(完整版)接触网的供电方式及其供电示意图

(完整版)接触网的供电方式及其供电示意图
(完整版)接触网的供电方式及其供电示意图

接触网的供电及其供电示意图

一、接触网的供电方式

接触网是架设在铁路线上空向电力机车提供电能的特殊形式的输电线路。电能由地方电力网输送到铁路牵引变电所后,经主变压器降压达到电力机车正常使用所需电压等级,再由馈电线将电能送至接触网。电力机车靠从接触网上获取电能以提供牵引动力,保证列车运行。

目前,我国电气化铁道干线上牵引变电所牵引侧母线上的额定电压为27.5kV(自耦变压器供电方式为2×27.5kV),接触网的额定电压为25kV,最高电压为29kV。在供电距离较长时,电能在输电线路和接触网中产生电能损耗,使接触网末端电压降低。但接触网末端电压不应低于电力机车的最低工作电压20kV,系统在非正常运行情况(检修或事故)下,机车受电弓上的电压不得低于19kV,所以两牵引变电所之间的距离一般为40~60km,具体间距需经供电计算确定。

电压从牵引变电所经馈电线送至接触网,流过电力机车,再经轨道回路和回流线,流回牵引变电所。应该指出:由于轨道和大地间是不绝缘的,在电力机车的电流流到轨道以后,并非全部电流都沿着轨道流回牵引变电所。实际上有部分电流进入大地,并在地中流回牵引变电所。这种由大地中流经的电流称地中电流(又称泄漏电流或杂散电流)。牵引变电所向接触网正常供电的方式有两种:单边供电和双边供电。如图1—3—1所示。

图1-3-1 电气化铁道供电系统

1—发电厂;2—区域变电所;3—输电线;4—分区亭;5—牵引变电所

6—接触线;7—轨道回路;8—回流线;9—电力机车;10供电线

1.单边供电

两个牵引变电所之间将接触网分成两个供电分区(又称供电臂),正常情况两

相邻供电臂之间的接触网在电气上是绝缘的,每个供电分区只从一端牵引变电所获得电能的供电方式称为单边供电。单边供电时,相邻供电臂电气上独立,运行灵活;接触网发生故障时,只影响到本供电分区,故障范围小;牵引变电所馈线保护装置较简单。这是中国电气化铁道采用的主要形式,乐昌供电车间也在用这种供电方式。

2.双边供电

若两个供电分区通过开关设备,在电路上连通,两个供电分区可同时从两个牵引变电所获得电能,这种供电方式称为双边供电。双边供电可提高接触网电压水平,减少电能损耗。但馈线及分区亭的保护及开关设备都教复杂,因此,目前采用较少。

3.越区供电

单边和双边供电为正常的供电方式,还有一种非正常供电方式(也称事故供电方式)叫越区供电,如图l一3—2所示。

由于越区供电的供电量大大伸长,如果列车运行数量相同的情况下,则延伸供电臂的末端电压就会大大降低,倘若低于电力机车允许最低工作电压时,将造成机车不能运行,这是不允许的。因此,越区供电只能保证客车或重要货车通过,是作为避免中断运输的临时性措施。

在复线区段中,其供电情况与单线区段类同,只是牵引变电所有四回馈出线分别向两侧上、下行接触网供电。在同一侧,上、下行接触网供电相别相同,以便于上、下行实现并联供电,可提高接网末端电压。越区供电时,通过分区所内的开关设备来实现。复线区段供电示意如图1—3—3所示。

图1-3-2 区域供电示意

1—故障牵引变电所;2—越区供电分区

图1-3-3 复线区段供电示意图

二、牵引供电系统的供电方式

我国电气化铁道采用单相工频25 kV交流制,由于单相大电流在线路周围空间产生较强电磁场,使邻近通信、广播设备等产生杂音干扰和感应电压。为减少电气化铁道对沿线通信设备的干扰,保障其设备、人身安全及正常工作,在牵引供电系统中采取了许多防干扰措施,形成了不同的牵引供电方式。目前我国的牵引供电方式主要有下列三种:直供加回流供电方式、BT供电方式和AT供电方式。

