】设数列{}n a 的公差为d ,选项A,B,C,都不满足1n n b b --=同一常数,所以三个选项都是错误的;对于选项D ,1112222n n n n n n a a a a d b b -----=-+==-, 所以数列{}n b 必为等差数列. 故选:D 【点睛】本题主要考查等差数列的判定和性质,意在考查学生对这些知识的理解掌握水平,属于基础题. 4.D 【解析】 【分析】直接利用等差数列的前n 项和公式求解. 【详解】数列{}n a 的前5项和为1555)(113)3522a a +=+=(. 故选:D 【点睛】本题主要考查等差数列的前n 项和的计算,意在考查学生对该知识的理解掌握水平,属于基础题. 5.C 【解析】 【分析】通过等差数列的性质可得答案. 【详解】因为3917a a +=,79a =,所以51798a =-=. 【点睛】本题主要考查等差数列的性质,难度不大. 6.C 【解析】 【分析】直接利用等差数列公式解方程组得到答案.【详解】121424a a a d +=⇒+= 7812821328a a a d +=⇒+= 1211,2n n a d a ==⇒-=故答案选C 【点睛】本题考查了等差数列的通项公式,属于基础题型. 7.B 【解析】 【分析】通过等差中项的性质即可得到答案. 【详解】由于71310220a a a +==,故9101110330a a a a ++==,故选B. 【点睛】本题主要考查等差数列的性质,难度较小. 8.C 【解析】 【分析】本题首先可根据首项为2以及公差为4求出数列{}n a 的通项公式,然后根据2022n a =以及数列{}n a 的通项公式即可求出答案。
等差数列的前n项和习题(含答案)
[A 基础达标]1.记等差数列{a n }的前n 项和为S n ,若S 4=20,S 2=4,则公差d 为( )A .2B .3C .6D .7解析:选B.由⎩⎪⎨⎪⎧S 2=4,S 4=20得⎩⎪⎨⎪⎧2a 1+d =4,4a 1+6d =20,解得⎩⎪⎨⎪⎧a 1=12,d =3.2.已知数列{a n }为等差数列,a 10=10,数列前10项和S 10=70,则公差d =( )A .-23B .-13 C.13 D .23解析:选D.由S 10=10(a 1+a 10)2,得70=5(a 1+10),解得a 1=4,所以d =a 10-a 110-1=10-49=23,故选D. 3.在等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和等于( )A .160B .180C .200D .220解析:选B.(a 1+a 2+a 3)+(a 18+a 19+a 20)=(-24)+78=54,又a 1+a 20=a 2+a 19=a 3+a 18,则3(a 1+a 20)=54,所以a 1+a 20=18.则S 20=20(a 1+a 20)2=10×18=180. 4.已知数列{a n }的前n 项和公式是S n =2n 2+3n ,则⎩⎨⎧⎭⎬⎫S n n ( ) A .是公差为2的等差数列B .是公差为3的等差数列C .是公差为4的等差数列D .不是等差数列解析:选A.因为S n =2n 2+3n ,所以S n n=2n +3, 当n ≥2时,S n n -S n -1n -1=2n +3-2(n -1)-3=2, 故⎩⎨⎧⎭⎬⎫S n n 是公差为2的等差数列. 5.等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若a n b n =2n 3n +1,则S 21T 21的值为( ) A.1315B .2335 C.1117 D .49解析:选C.S 21T 21=21(a 1+a 21)221(b 1+b 21)2=a 1+a 21b 1+b 21=a 11b 11=2×113×11+1=1117. 6.若等差数列{a n }的前n 项和为S n =An 2+Bn ,则该数列的公差为________.解析:数列{a n }的前n 项和为S n =An 2+Bn ,所以当n ≥2时,a n =S n -S n -1=An 2+Bn -A (n -1)2-B (n -1)=2An +B -A ,当n =1时满足,所以d =2A .答案:2A7.等差数列{a n }的前n 项和为S n ,且6S 5-5S 3=5,则a 4=________.解析:设等差数列的首项为a 1,公差为d ,则由6S 5-5S 3=5知,6×(5a 1+10d )-5(3a 1+3d )=5,得3(a 1+3d )=1,所以a 4=13. 答案:138.若等差数列{a n }满足3a 8=5a 13,且a 1>0,S n 为其前n 项和,则S n 最大时n =________.解析:因为3a 8=5a 13,所以3(a 1+7d )=5(a 1+12d ),所以d =-2a 139,故a n =a 1+(n -1)d =a 1-2a 139(n -1)=a 139(41-2n ).由a 1>0可得当n ≤20时,a n >0,当n >20时,a n <0,所以S n 最大时n =20.答案:209.已知在等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.解:(1)设等差数列{a n }的公差为d .由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2.所以a n =1+(n -1)×(-2)=3-2n .(2)由a 1=1,d =-2,得S n =2n -n 2.又S k =-35,则2k -k 2=-35,即k 2-2k -35=0,解得k =7或k =-5.又k ∈N +,故k =7.10.某仓库有同一型号的圆钢600根,堆放成如图所示的形状,从第二层开始,每一层比下面一层少放一根,而第一层至少要比第二层少一根,要使堆垛的占地面积最小(即最下面一层根数最少),则最下面一层放几根?共堆了多少层?解:设最下面一层放n 根,则最多可堆n 层,则1+2+3+…+n =n (n +1)2≥600, 所以n 2+n -1 200≥0,记f (n )=n 2+n -1 200,因为当n ∈N +时,f (n )单调递增,而f (35)=60>0,f (34)=-10<0,所以n ≥35,因此最下面一层最少放35根.因为1+2+3+…+35=630,所以最多可堆放630根,必须去掉上面30根,去掉顶上7层,共1+2+3+…+7=28根,再去掉顶上第8层的2根,剩下的600根共堆了28层.[B 能力提升]11.等差数列{a n }的前四项之和为124,后四项之和为156,各项和为210,则此数列的项数为( )A .5B .6C .7D .8解析:选B.由题意知a 1+a 2+a 3+a 4=124,a n +a n -1+a n -2+a n -3=156,所以4(a 1+a n )=280,所以a 1+a n =70.又S n =n (a 1+a n )2=n 2×70=210,所以n =6. 12.若两个等差数列的前n 项和之比是(7n +1)∶(4n +27),则它们的第11项之比为____________.解析:设等差数列{a n }的前n 项和为S n ,等差数列{b n }的前n 项和为T n ,则a 11=a 1+a 212,b 11=b 1+b 212, 所以a 11b 11=12(a 1+a 21)12(b 1+b 21)=12(a 1+a 21)·2112(b 1+b 21)·21=S 21T 21=7×21+14×21+27=43. 答案:4∶313.