1.直供加回流供电方式

在我们去实习乐昌供电车间采用的供电方式是直供加回流供电方式,所以在此重点说说这种直供加回流供电方式。如图1—3—4所示。

在近几年新建的电气化铁道区段,我国普遍采用一种称为直供加回流线的供电方式,它与直供、BT供电方式不同的是在接触网支柱田野侧,架设一条回流线不设吸流变压器。每隔一定距离,通过吸上线将回流线与轨道扼流变压器中性点相连。扼流变压器起到平衡两条钢轨间电压,降低对信号轨道电路的影响。直供加回流线供电方式,其回流线不仅仅提供牵引电流通道,而且也起到了防干扰的作用,即回流线中的电流与接触网中的牵引电流大小相等方向相反,空间电磁场互相抵消。去掉了吸流变压器减小了牵引网阻抗,也减少投资和维修工作量,是目前经济技术指标比较好的一种供电方式。

2、供电示意图

接触网供电示意图是将管辖内的主要设备及其安装位置等信息记录起来。当某个区段发生事故时,维修班组能从中快速找出事故地点及相应的设备,有助于快速事故的基本情况,结合竣工图纸又能快速找出事故所需备料,为抢修增加时间。下图为乐昌站附近的一份局部供电示意图。

电气化铁道主要供电方式

接触网的供电方式 我国电气化铁路均采用单边供电方式,即牵引变电所向接触网供电时,每一个供电臂的接触网只从一端的牵引变电所获得电能(从两边获得电能则为双边供电,可提高接触网末端网压,但由于其故障范围大、继电保护装置复杂等原因尚未有采用)。复线区段可通过分区亭将上下行接触网联接,实现“并联供电”,可适当提高末端网压。当牵引变电所发生故障时,相邻变电所通过分区亭实现“越区供电”,此时供电范围扩大,网压降低,通常应减少列车对数或牵引定数,以维持运行。 1、直接供电方式 如前所述,电气化铁路采用工频单相交流电力牵引制,单相交流负荷在接触网周围空间产生交变电磁场,从而对附近通信设施和无线电装置产生一定的电磁干扰。我国早期电气化铁路(如宝成线、阳安线)建设时,处于山区,地方通信技术不发达,铁路通信采用高屏蔽性能的同轴电缆,接触网产生的电磁干扰影响极小,不用采取特殊防护措施,因此上述单边供电方式亦称为直接供电方式(简称TR供电方式)。随着电气化铁路向平原和大城市发展,电磁干扰矛盾日显突出,于是在接触网供电方式上采取不同的防护措施,便产生不同的供电方式。目前有所谓的BT、AT和DN供电方式。从以下的介绍中可以看出这些供电方式有一个共同特点,即在接触网支柱田野侧,与接触悬挂同等高度处都挂有一条附加导线。电力牵引时,附加导线中通过

的电流与接触网中通过的牵引电流,理论上讲(或理想中)大小相等、方向相反,从而两者产生的电磁干扰相互抵消。但实际上是做不到的,所以不同的供电方式有不同的防护效果。

2、吸流变压器(BT)供电方式 这种供电方式,在接触网上每隔一段距离装一台吸流变压器(变比为1:1),其原边串入接触网,次边串入回流线(简称NF线,架在接触网支柱田野侧,与接触悬挂等高),每两台吸流变压器之间有一根吸上线,将回流线与钢轨连接,其作用是将钢轨中的回流“吸上”去,经回流线返回牵引变电所,起到防干扰效果。 由于大地回流及所谓的“半段效应”,BT供电方式的防护效果并不理想,加之“吸——回”装置造成接触网结构复杂,机车受流条件恶化,近年来已很少采用。 BT供电方式原理结线图 H—回流线;T—接触网;R—钢轨; SS—牵引变电所;BT—吸流 变压器。 牵引网阻抗与机车至牵引变电所的长度不是简单的线性关系。随着机车取流位置的不同,牵引网内的电流分布可有很大不同,例如图中当机车位于供电臂内第一台BT前方时,牵引负荷未通过吸流变压

接触网的供电方式及其供电示意图

接触网的供电及其供电示意图 一、接触网的供电方式 接触网是架设在铁路线上空向电力机车提供电能的特殊形式的输电线路。电能由地方电力网输送到铁路牵引变电所后,经主变压器降压达到电力机车正常使用所需电压等级,再由馈电线将电能送至接触网。电力机车靠从接触网上获取电能以提供牵引动力,保证列车运行。 目前,我国电气化铁道干线上牵引变电所牵引侧母线上的额定电压为27.5kV(自耦变压器供电方式为2×27.5kV),接触网的额定电压为25kV,最高电压为29kV。在供电距离较长时,电能在输电线路和接触网中产生电能损耗,使接触网末端电压降低。但接触网末端电压不应低于电力机车的最低工作电压20kV,系统在非正常运行情况(检修或事故)下,机车受电弓上的电压不得低于19kV,所以两牵引变电所之间的距离一般为40~60km,具体间距需经供电计算确定。 电压从牵引变电所经馈电线送至接触网,流过电力机车,再经轨道回路和回流线,流回牵引变电所。应该指出:由于轨道和大地间是不绝缘的,在电力机车的电流流到轨道以后,并非全部电流都沿着轨道流回牵引变电所。实际上有部分电流进入大地,并在地中流回牵引变电所。这种由大地中流经的电流称地中电流(又称泄漏电流或杂散电流)。牵引变电所向接触网正常供电的方式有两种:单边供电和双边供电。如图1—3—1所示。 图1-3-1 电气化铁道供电系统 1—发电厂;2—区域变电所;3—输电线;4—分区亭;5—牵引变电所 6—接触线;7—轨道回路;8—回流线;9—电力机车;10供电线

1.单边供电 两个牵引变电所之间将接触网分成两个供电分区(又称供电臂),正常情况两相邻供电臂之间的接触网在电气上是绝缘的,每个供电分区只从一端牵引变电所获得电能的供电方式称为单边供电。单边供电时,相邻供电臂电气上独立,运行灵活;接触网发生故障时,只影响到本供电分区,故障范围小;牵引变电所馈线保护装置较简单。这是中国电气化铁道采用的主要形式,乐昌供电车间也在用这种供电方式。 2.双边供电 若两个供电分区通过开关设备,在电路上连通,两个供电分区可同时从两个牵引变电所获得电能,这种供电方式称为双边供电。双边供电可提高接触网电压水平,减少电能损耗。但馈线及分区亭的保护及开关设备都教复杂,因此,目前采用较少。 3.越区供电 单边和双边供电为正常的供电方式,还有一种非正常供电方式(也称事故供电方式)叫越区供电,如图l一3—2所示。 图1-3-2 区域供电示意 1—故障牵引变电所;2—越区供电分区 由于越区供电的供电量大大伸长,如果列车运行数量相同的情况下,则延伸供电臂的末端电压就会大大降低,倘若低于电力机车允许最低工作电压时,将造成机车不能运行,这是不允许的。因此,越区供电只能保证客车或重要货车通过,是作为避免中断运输的临时性措施。

电气化铁路接触网

电气化铁路接触网 电气化铁路接触网是沿铁路线上空架设的向电力机车供电的特殊形式的输电线路。其由接触悬挂、支持装置、定位装置、支柱与基础几部分组成。 接触悬挂包括接触线、吊弦、承力索以及连接零件。接触悬挂通过支持装置架设在支柱上,其功用是将从牵引变电所获得的电能输送给电力机车。 支持装置用以支持接触悬挂,并将其负荷传给支柱或其它建筑物。根据接触网所在区间、站场和大型建筑物而有所不同。支持装置包括腕臂、水平拉杆、悬式绝缘子串,棒式绝缘子及其它建筑物的特殊支持设备。 定位装置包括定位管和定位器,其功用是固定接触线的位置,使接触线在受电弓滑板运行轨迹范围内,保证接触线与受电弓不脱离,并将接触线的水平负荷传给支柱。 支柱与基础用以承受接触悬挂、支持和定位装置的全部负荷,并将接触悬挂固定在规定的位置和高度上。我国接触网中采用预应力钢筋混凝土支柱和钢柱,基础是对钢支柱而言的,即钢支柱固定在下面的钢筋混凝土制成的基础上,由基础承受支柱传给的全部负荷,并保证支柱的稳定性。预应力钢筋混凝土支柱与基础制成一个整体,下端直接埋入地下。 接触网的电压等级 接触网的电压等级:工频单相交流制:25KV 接触悬挂的类型 电气化铁路接触网的分类大多以接触悬挂的类型来区分。我们所讲的接触悬挂的分类是对接触网的每个锚段而言的。接触悬挂的种类较多,一般根据其结构的不同分成简单接触悬挂和链形接触悬挂两大类。 简单接触悬挂(以下简称简单悬挂)系由一根接触线直接固定在支柱支持装置上的悬挂形式。国内外对简单悬挂做了不少研究和改进。我国现采用的带补偿装置的弹性简单悬挂系在接触线下锚处装设了张力补偿装置,以调节张力和弛度的变化。在悬挂点上加装8~16m 长的弹性吊索,通过弹性吊索悬挂接触线,这就减少了悬挂点处产生的硬点,改善了取流条件。另外跨距适当缩小,增大接触线的张力去改善弛度对取流的影响。 链形悬挂的接触线是通过吊弦悬挂在承力索上。承力索悬挂于支柱的支持装置上,使接触线在不增加支柱的情况下增加了悬挂点,利用调整吊弦长度,使接触线在整个跨距内对轨面的距离保持一致。链形悬挂减小了接触线在跨距中间的弛度,改善了弹性,增加了悬挂重量,提高了稳定性,可以满足电力机车高速运行取流的要求。