已知数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)证明:数列⎩⎨⎧⎭⎬⎫1S n 为等差数列,并求S n 的表达式; (2)设b n =S n 2n +1,求{b n }的前n 项和T n . 解:(1)由题意S 2n =a n ⎝⎛⎭⎫S n -12,结合a n =S n -S n -1(n ≥2)得S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12(n ≥2),化简整理得1S n -1S n -1=2(n ≥2),知数列⎩⎨⎧⎭⎬⎫1S n 为公差为2的等差数列,所以1S n =1S 1+(n -1)×2=1+(n -1)×2=2n -1,所以S n =12n -1. (2)b n =S n 2n +1=12×⎝⎛⎭⎫12n -1-12n +1, 所以T n =b 1+b 2+…+b n=12⎝⎛1-13+13-15+…+12n -1- ⎭⎫12n +1=12⎝⎛⎭⎫1-12n +1=n 2n +1.14.(选做题)已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求数列{a n }的通项公式;(2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S n n +c,求非零常数c 的值. 解:(1)因为数列{a n }为等差数列,所以a 3+a 4=a 2+a 5=22.又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根,又公差d >0,所以a 3<a 4,所以a 3=9,a 4=13,从而可得a 1=1,d =4,所以a n =4n -3.(2)由(1)知a 1=1,d =4,所以S n =na 1+n (n -1)2·d =2n 2-n =2⎝⎛⎭⎫n -142-18,所以当n =1时,S n 最小,最小值为S 1=a 1=1.(3)由(2)知S n =2n 2-n ,所以b n =S n n +c =2n 2-n n +c , 所以b 1=11+c ,b 2=62+c ,b 3=153+c .因为数列{b n }是等差数列,所以2b 2=b 1+b 3,即62+c ×2=11+c +153+c ,得2c 2+c =0,所以c =-12或c =0(舍去),所以c =-12.。
等差数列练习题及答案
等差数列练习题及答案等差数列练习题及答案数学中的等差数列是一种非常重要且常见的数列形式。
在我们的日常生活中,很多问题都可以用等差数列来解决。
掌握等差数列的性质和求解方法,对于我们的数学学习和解决实际问题都有很大的帮助。
下面,我将给大家介绍一些常见的等差数列练习题及其答案。
题目一:已知等差数列的首项为2,公差为3,求第10项的值。
解析:根据等差数列的通项公式an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
代入已知条件,可得第10项的值为2 + (10-1)×3 = 2 + 27 = 29。
题目二:已知等差数列的前三项分别为3、7、11,求该数列的公差和第10项的值。
解析:首先,我们可以通过前三项求出公差。
根据等差数列的性质,第二项减去第一项的值等于公差,第三项减去第二项的值也等于公差。
所以,公差d = 7 - 3 = 4。
接下来,我们可以利用公差和首项求出第10项的值。
根据等差数列的通项公式,第10项的值为a1 + (10-1)×d = 3 + 9×4 = 3 + 36 = 39。
题目三:已知等差数列的前五项之和为50,公差为2,求该数列的首项和第10项的值。
解析:首先,我们可以利用前五项之和求出首项。
根据等差数列的性质,前五项之和等于5/2(首项加上末项)乘以项数。
所以,50 = 5/2 × (a1 + a5) = 5/2 × (a1 + (a1 + 4d)) = 5/2 × (2a1 + 4d)。
化简得到2a1 + 4d = 20。
又已知公差d = 2,代入得到2a1 + 8 = 20,解得a1 = 6。
接下来,我们可以利用公差和首项求出第10项的值。
根据等差数列的通项公式,第10项的值为a1 + (10-1)×d = 6 + 9×2 = 6 + 18 = 24。
通过以上的练习题,我们可以看出,掌握等差数列的求解方法和性质是非常重要的。
等差等比数列练习题(含答案)
一、等差等比数列基础知识点。
(一)知识归纳: 1.概念与公式:①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列;2°.通项公式:;)()1(1d k n a d n a a k n -+=-+= 3°.前n 项和公式:公式:.2)1(2)(11d n n na a a n S n n -+=+=②等比数列:1°.定义若数列q a a a nn n =+1}{满足(常数),则}{n a 称等比数列;2°.通项公式:;11kn k n n qa qa a --==3°.前n 项和公式:),1(1)1(111≠--=--=q qq a q q a a S n n n 当q=1时.1na S n = 2.简单性质:①首尾项性质:设数列,,,,,:}{321n n a a a a a1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121 =⋅=⋅=⋅--n n n a a a a a a ②中项及性质:1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2ba A +=2°.设a ,G,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±= ③设p 、q 、r 、s 为正整数,且,s r q p +=+ 1°. 若}{n a 是等差数列,则;s r q p a a a a +=+ 2°. 若}{n a 是等比数列,则;s r q p a a a a ⋅=⋅ ④顺次n 项和性质:1°.若}{n a 是公差为d 的等差数列,∑∑∑=+=+=n k n n k nn k kkkaa a 121312,,则组成公差为n 2d 的等差数列;2°. 若}{n a 是公差为q 的等比数列,∑∑∑=+=+=nk nn k nn k kkkaa a 121312,,则组成公差为q n 的等比数列.(注意:当q =-1,n 为偶数时这个结论不成立)⑤若}{n a 是等比数列,则顺次n 项的乘积:n n n n n n n a a a a a a a a a 3221222121,, ++++组成公比这2n q 的等比数列.⑥若}{n a 是公差为d 的等差数列,1°.若n 为奇数,则,,:(21+==-=n n a a a a S S na S 中中中偶奇中即指中项注且而S 奇、S 偶指所有奇数项、所有偶数项的和);2°.若n 为偶数,则.2ndS S =-奇偶 (二)学习要点:1.学习等差、等比数列,首先要正确理解与运用基本公式,注意①公差d ≠0的等差数列的通项公式是项n 的一次函数a n =an +b ;②公差d ≠0的等差数列的前n 项和公式项数n 的没有常数项的二次函数S n =an 2+bn ;③公比q ≠1的等比数列的前n 项公式可以写成“S n =a (1-q n )的形式;诸如上述这些理解对学习是很有帮助的.2.解决等差、等比数列问题要灵活运用一些简单性质,但所用的性质必须简单、明确,绝对不能用课外的需要证明的性质解题.3.巧设“公差、公比”是解决问题的一种重要方法,例如:①三数成等差数列,可设三数为“a,a+m,a+2m (或a-m,a,a+m )”②三数成等比数列,可设三数为“a,aq,aq 2(或qa,a,aq )”③四数成等差数列,可设四数为“);3,,,3(3,2,,m a m a m a m a m a m a m a a ++--+++或”④四数成等比数列,可设四数为“),,,,(,,,3332aq aq q a qa aq aq aq a ±±或”等等;类似的经验还很多,应在学习中总结经验. [例1]解答下述问题:(Ⅰ)已知cb a 1,1,1成等差数列,求证: (1)c ba b a c a c b +++,,成等差数列; (2)2,2,2bc b b a ---成等比数列.[解析]该问题应该选择“中项”的知识解决,.2,2,2,)2(4)(2)2)(2)(2(;,,.)(2)()(2)()1(),(222112222222成等比数列成等差数列bc b b a bb c a b ac b c b a c b a b a c a c b bc a c a b c a ac c a c a b ac ab a c bc c b a a c b c a b ac bac c a b c a ---∴-=++-=--+++∴+=++=+++=+++=++++=⇒=+⇒=+(Ⅱ)设数列),1(2,1,}{2-==n n n n a n S a S n a 且满足项和为的前 (1)求证:}{n a 是等差数列;(2)若数列:}{满足n b62)12(531321+=-+++++n n n a b n b b b求证:{n b }是等比数列. [解析](1)⎩⎨⎧-+=-=++)1)(1(2)1(211n n n n a n S a n S ②-①得,1)1(1)1(211+=-⇒--+=++n n n n n na a n na a n a:,32,32,1,11321用数学归纳法证明猜想得令得令-===∴=-==n a a n a a n n1)当;,3221,3121,121结论正确时-⨯==-⨯=-==a a n 2),32,)2(-=≥=k a k k n k 即时结论正确假设)1)(12(1321)32(1)1(,121--=+-=+-=+=-+=∴+k k k k k k ka a k k n k k 时当 .,3)1(212,21结论正确-+=-=∴≥+k k a k k由1)、2)知,,32,-=∈*n a N n n 时当.2}{,2,2,,26)1(4),2(2,2)12()52(2)32(2)12(2,6)32(262)2(;2}{,2)32()12(1111111的等比数列是公比为即时当也适合而时当设的等差数列是公差为即n nn n n n n n n n n n n n n n n n n n b b b b N n b n b n n n T T b n n n a T a n n a a =∴=∈∴=+-⨯=≥=∴⨯-=---=-=-≥∴+-=+==---=-∴+*+-+++[评析]判断(或证明)一个数列成等差、等比数列主要方法有:根据“中项”性质、根据“定义”判断,或通过“归纳猜想”并证明.[例2]解答下述问题:(Ⅰ)等差数列的前n 项和为),(,,Q P QPS P Q S S Q P n ≠==若 求).,(表示用Q P S Q P +[解析]选择公式""2bn an S n +=做比较好,但也可以考虑用性质完成.① ②[解法一]设⎪⎪⎩⎪⎪⎨⎧+=+=∴+=bQ aQ QP bP aP P Q bn an S n 222, ①-②得:,],)()[(22Q P b Q P a Q P PQ P Q ≠++-=-.)(])()[(,)(,2PQQ P b Q P a Q P S PQQP b Q P a Q P Q P +-=+++=∴+-=++∴≠+[解法二]不妨设P Q Q Q P a a a S S QPP Q Q P +++=-=-∴>++ 21, .)(,2))((2))((211PQQ P S S QP QP a a Q P Q P Q P a a Q P Q P Q P Q P P Q +-=∴+-=++⋅+-=+-=++++(Ⅱ)等比数列的项数n 为奇数,且所有奇数项的乘积为1024,所有偶数项的乘积为2128,求项数n.[解析]设公比为2421281024,142531==-n n a a a a a a a q)1(24211=⋅⇒-n qa.7,23525,2)2()1(,2)(2)1(221281024235252352112353211235321==∴==⋅⇒=-+⋅⇒=⨯=-++n n q a n qa a a a a nn n n 得代入得将而(Ⅲ)等差数列{a n }中,公差d ≠0,在此数列中依次取出部分项组成的数列:,17,5,1,,,,32121===k k k a a a n k k k 其中恰为等比数列求数列.}{项和的前n k n[解析],,,,171251751a a a a a a ⋅=∴成等比数列①②.1313132}{,132)1(2)1(323,34}{,2,00)2()16()4(111111115111121--=---⨯=-⋅=-+=-+=⋅=⋅=∴=+==∴=∴≠=-⇒+⋅=+⇒---n n S n k k d k d d k a a d a a a d a a a q a d a d d a d d a a d a n n n n n n n n k n n k k n n n 项和的前得由而的公比数列[评析]例2是一组等差、等比数列的基本问题,熟练运用概念、公式及性质是解决问题的基本功. [例3]解答下述问题:(Ⅰ)三数成等比数列,若将第三项减去32,则成等差数列;再将此等差数列的第二项减去4,又成等比数列,求原来的三数.[解析]设等差数列的三项,要比设等比数列的三项更简单, 设等差数列的三项分别为a -d , a , a +d ,则有.9338,926,9250,10,2,92610,388,06432316803232))(()4()32)((22222或原三数为或得或∴===∴=+-⇒⎪⎩⎪⎨⎧+==-+⇒⎪⎩⎪⎨⎧+-=-=++-a d d d d da a d d d a d a a a d a d a(Ⅱ)有四个正整数成等差数列,公差为10,这四个数的平方和等于一个偶数的平方,求此四数. [解析]设此四数为)15(15,5,5,15>++--a a a a a ,⎩⎨⎧=+=-⇒⎩⎨⎧=+=-∴+<-+-⨯=⨯==+-⇒=+⇒∈=++++-+-∴*2521251,,,2551251125,125))((45004)()2()15()5()5()15(2222222a m a m a m a m a m a m a m a m a m a m m a N m m a a a a 且均为正整数与解得∴==),(1262不合或a a 所求四数为47,57,67,77[评析]巧设公差、公比是解决等差、等比数列问题的重要方法,特别是求若干个数成等差、等比数列的问题中是主要方法.二、等差等比数列复习题一、 选择题1、如果一个数列既是等差数列,又是等比数列,则此数列 ( )(A )为常数数列 (B )为非零的常数数列 (C )存在且唯一 (D )不存在 ①②①,②2.