高铁接触网零件名称及用途

高速铁路接触网零件讲义 一、培训方式 采用现场讲解,讲义课件和学员现场实际操作的方法 二、培训对象 所有电力和接触网专业的学员 三、培训要求 参加培训的人员能正确说出材料的名称和用途 四、培训讲义 (一)腕臂系统 1、单槽承力索座 用途:安装在平腕臂上悬挂承力索。 1、双槽承力索座 用途:安装在中心锚结支柱的平腕臂上悬挂承力索和固定中锚辅助绳。 2、腕臂(定位管)支撑 用途:本零件适用于在平、斜腕臂(斜腕臂、定位管)之间的加强连接。 3、定位环 ?用途:安装在斜腕臂及定位管中连接定位器或连接其它带钩头零件。4、锚支定位卡子 用途:安装在转换柱非工作支定位管上固定非工作支接触线。 5、套管双耳 用途:安装在平腕臂上连接斜腕臂。 6、支撑管卡子

?用途:安装在腕臂和定位管上固定耳环类零件(支撑管)。 (二)定位装置 1、矩形定位器 用途:安装在直线区段或R>800m曲线段腕臂柱上通过定位线夹固定接触线。 2、定位支座 用途:安装在定位管上钩挂定位器。 3、定位线夹 用途:安装在定位器上固定接触线。 (三)下锚补偿装置 1、接触线棘轮补偿装置 ?用途:本装置用于接触网下锚处调整导线张力。 2、承力索棘轮补偿装置 用途:本装置用于接触网下锚处调整导线张力。 3、接触线终端锚固线夹 ?用途:安装于铜合金或铜接触线终端锚固处。 4、承力索终端锚固线夹 用途:安装于线型为(TJ95-127)承力索终端锚固使用。 5、接触线终端锚固线夹 6、倒装耐张线夹:NLD-4 用途:用于185mm2或240mm2铝绞线或钢芯铝绞线下锚。安装时铝绞线上应缠铝包带。 (四)悬吊零件

1、整体吊弦 用途:安装在承力索上悬吊接触线。 2、接触线吊弦线夹 用途:安装在接触线上连接吊弦悬挂接触线 3、承力索吊弦线夹 用途:安装在承力索上连接吊弦悬挂接触线。 4、杵座鞍子 用途:与杵头形零件连接悬挂金属绞线。 5、钩头鞍子 用途:与带口单耳零件连接悬挂金属绞线。 6、双耳鞍子 用途:与单耳零件连接悬挂金属绞线。 7、悬垂线夹 用途:用于与单耳环件连接悬挂金属绞线。 (五)中心锚结装置 1、接触线中心锚结线夹 用途:安装在接触线上与中锚绳连接,防止整个锚段向一侧窜动或接触悬挂断线时缩小事故范围。 2、承力索中心锚结线夹 用途:安装在承力索上固定中锚绳或中锚辅助绳,防止整个锚段向一侧窜动或接触悬挂断线时缩小事故范围。 (六)电连接装置