、在等差数列{}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为 ( )(A )13+=n a n(B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则ycx a +的值为 ( ) (A )21 (B )2- (C )2 (D ) 不确定4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项,y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( )(A )成等差数列不成等比数列 (B )成等比数列不成等差数列(C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列5、已知数列{}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为 ( )(A )22-=n a n(B )28-=n a n (C )12-=n n a (D )n n a n -=26、已知))((4)(2z y y x x z --=-,则 ( )(A )z y x ,,成等差数列 (B )z y x ,,成等比数列 (C )z y x 1,1,1成等差数列 (D )zy x 1,1,1成等比数列 7、数列{}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有 ( )①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列(A )4 (B )3 (C )2 (D )18、数列1⋯,1617,815,413,21,前n 项和为 ( ) (A )1212+-n n (B )212112+-+n n (C )1212+--n n n (D )212112+--+n n n9、若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足5524-+=n n B A n n ,则135135b b a a ++的值为 ( )(A )97 (B )78(C )2019 (D )8710、已知数列{}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为 ( )(A )56 (B )58 (C )62 (D )6011、已知数列{}n a 的通项公式5+=n a n 为, 从{}n a 中依次取出第3,9,27,…3n, …项,按原来的顺序排成一个新的数列,则此数列的前n 项和为 ( )(A )2)133(+n n (B )53+n(C )23103-+n n (D )231031-++n n12、下列命题中是真命题的是 ( )A .数列{}n a 是等差数列的充要条件是q pn a n +=(0≠p )B .已知一个数列{}n a 的前n 项和为a bn an S n ++=2,如果此数列是等差数列,那么此数列也是等比数列C .数列{}n a 是等比数列的充要条件1-=n n ab aD .如果一个数列{}n a 的前n 项和c ab S n n +=)1,0,0(≠≠≠b b a ,则此数列是等比数列的充要条件是0=+c a二、填空题13、各项都是正数的等比数列{}n a ,公比1≠q 875,,a a a ,成等差数列,则公比q =14、已知等差数列{}n a ,公差0≠d ,1751,,a a a 成等比数列,则18621751a a a a a a ++++=15、已知数列{}n a 满足n n a S 411+=,则n a =16、在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为 二、 解答题 17、已知数列{}n a 是公差d 不为零的等差数列,数列{}nb a 是公比为q 的等比数列,46,10,1321===b b b ,求公比q 及n b 。
第02讲 等差数列及其前n项和 (练)(含答案解析)
第02讲等差数列及其前n 项和(练)-2023年高考数学一轮复习讲练测(新教材新高考)第02讲等差数列及其前n 项和(精练)A 夯实基础一、单选题(2022·四川省南充市白塔中学高一阶段练习(文))1.在等差数列{}n a 中,已知3412a a +=,则数列{}n a 的前6项之和为()A .12B .32C .36D .37(2022·天津天津·高二期末)2.某中学的“希望工程”募捐小组暑假期间走上街头进行了一次募捐活动,共收到捐款1200元.他们第1天只得到10元,之后采取了积极措施,从第2天起,每一天收到的捐款都比前一天多10元.这次募捐活动一共进行的天数为()A .13B .14C .15D .16(2022·北京市第十二中学高二阶段练习)3.设等差数列{}n a 的公差为d ,若数列{}1n a a 为递减数列,则()A .0d <B .0d >C .10a d >D .10a d <(2022·黑龙江双鸭山·高二期末)4.等差数列{}n a 中,已知70a >,2100a a +<,则{}n a 的前n 项和n S 的最小值为()A .5S B .6S C .7S D .8S (2022·山东师范大学附中模拟预测)5.如图,在杨辉三角形中,斜线l 的上方,从1开始箭头所示的数组成一个锯齿形数列:1,3,3,4,6,5,10,…,记其前n 项和为n S ,则22S =()(2022·湖北·安陆第一高中高二阶段练习)6.已知数列{}n a 的前n 项和225n S n n =-,若1015k a <<,则k =()A .5B .6C .7D .8(2022·全国·模拟预测)7.设等差数列{}n a 与等差数列{}n b 的前n 项和分别为n S ,n T .若对于任意的正整数n 都有2131n n S n T n +=-,则89a b =()A .3552B .3150C .3148D .3546(2022·全国·高二专题练习)8.等差数列{}n a 的首项为正数,其前n 项和为n S .现有下列命题,其中是假命题的有()A .若n S 有最大值,则数列{}n a 的公差小于0B .若6130a a +=,则使0n S >的最大的n 为18C .若90a >,9100a a +<,则{}n S 中9S 最大D .若90a >,9100a a +<,则数列{}n a 中的最小项是第9项二、多选题(2022·黑龙江·鹤岗一中高二期中)9.已知等差数列{an }的公差为d ,前n 项和为Sn ,且91011S S S =<,则()A .d <0B .a 10=0C .S 18<0D .S 8<S 9(2022·浙江温州·高二期末)10.某“最强大脑”大赛吸引了全球10000人参加,赞助商提供了2009枚智慧币作为比赛奖金.比赛结束后根据名次(没有并列名次的选手)进行奖励,要求第k 名比第1k +名多2枚智慧币,每人得到的智慧币必须是正整数,且所有智慧币必须都分给参赛者,按此规则主办方可能给第一名分配()智慧币.A .300B .293C .93D .89三、填空题(2022·全国·高二课时练习)11.已知等差数列{}n a 的前n 项和为n S ,且20202019120202019S S -=,则数列{}n a 的公差为_______.(2022·江苏·高二)12.首项为正数的等差数列,前n 项和为n S ,且38S S =,当n =________时,n S 取到最大值.四、解答题(2022·山东·高二阶段练习)13.在等差数列{}n a 中,2745,6a a a ==+.(1)求{}n a 的通项公式;(2)设n S 为{}n a 的前n 项和,若99m S =,求m 的值.(2022·全国·高三专题练习(文))14.已知数列{}n a 的前n 项和为2230n S n n =-.(1)求出{}n a 的通项公式;(2)求数列n S n ⎧⎫⎨⎩⎭前n 项和最小时n 的取值B 能力提升一、单选题(2022·四川省绵阳南山中学高一期中)15.设等差数列{}n a 的公差为d ,其前n 项和为n S ,且513S S =,6140a a +<,则使得0n S <的正整数n 的最小值为()A .18B .19C .20D .21(2022·全国·高三专题练习)16.已知公差非零的等差数列{}n a 满足38a a =,则下列结论正确的是()A .110S =B .*11()110N n n S S n n -=≤≤∈,C .当110S >时,5n S S ≥D .当110S <时,5n S S ≥(2022·全国·高三专题练习)17.等差数列{}n a 的前n 项和为n S ,已知100S =,1525S =,则n n S +的最小值为______.(2022·辽宁辽阳·二模)18.“物不知数”是中国古代著名算题,原载于《孙子算经》卷下第二十六题:“今有物不知其数,三三数之剩二;五五数之剩三;七七数之剩二.问物几何?”它的系统解法是秦九韶在《数书九章》大衍求一术中给出的.大衍求一术(也称作“中国剩余定理”)是中国古算中最有独创性的成就之一,属现代数论中的一次同余式组问题,已知问题中,一个数被3除余2,被5除余3,被7除余2,则在不超过4200的正整数中,所有满足条件的数的和为______.(2022·山西吕梁·二模(理))19.已知n S 是等差数列{}n a 的前n 项和,151416>>S S S ,则满足10n n S S +⋅<的正整数n 是________.(2022·湖南衡阳·三模)20.已知各项均为正数的数列{}n a 的前n 项和为n S ,且满足()*12n n n a a S n N+=∈,则24666a a a a +++⋅⋅⋅+=__________.C 综合素养(2022·山东济南·三模)21.如图1,洛书是一种关于天地空间变化脉络的图案,2014年正式入选国家级非物质文化遗产名录,其数字结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,形成图2中的九宫格,将自然数1,2,3,…,2n 放置在n 行n 列()3n ≥的正方形图表中,使其每行、每列、每条对角线上的数字之和(简称“幻和”)均相等,具有这种性质的图表称为“n 阶幻方”.洛书就是一个3阶幻方,其“幻和”为15.则7阶幻方的“幻和”为()图1图2A .91B .169C .175D .180(2022·新疆克拉玛依·三模(文))22.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般的等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次成等差数列.如数列1,3,6,10,前后两项之差组成新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.现有二阶等差数列,其前7项分别为2,3,5,8,12,17,23,则该数列的第31项为()A .636B .601C .483D .467(2022·陕西·宝鸡中学模拟预测)23.“中国剩余定理”是关于整除的问题.现有这样一个问题“将1~2030这2030个自然数中,能被3整除余1且能被4整除余1的数按从小到大的顺序排成一列,构成数列{}n a ,则该数列共有()A .170项B .171项C .168项D .169项(2022·浙江·模拟预测)24.毕达哥拉斯学派是古希腊哲学家毕达哥拉斯及其信徒组成的学派,他们把美学视为自然科学的一个组成部分.美表现在数量比例上的对称与和谐,和谐起于差异的对立,美的本质在于和谐.他们常把数描绘成沙滩上的沙粒或小石子,并由它们排列而成的形状对自然数进行研究.如图所示,图形的点数分别为1,5,12,22, ,总结规律并以此类推下去,第8个图形对应的点数为________,若这些数构成一个数列,记为数列{}n a ,则322112321a a aa ++++= ________.(2022·辽宁·东北育才双语学校模拟预测)25.“物不知数”是中国古代著名算题,原载于《孙子算经》卷下第二十六题:“今有物不知其数,三三数之剩二;五五数之剩三;七七数之剩二.问物几何?”它的系统解法是秦九韶在《数书九章》大衍求一术中给出的.大衍求一术(也称作“中国剩余定理”)是中国古算中最有独创性的成就之一,属现代数论中的一次同余式组问题.已知问题中,一个数被3除余2,被5除余3,被7除余2,则在不超过2022的正整数中,所有满足条件的数的和为___________.参考答案:1.C【分析】直接按照等差数列项数的性质求解即可.【详解】数列{}n a 的前6项之和为()12345634336a a a a a a a a +++++=+=.故选:C.2.C【分析】由题意可得募捐构成了一个以10元为首项,以10元为公差的等差数列,设共募捐了n 天,然后建立关于n 的方程,求出n 即可.【详解】由题意可得,第一天募捐10元,第二天募捐20元,募捐构成了一个以10元为首项,以10元为公差的等差数列,根据题意,设共募捐了n 天,则(1)120010102n n n -=+⨯,解得15n =或16-(舍去),所以15n =,故选:C .3.D【分析】根据数列{}1n a a 为递减数列列不等式,化简后判断出正确选项.【详解】依题意,数列{}n a 是公差为d 的等差数列,数列{}1n a a 为递减数列,所以111n n a a a a +>,()11n n a a a a d >+,1111,0n n a a a a a d a d >+<.故选:D 4.B【分析】由等差数列的性质将2100a a +<转化为60a <,而70a >,可知数列是递增数,从而可求得结果【详解】∵等差数列{}n a 中,2100a a +<,∴210620a a a +=<,即60a <.又70a >,∴{}n a 的前n 项和n S 的最小值为6S .故选:B 5.B【分析】将数列的前22项写出来,再进行求和即可.【详解】根据杨辉三角的特征可以将数列继续写出到第22项:1,3,3,4,6,5,10,6,15,7,21,8,28,9,36,10,45,11,55,12,66,13,所以()()221361015212836455566345678910111213S =+++++++++++++++++++++()313112863742+⨯=+=故选:B 6.A【分析】由n a 与n S 的关系先求出n a ,再结合已知条件可求出答案.【详解】由()()22125215147(1)n n n a S S n n n n n n -⎡⎤=-=-----=->⎣⎦,得47,1n a n n =-=也适合,又由104715k <-<得171142k <<,又k *∈N ,∴5k =,故选:A .7.B【分析】先设()21n S n nt =+,()31n T n nt =-,由887a S S =-,998b T T =-直接计算89a b 即可.【详解】设()21n S n nt =+,()31n T n nt =-,0t ≠.则88713610531a S S t t t =-=-=,99823418450b T T t t t =-=-=,所以893150a b =.故选:B.8.B【分析】由n S 有最大值可判断A ;由6139100a a a a +=+=,可得90a >,100a <,利用91018182+=⨯a a S 可判断BC ;90a >,9100a a +<得90a >,991010a a a a =<-=,可判断D.