铁路牵引网的供电方式与接触网结构

铁路牵引网的供电方式与接触网结构 1 牵引网的供电方式 铁路牵引供电系统的主要功能是将地方电力系统的电能引入牵引变电所,通过牵引变电所和接触网等,向电力机车提供持续电能。牵引网主要由馈电线、接触网、钢轨、回流线组成。馈电线(Feeder)是指从牵引变电所母线连接出来连接到接触网之间的传输导线。接触网(Catenary)悬挂在铁道钢轨线正上方,对地标称电压27.5kV,是沿电气化铁路架空敷设的供电网,通过受电弓向电力机车或动车组提供电能。接触网主要由承力索、吊弦、接触线组成,接触线与路轨轨面的高度通常为 6.5m。牵引网供电方式主要有:直接供电方式、BT供电方式、AT供电方式、CC供电方式。目前我国高速铁路和客运专线普遍采用带回流线的AT 供电方式。 1.1 AT供电方式 AT(Auto-Transformer)供电方式的即自耦变压器供电方式,AT 供电方式具有更好的防干扰效果和更大的牵引能力,目前我国高速铁路和载重铁路基本使用AT 供电模式,牵引变电所的进线电源为交流110kv或220 kV,出线电压为交流2×27.5 kV。牵引变电所主变压器输出二次侧分别接于牵引馈线(T)相和(F)相,每隔10~15km 设立一个自耦变压器所,并联接入牵引网中,变压器的首端和尾端与接触网的(T)相和(F)相相连,绕组的中点与钢轨相连接。接触网和正馈线中的电流大小相等,方向相反,且电流大小仅为电力机车电力的一半,减少了电弧对接触网烧伤和受电弓滑板等问题,对邻近通信线路的干扰大大降低。与其它供电方式相比,线路上的电压降可以减少一半,因此供电臂可延长一倍,达到50km—60km。采用AT 供电方式无需加强绝缘就能使供电回路的电压提高一倍,在AT 区段电力机车是由前后两个AT 所同时并联供电,因此适宜与高速铁路和重载铁路等大负载电流运行。 图1 A T供电方式 2 接触网结构 高速铁路接触网功能是从牵引变电所引入电能,并将电能输送到沿铁路钢轨运行的电力机车的受电弓上。接触网主要包括支柱和导线,导线包括传输线(T 线)、承力索、正馈线(F

铁路接触网组成与分类

接触网的组成 接触网是沿铁路上空架设的一条特殊形式的输电线路,它由接触悬挂、支持装置、定位装置、支柱与基础等几部分组成,如图1-1-1所示。 1.支持装置 支持装置是接触网中支持接触悬挂,并将其机械负荷传给支柱固定的部分。支持装置包括腕臂、平腕臂(或水平拉杆、悬式绝缘子串)、棒式绝缘子及接触悬挂的悬吊零件。根据接触网所在区间、站场和大型建筑物需要的不同,支持装置表现为不同的形式,如:腕臂结构(图1—1—1所示为区间腕臂装配形式)、软横跨、硬横跨(多

股道站场使用)及隧道、桥梁和其它大型建筑物上的特殊支持结构。 2.定位装置 定位装置包括定位管、定位器、定位线夹及其连接零件。其作用是固定接触线的横向位置,使接触线水平定位在受电弓滑板运行轨迹围,保证接触线与受电弓不脱离,使受电弓磨耗均匀,同时将接触线的水平负荷传给支柱。 3.支柱与基础 支柱与基础用以承受接触悬挂、支持和定位装置的全部负荷,并将接触悬挂固定在规定的位置和高度上。我国接触网中主要采用预应力钢筋混凝土支柱和钢柱。基础用来承载支柱负荷,即将支柱固定在地下用钢筋混凝土制成的基础上,由基础承受支柱传给的全部负荷,并保证支柱的稳定性。预应力钢筋混凝土支柱可不设单独的基础,支柱直接埋入地下,起到基础的作用。

接触悬挂的类型 接触网的分类大多以接触悬挂的类型来区分。在一条接触网线路上,接触线和承力索在延伸一定长度后,为了满足供电和机械方面的要求,总是将接触网分成若干一定长度且相互独立的分段,这就是接触网的锚段。我们所讲的接触悬挂分类是针对架空式接触网中的每个锚段而言。根据其结构的不同分成简单接触悬挂和链形接触悬挂两大类。 1.简单接触悬挂 简单接触悬挂(以下简称简单悬挂)系由一根接触线直接固定在支柱支持装置上的悬挂形式。它在发展中经历了未补偿简单悬挂、季节调整式简单悬挂和目前采用的带补偿装置及弹性吊索式简单悬挂。其结构分别如图1—2—1和图1—2—2所示。 接触线(或承力索)端头同支柱的连接称为线索的下锚。下锚分两种方法,一是将线索端头同支柱直接固定连接,称为硬锚或者未补偿下锚。另一种是加装补偿装置,以调整线索的弛度和力称为补偿下锚。 未补偿的简单悬挂结构简单,要求支柱高度较低,因此建设投资低,施工和检修方便。其缺点是导线的力和弛度随气温的变化较大,接触线在悬挂点受力集中,形成硬点,弹性不均匀,不利于电力机车高速运行时取流。