【详解】对于选项A ,∵n S 有最大值,∴等差数列{}n a 一定有负数项,∴等差数列{}n a 为递减数列,故公差小于0,故选项A 正确;对于选项B ,∵6139100a a a a +=+=,且10a >,∴90a >,100a <,∴179=170S a >,910181802a a S +=⨯=,则使0n S >的最大的n 为17,故选项B 错误;对于选项C ,∵90a >,9100a a +<,∴90a >,100a <,故{}n S 中9S 最大,故选项C 正确;对于选项D ,∵90a >,9100a a +<,∴90a >,991010a a a a =<-=,故数列{}n a 中的最小项是第9项,故选项D 正确.故选:B.9.BC【分析】由91011S S S =<,得100,0d a >=,判断出A,B 选项,再结合90a <,11818118910918()9()9()92a a S a a a a a +==+=+=判断C 选项,再根据等式性质判断D 选项【详解】910S S = ,101090a S S ∴=-=,所以B 正确又1011S S <,111110100a S S a d ∴=-=+>,0d ∴>,所以A 错误1090,0,0a d a =>∴< 11818118910918()9()9()902a a S a a a a a +==+=+=<,故C 正确9989890,,a S S a S S <=+∴> ,故D 错误故选:BC 10.BD【分析】设第一名分配m 个智慧币,且总共有x 名参赛选手获奖,根据等差数列知识可得20091m x x=+-,分类讨论可得结果.【详解】设第一名分配m 个智慧币,且总共有x 名参赛选手获奖,则智慧币分配如下:()()()2122212009m m m m x +-⨯+-⨯++--=⎡⎤⎣⎦ ,即()21212009xm x -+++-=⎡⎤⎣⎦ ,又()()()211112122x x x x x +--⎡⎤-⎣⎦+++-==,∴22009xm x x +-=,即20091m x x=+-,∵x ,m 都为正整数,且20097741=⨯⨯,∴7x =,2009712937m =+-=,41x =,20094118941m =+-=,49x =,20094918949m =+-=,287x =,20092871293287m =+-=,∴第一名分配89或293个智慧币.故选:BD 11.2【分析】由题意列出关于公差d 的方程,解方程即可.【详解】设数列{}n a 的公差为d ,则由20202019120202019S S -=可得:1120202019201920182020201922120202019a d a d ⨯⨯++-=,化简可得()112019100912a d a d +-+=,解得2d =,故答案为:2.12.5或6##6或5【分析】结合已知条件和等差数列的性质,求出数列{}n a 是单调递减数列,进而求解.【详解】由题意,设等差数列为{}n a 且10a >,公差为d ,因为38S S =,所以8345678650S S a a a a a a -=++++==,即60a =,因为10a >,所以61150a a d a -==-<,即0d <,所以{}n a 为单调递减的等差数列,即125670a a a a a >>>>=> 故当5n =或6时,n S 最大.故答案为:5或6.13.(1)21n a n =+(2)9m =【分析】(1)根据题意得到1115636a d a d a d +=⎧⎨+=++⎩,再解方程组即可.(2)根据前n 项和公式求解即可.【详解】(1)设等差数列{}n a 的公差为d ,由题意可得1115636a d a d a d +=⎧⎨+=++⎩,解得132a d =⎧⎨=⎩.故()1121n a a n d n =+-=+.(2)由等差数列的前n 项和公式可得()1222n n a a nS n n +==+.因为99m S =,所以2299m m +=,即()()9110m m -+=,解得9m =(11m =-舍去).14.(1)432n a n =-;(2)当14n =或15n =时,数列n S n ⎧⎫⎨⎩⎭前n 项和取得最小值.【分析】(1)根据2230n S n n =-,分别讨论1n =,2n ≥两种情况,根据n S 与n a 的关系即可求出结果;(2)根据等差数列前n 项和的函数特征,即可得出结果.【详解】(1)因为2230n S n n =-,所以当1n =时,2112130128a S ==⨯-⨯=-;当2n ≥时,221=230)2(1)30(1)432n n n a S S n n n n n -⎡⎤=------=-⎣⎦(;显然1n =是,也满足432n a n =-,所以432n a n =-;(2)因为2230230n S n n n n n-==-,所以数列n S n ⎧⎫⎨⎬⎩⎭为等差数列,其前n 项和()()2228230298412929224n n n T n n n n n -+-⎛⎫==-=-=-- ⎪⎝⎭又*n ∈N ,所以当14n =或15n =时,n T 取得最小值.15.B【分析】由513S S =可得9100a a +=,由6140a a +<可得100a <,结合求和公式可得180S >,190S <,结合选项即可求解.【详解】由513S S =可得6712130a a a a ++++=L ,又613712811910a a a a a a a a +=+=+=+,可得9100a a +=,由6141020a a a +=<,可得100a <,则90,0a d ><,()()()11818118910189902a a S a a a a +==+=+>,()1191910191902a a S a +==<,故使得0n S <的正整数n 的最小值为19.故选:B.16.C【分析】根据给定条件,推理可得380a a +=,再结合等差数列性质逐项分析各个选项,判断作答.【详解】因公差非零的等差数列{an }满足38a a =,则有380a a +=,有35680a a a a +=+=,56,a a 异号且均不为0,对于A ,11111611()1102a a S a +=≠=,A 不正确;对于B ,110561010()5()=02a a a S a +=+=,而110S a =≠,此时,11n n S S -≠,B 不正确;对于C ,由选项A 知,116110S a =>,即60a >,则50a <,于是得10,0a d <>,数列{}n a 是递增数列,即()5min n S S =,5n S S ≥,C 正确;对于D ,由110S <得60a <,则50a >,于是得10,0a d ><,数列{}n a 是递减数列,即()5max n S S =,5n S S ≤,D 不正确.故选:C17.4-【分析】由条件得到1323a d =-⎧⎪⎨=⎪⎩,再由求和公式得()21103n S n n -=,从而得21749324n n S n ⎡⎤⎛⎫+=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦可求解.【详解】由()112n n n d S na -=+,100S =,1525S =得11104501510525a d a d +=⎧⎨+=⎩,解得:1323a d =-⎧⎪⎨=⎪⎩,则()()2121310233n n n S n n n -=-+⋅-=.故()221174973324n n S n n n ⎡⎤⎛⎫+=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.由于N n *∈,故当3n =或4时,()min 4n n S +=-.故答案为:4-18.82820【分析】找出满足条件的最小整数值为23,可知满足条件的数形成以23为首项,以105为公差的等差数列,确定该数列的项数,利用等差数列的求和公式可求得结果.【详解】由题可知满足被3除余2,被5除余3.被7除余2的最小的数为23,满足该条件的数从小到大构成以23为首项,357⨯⨯为公差的等差数列,其通项公式为10582n a n =-,令4200n a ≤,解得8240105n ≤,则所有满足条件的数的和为40392340105828202⨯⨯+⨯=.故答案为:82820.19.29【分析】推导出150a >,160a <,16150+<a a ,利用等差数列的求和公式可得出290S >,300S <,即可得解.【详解】由15140->S S ,得150a >,由16150-<S S ,得160a <,由16140-<S S ,得16150+<a a ,所以()129152929292022+⨯==>a a a S ,()()1301516303030022++==<a a a a S ,所以满足10n n S S +⋅<的正整数n 是29.故答案为:29.20.1122【分析】根据题意可知0n a >,当1n =时,由1122S a a =可求出22a =;当2n ≥时,可证出{}2n a 为一个以2为首项,2为公差的等差数列,最后利用等差数列的前n 项和,即可求出结果.【详解】由于数列{}n a 的各项均为正数,即0n a >,当1n =时,1122S a a =,即1122a a a =,∴22a =,当2n ≥时,由12n n n S a a +=,可得112n n n S a a --=,两式相减得()112n n n n a a a a +-=-,又∵0n a ≠,∴112n n a a +--=,∴{}2n a 为一个以2为首项,2为公差的等差数列,∴()()246212212n n n a a a a n n n -⨯++++=+=+L .故2466633341122a a a a +++⋅⋅⋅+=⨯=故答案为:112221.C【分析】根据“幻和”的定义,将自然数1至2n 累加除以n 即可得结果.【详解】由题意,7阶幻方各行列和,即“幻和”为12 (491757)+++=.故选:C22.D【分析】根据题意,设该数列为{}n a ,分析可得{}n a 满足12a =,11(2)n n a a n n --=- ,利用累加法计算可得.【详解】解:根据题意,设该数列为{}n a ,数列的前7项为2,3,5,8,12,17,23,则{}n a 满足12a =,11(2)n n a a n n --=- ,则3131303029211(301)30()()()30291224672a a a a a a a a +⨯=-+-++-+=++++=+= ,故选:D .23.A 【分析】由题意可得{}n a 为能被12整除余1的数,进而求得数列{}n a 的通项公式再分析1~2030中满足条件的数即可【详解】能被3整除余1且能被4整除余1的数即被12整除余1的数,故121,n n a n N =+∈,由题意,1212030n n a =+≤,故116912n ≤,故当0,1,2...169n =时成立,共170项.故选:A24.92336【分析】记第n 个图形的点数为n a ,由图形,归纳推理可得113(1)n n a a n --=+-,再根据累加得可得(31)2n n a n =-,进而求出8a .由于(31)2n n a n =-可得312n a n n -=,根据等差数列的前n 项和即可求出322112321a a a a ++++ 的结果.【详解】记第n 个图形的点数为n a ,由题意知11a =,214131a a -==+⨯,32132a a -=+⨯,43133a a -=+⨯,…,113(1)n n a a n --=+-,累加得147[13(1)](31)2n n a a n n -=++++-=- ,即(31)2n n a n =-,所以892a =.又312n a n n -=,所以3221111262(25862)213362321222a a a a +++++=++++=⨯⨯= .25.20410【分析】找出满足条件的最小整数值为23,可知满足条件的数形成以23为首项,以105为公差的等差数列,确定该数列的项数,利用等差数列的求和公式可求得结果.【详解】由题意可知,一个数被3除余2,被5除余3,被7除余2,则这个正整数的最小值为23,因为3、5、7的最小公倍数为105,由题意可知,满足条件的数形成以23为首项,以105为公差的等差数列,设该数列为{}n a ,则()23105110582n a n n =+-=-,由105822022n a n =-≤,可得2104105n ≤,所以,n 的最大值为20,所以,满足条件的这些整数之和为20191052023204102⨯⨯⨯+=.故答案为:20410.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列练习题一、单选题(共10题;共0分)1.数列前项和为,,,,若,则=()A. B. C. D.2.在数列中,,则的值为()A.−2B.C.D.3.数列,,,,的第14项是A. B. C. D.4.已知数列的前n项和为,且,则数列的通项公式为A. B. C. D.5.已知数列{a n}满足a1=1,,则254是该数列的()A.第14项B.第12项C.第10项D.第8项6.等比数列{a n}的前n项和为S n,己知S2=3,S4=15,则S3=( )A.7B.-9C.7或-9D.7.等差数列的前项和为,若,则()A. B. C. D.8.《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布585尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺9.将正整数按如图所示的规律排列下去,且用表示位于从上到下第行,从左到右n列的数,比如,若,则有()A. B.C. D.10.世界上最古老的数学著作《莱茵德纸草书》中有一道这样的题目:把磅面包分给个人,使每人所得成等差数列,且使较大的两份之和的是较小的三份之和,则最小的份为()A.磅B.磅C.磅D.磅二、填空题(共10题;共0分)11.观察如图中各多边形图案,每个图案均由若干个全等的正六边形组成,记第个图案中正六边形的个数是.由,,,…,可推出________.12.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作,第2个五角形数记作,第3个五角形数记作,第4个五角形数记作,……,若按此规律继续下去,若,则________.13.某种平面分形图如图所示,一级分形图是由一点出发的三条线段,长度相等,两两夹角为120°;二级分形图是在一级分形图的每条线段末端出发再生成两条长度为原来的线段,且这两条线段与原线段两两夹角为120°,……,依此规律得到n级分形图.则n级分形图中共有________条线段.14.已知圆的有条弦,且任意两条弦都彼此相交,任意三条弦不共点,这条弦将圆分成了个区域,(例如:如图所示,圆的一条弦将圆分成了2(即)个区域,圆的两条弦将圆分成了4(即)个区域,圆的3条弦将圆分成了7(即)个区域),以此类推,那么与之间的递推式关系为:________.15.