供配电环网柜基本知识

供配电环网柜基本知识 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

什么是环网柜 为提高供电可靠性,使用户可以从两个方向获得电源,通常将供电网连接成环形。这种供电方式简称为环网供电。在工矿企业、住宅小区、港口和高层建筑等交流10KV配电系统中,因负载容不大,其高压回路通常采用负荷开关或真空接触器控制,并配有高压熔断器保护。该系统通常采用环形网供电,所使用高压开关柜一般习惯上称为环网柜。环网柜除了向本配电所供电外,其高压母线还要通过环形供电网的穿越电流(即经本配电所母线向相邻配电所供电的电流),因此环网柜的高压母线截面要根据本配电所的负荷电流于环网穿越电流之和选择,以保证运行中高压母线不过负荷运行。目前环形柜产品种类很多,如HK-10、MKH-10、8DH-10、XGN-15和SM6系列。 环网柜是一组高压开关设备装在钢板金属柜体内或做成拼装间隔式环网供电单元的电气设备,其核心部分采用负荷开关和熔断器,具有结构简单、体积小、价格低、可提高供电参数和性能以及供电安全等优点。它被广泛使用于城市住宅小区、高层建筑、大型公共建筑、工厂企业等负荷中心的配电站以及箱式变电站中。 环网柜一般分为空气绝缘和SF6绝缘两种,用于分合负荷电流,开断短路电流及变压器空载电流,一定距离架空线路、电缆线路的充电电流,起控制和保护作用,是环网供电和终端供电的重要开关设备。柜体中,配空气绝缘的负荷开关主要有产气式、压气式、真空式,配SF6绝缘的负荷开关为SF6式,由于SF6气体封闭在壳体内,它形成的隔断断口不可见。环网柜中的负荷开关,一般要求三工位,即切断负荷,隔离电路、可行靠接地。产气式、压气式和SF6式负荷开关易实现三工位,而真空灭弧室只能开断,不能隔离,所以一般真空负荷环网开关柜在负荷开关前再加上一个隔离开关,以形成隔离断口。 环网与环网柜 环网是指环形配电网,即供电干线形成一个闭合的环形,供电电源向这个环形干线供电,从干线上再一路一路地通过高压开关向外配电。这样的好处是,每一个配电支路既可以同它的左侧干线取电源,又可以由它右侧干线取电源。当左侧干线出了故障,它就从右侧干线继续得到供电,而当右侧干线出了故障,它就从左侧干线继续得到供电,这样以来,尽管总电源是单路供电的,但从每一个配电支路来说却得到类似于双路供电的实惠,从而提高了供电的可靠性。 所谓“环网柜”就是每个配电支路设一台开关柜(出线开关柜),这台开关柜的母线同时就是环形干线的一部分。就是说,环形干线是由每台出线柜的母线连接起来共同组成的。每台出线柜就叫“环网柜”。实际上单独拿出一台环网柜是看不出“环网”的含义的。 这些环网柜的都不大,因而环网柜的高压开关一般不采用结构复杂的断路器而采取结构简单的带高压熔断器的高压负荷开关。也就是说,环网柜中的高压开关一般是负荷开关。环网柜用负荷开关操作正常电流,而用熔断器切除短路电流,这两者结合起来取代了断路器。当然这只能局限在一定容量内。 这样的开关柜也完全可以用到非环网结构的配电系统中,于是随着这种开关柜的广泛应用,“环网柜”就跳出了环网配电的范畴而泛指以负荷开关为主开关的高压开关柜了。