如图,数表满足:第n行首尾两数均为n;(2)表中递推关系类似杨辉三角,记第n(n>1)行第2个数为a(n).根据表中上下两行数据关系,可以求得当n≥2时,a(n)=________.16.数列由,确定,则________.17.已知数列满足,,,则 ________.18.已知等比数列中,则其前3项的和的取值范围是________.19.(2018•北京)设是等差数列,且a1=3, a2+a5= 36,则的通项公式为________20.数列满足, ,数列的前项和为=________.三、解答题(共4题;共0分)21.已知等差数列的首项,公差,前项和为,.(1)求数列的通项公式;(2)设数列前项和为,求.22.在数列中,,.(1)求证:数列是等差数列;(2)求数列的前n项和.23.在数列中,,,设.(1)证明:数列是等比数列,并求的通项公式;(2)求的前项和.24.设正项数列的前项和为,且满足,,.(1)求数列的通项公式;(2)若正项等比数列满足,,且,数列的前项和为,求证.等差数列练习题答案部分第 1 题:【答案】C【解析】【解答】由题意有:当时,,两式作差可得:,由于,故,即数列的奇数项、偶数项分别构成一个公差为3的等差数列,,据此可得,则数列的通项公式为:,,,加2后能被3整除,则.故答案为:C.【分析】本题利用对n进行分类讨论,再利用S求a的方法求出第k项,从而求出k的值。
第 2 题:【答案】 D【解析】【解答】由题意得,∴,∴数列的周期为3,∴.故答案为:D.【分析】写出数列的前几项,求出数列的周期,即可求出相应的项.第 3 题:【答案】 D【解析】【解答】数列,,,,的通项公式为,,故答案为:D.【分析】首先根据已知的几位数得出通项公式,由此得出第14项。
第 4 题:【答案】A【解析】【解答】,时,,化为:.时,,解得.数列为等比数列,公比为2..故答案为:A.【分析】本题主要考查数列的递推式,由可得,n>1,从而可得,进而可求数列通项公式.第 5 题:【答案】A【解析】【解答】解:当n为奇数时,a n=a n﹣1+1=2a n﹣2+1,故a n+1=2(a n﹣2+1),故a n+1=(1+1)•故a n=,故254不是奇数项,故254=2(),故n=13,故254是该数列的第14项,故选:A.【分析】当n为奇数时,可推出a n+1=2(a n﹣2+1),从而可得a n=,从而先解254的前一项,即254=2(),从而解得.第 6 题:【答案】C【解析】【解答】等比数列{a n}的前n项和为S n,己知S2=3,S4=15,代入数值得到q=-2或2,当公比为2时,解得,S3=7;当公比为-2时,解得,S3=-9.故答案为:C.【分析】根据等比数列的前n项和公式,求出q,即可求出S3.第7 题:【答案】A【解析】【解答】根据等差数列的性质,,所以.故答案为:A【分析】根据等差数列的性质有,进而得出结果。
第8 题:【答案】C【解析】【解答】设每天增加的数量为d尺,根据等差数列的前n项和公式得到30×5+ d=585,解得d=1.故答案为:C.【分析】本题主要考查等差数列前n项和公式的运用,属基础题型。
第9 题:【答案】A【解析】【分析】前m-1行共用去1+2+3+……+(m-1)=个数,由有正整数解,得,m=63,第m-1行最后一个数是1953,所以,2013-1953=60,即n=60,故选A。
【点评】中档题,解题的关键是理解的意义及“数阵”的构成规律。
第10 题:【答案】 D【解析】【解答】由于数列为等差数列,设最小一份为,且公差为,依题意可知,即,解得.故答案为:D.【分析】本题将实际问题转化为等差数列的问题,利用等差数列的通项公式和等差数列的前n项和公式求出首项和公差,从而求出首项即为实际问题的最小份,解决出实际问题。
第11 题:【答案】271【解析】【解答】因为,所以【分析】通过观察图案特点得到递推关系式,采用累加法即可得到f(10).第12 题:【答案】10【解析】【解答】由于,类比得所以,由,得或(舍).【分析】由图找到相邻两数的关系,类比得到a n和a n-1的关系,用累加法求和得到a n通项公式,最后求出n值。
第13 题:【答案】3×2n-3(n∈N*)【解析】【解答】解:记第级分形图中线段个数为,则,,,,因此归纳结论为=,故答案为:.【分析】记第n 级分形图中线段个数为a n,则a n+1-a n=3×2n,迭加法可以求得a n。
第14 题:【答案】an+1=an+n+1【解析】【解答】因为圆的第条弦与前条弦都彼此相交且不共点,则它被前条弦分割成段,每一段将它所在原区域一分为二,即在原区域上增加了个,故.【分析】根据题意结合已知条件可得n-1条弦可以将平面分为f(n-1)个区域,n条弦可以将平面分为f(n)个区域,增加的这条弦即第n个圆与每条弦都相交可以多分出n+1个区域即得到结果。
第15 题:【答案】n22−n2+1【解析】【解答】解:依题意a n+1=a n+n(n≥2),a2=2所以a3﹣a2=2a4﹣a3=3,a n﹣a n﹣1=n累加得所以(n>2)当n=2时,也满足上述等式故【分析】依据“中间的数从第三行起,每一个数等于它两肩上的数之和”则第二个数等于上一行第一个数与第二个数的和,即有a n+1=a n+n(n≥2),再由累加法求解.第16 题:【答案】91【解析】【解答】由题得,a n=a n﹣1+2(n﹣1)+(﹣1)n﹣1=a n﹣2+2(n﹣2)+2(n﹣1)+(﹣1)n﹣2+(﹣1)n﹣1=a n﹣3+2(n﹣2)+2(n﹣1)+(﹣1)n﹣3+(﹣1)n﹣2+(﹣1)n﹣1=…=a1+2•1+2•2+…+2(n﹣2)+2(n﹣1)+(﹣1)1+(﹣1)2+…+(﹣1)n﹣1=2+ +(﹣1)1+(﹣1)2+…+(﹣1)n﹣1.所以a10=2+9×10﹣1=91故答案为:91.【分析】由已知递推式,依次递推展开,得到a n和a1的关系式,即可求出a10的值.第17 题:【答案】4【解析】【解答】已知数列满足,则当时,;时,;时,;故.即答案为4.【分析】本题主要考查数列递推公式,按顺序依次计算出前几项,即可得到答案。
第18 题:【答案】【解析】【解答】∵等比数列中∴∴当公比时,;当公比时,∴故答案;【分析】先由等比数列的通项公式求出公比q,再根据等比数列的前n项和公式即可第19 题:【答案】an=6n−3,n∈N+【解析】【解答】解:,,设公差为d,则5d=33-3=30 d=6,即,∴+。
故答案为:【分析】由数列性质,待定系数法得到d,再由数列通项公式求出。
第20 题:【答案】1−(−2)n3【解析】【解答】因为,,所以数列是以为首项,以为公比的等比数列,由等比数列求和公式可得,,故答案为.【分析】利用数列递推公式证出数列为等比数列,从而求出等比数列的公比,再利用数列的首项和公比结合等比数列前n 项和公式求出等比数列前n 项和。
第21 题:【答案】(1)解:因为等差数列{a n}中a1=1,公差d=1.所以S n=na1+d=. 所以b n=(2)解:b n==2 ,所以T n=b1+b2+b3+…+b n=2 ,=2【解析】【分析】(1)利用等差数列前n项和,代入数据便可以求出答案。
(2)在第一问的基础上对进行裂项得到,求前n项和的时候可以采取裂项相消法,最后可以计算出答案。
第22 题:【答案】(1)解:na n+1−( n+1 )a =2n2+2 n 的两边同时除以n ( n + 1 ) ,得,所以数列是首项为4,公差为2的等差数列(2)解:由Ⅰ,得,所以,故,所以【解析】【分析】(1)由题意,两边同除n(n+1),得到,利用等差数列的定义,即可证得数列表示首项为4,公差为2的等差数列;(2)由(1),求得a n = 2n2 +2n ,进而得到,利用裂项法,即可求解数列的和。