关于环网供电技术在地铁供电中的应用研究 陈伟

关于环网供电技术在地铁供电中的应用研究陈伟 发表时间:2018-06-13T15:11:30.750Z 来源:《建筑学研究前沿》2018年第1期作者:陈伟 [导读] 就目前的情况来看,地铁环网供电的接线方式主要有以下几种。 港铁轨道交通(深圳)有限公司广东深圳 518000 摘要:随着城市发展速度加快、城市人口激增,交通堵塞现象越来越严重,而地铁的出现有效地缓解了这一局面。为保证地铁的正常运行,我们使用环网供电这一先进技术来保障地铁供电系统的安全与稳定。 关键词:环网供电技术;地铁供电;应用研究 1环网供电概述 就目前的情况来看,地铁环网供电的接线方式主要有以下几种,即:“手拉手”环网、“网格式”环网、电缆单环网、电缆双环网等。而目前基本上不会使用“手拉手”环网、“网格式”环网。上海地铁一号线牵引网络供电方式是独立式供电,即是采用了电缆单环网。因为消防系统的电源的特殊需求,因此使用电缆单环网供电是不符合要求的,对此现在的地铁网供电也都不使用这种方法。如今在我国地铁交通中比较多的是电缆双环网,即是电缆单环网的组合。电缆双环网主要是利用了二回电缆线路,由两路完全独立的电源供电。这种接线的方式的优势是供电非常灵活,同时也非常的可靠,能够有效的保障用户的安全用电。对于双环网线路如果其中一个电缆线路出现故障或者需要进行检修的时候,母联开关合上能够确保后续的正常用电。 2环网供电的实施原则 在线路的设计过程中需要确保电压等级,同时也要遵循一定的原则,即:1)充分的满足安全可靠的供电要求。2)变电所会存在2个独立的电源。3)关于设备的容量需要满足相关要求。4)符合在分配的时候需要满足相应的要求。5)在电源的接入过程中需要靠近供电分区。5)确保满足相关的经济指标。6)达到相关继电保护要求。7)接线的过程中要简单。8)确保牵引变电所、降压变电所的主接线处于一致的状态。9)对于管理方必须要严格的按照相关要求进行。10)对于设备的选型需要满足相关要求。 3常见的地铁供电方式 就目前的情况来看,地铁供电方式主要有以下几种:1)集中式的供电方式。地铁线长度太长,电容量受到了一定的限制,因此会选择在地铁的内站监理供电站,其主要的作用是承受中压环形电网的供电。对于这个供电站其具有一定的优势,主要是供电的过程中不会受到外界影响,可靠性非常强。同时其有专门的载调压变压器,能够确保供电的质量。在调度的管理过程中自由度非常高,当能够进行很好的调度管理的时候能够在最大程度发挥其性能。对于供电方式的检修过程也非常简单,能够很好的开展该项工作。会需要很大的资金成本,供电系统统筹要求非常高。深圳地铁四号采用的供电方式就是集中式供电。2)分散式的供电方式。地铁沿线所引入的电源多,对于区域内的变电所在地铁车站中主要使用的方式是直接降压,对于这种方式具有很多优点,主要是:成本少,同时能够有效的进行城市电网规划管理。但是在应用的过程中也存在很多问题,主要是会连接很多的城市电网,因此会在很大程度上增加管理难度,在这个过程中如果出现了故障,很难采取有效的措施进行控制。不仅如此,整流机也会在工作的过程中直接影响到城市的电网的运行。3)混合式供电方式。该种方式最大的特点是有效的结合了集中式和分散式,属于一种新的供电方式。目前其有2个表现形式,即:①集中式和分散式是处于并联状态,进行地铁环线供电的时候会分别采用这两种形式,集中式供电和分散式供电。②地铁站的中压环线的供电方式还是主要以地铁站的中压环线为主要,集中供电站会分解为多个取电点,这样也能够形成一个完整的工作体系。 4环网供电技术在地铁供电系统中的应用 地铁作为城市电网的重要用户,属一级负荷。地铁供电系统的主变电所、牵引变电所、降压变电所,都要求获得两路电源。目前,国内地铁均采用双环网形式构成供电系统。环网供电方式安全可靠、投资少,供电设备简洁、高效,操作起来比较容易,变压器性能稳定等等,将这些优势运用到地铁供电系统中,有力的保证了城市地铁的安全运行。 4.1环网接线 电网供电必须满足“N-1安全原则”,通过调整电网接线方式和设备运行率T来达到电网安全准则的标准。应用单环网接线方式出现用电故障时需要很长时间的人工倒闸维修操作才能恢复正常供电,所以供电的稳定性很差,不能很好地满足用户需求。双环网接线方式利用双线双环或者双线单环的供电方法为负荷提供两个独立的电源,用一端进行工作,另一端作为备用电源以防线路出现故障。双线双环的结网方式又被称为“手拉手联络”环网,这种接线方式将原来供电线路的平行树干模式转换成联系比较密切的双线双环网络,利用一个联络开关连接起来自不同变电站或同一变电站的不同母线的两条馈线。供电系统正常时,所有的联络开关都保持打开状态,当一个区域的电网出现故障时,通过合并联络开关将故障线路的负荷转移到相邻的馈线上继续供电作业,符合N-1安全原则。多分段多联络接线方式是利用分段开关将地铁供电线路划分为不同供电片区,同时利用合并联络开关保持各个片区之间的联系。即使线路出现故障,只将故障控制在某一单元内,不影响其他分段区域的正常供电,供电可靠性能提升。N供一备接线方式是从N条线路组成的环形网中抽取其中一条作为空载备用线路,其他线路进行正常的输电作业,输电过程中任何一条线路出现故障,都可将其承载负荷转移到备用线路上维持输电作业,不影响线路维修并保证用户正常用电。这种供电模式非常可靠,而且线路利用率高,适合于用电负荷比较大的城市地铁建设。 4.2地铁中压交流环网系统 城市轨道交通的中压交流环网系统可采用牵引与动力照明相对独立的网络形式,也可以采用牵引与动力照明混合的网络形式。对于牵引与动力照明相对独立的网络,牵引供电网络与动力照明网络的电压等级可以相同,也可以不同。供电系统中的中压网络应按列车运行的远期进行能力设计,对互为备用线路,一路退出运行时,另一路应能承担其一、二级负荷的供电,线路末端电压损失不宜超过5%。一个运行可靠、调度灵活的环网供电系统,一般须满足以下设计原则和技术条件:(1)供电系统应满足经济、可靠、接线简单、运行灵活的要求。(2)供电系统(含牵引供电)容量按远期高峰小时负荷设计,根据路网规划的设计科预留一定裕度。(3)供电系统按一级负荷设计,即平时由两路互为备用的独立电源供电,以实现不间断供电。(4)环网设备容量应满足远期最大高峰小时负荷的要求,并满足当一个主变电所发生故障时(不含中压母线故障),另一个主变电所能承担全线牵引负荷及全线动力照明一、二级负荷的供电。(5)电缆载流量

接触网专业术语

1导线高度:接触网导线高度(简称导高),是指悬挂定位点处接触线距轨面的垂直高度,设计规范规定如下:最高高度:不大于6500mm。最低高度:(1)区间、站场:①一般中间站和区间不小于5700mm。②编组站、区段站及配有调车组的大型中间站,一般情况不小于6200mm。确有困难时可不小于5700mm。(2)隧道内(包括按规定降低高度的隧道口外及跨线建筑物范围内):①正常情况(带电通过5300mm超限货物)不小于5700mm。②困难情况(带电通过5300mm 超限货物)不小于5650mm。③特殊情况不小于5250mm。接触线高度的允许施工偏差为±30mm。 2跨距及拉出值:取决与线路曲线半径、最大风速和经济因素等,我国高速铁路一般在保证跨中导线及定位点在最大风速下均不超过距受电弓中心300mm的条件下,确定跨距长度和拉出值。 3锚段长度:是指接触网相邻的两终端间的距离。 4.绝缘距离:是指接触网的带电部分,与接触网的非带电部分的金属和非金属零件之间的最小直线距离 5吊弦分布及间距:吊弦间距指一跨内两相邻吊弦之间的距离,吊弦间距对接触网的受流性能有一定的影响,改变吊弦的间距可以调整接触网的弹性均匀度,吊弦分布有等距分布、对数分布、正弦分布等几种形式,为了设计施工和维护的方便,一般采用最简单的等距分布,一般掌握在8--12米。 6.接触导线预留驰度:指在接触导线安装时,是接触导线在跨内,保持一定弛度,以减少受电弓在跨中对接触导线的抬升量,改善弓网的震动,对高速接触网,简单链型悬挂设预留弛度,弹性链型悬挂一般不设预留弛度。 锚段关节安装要求:锚段关节是接触网的张力的机械转换关节,是接触网的薄弱环节,其设计和安装质量对受流影响较大,高速接触网一般采用两种形式的锚段关节:①非绝缘锚段关节采用三跨锚段关节②绝缘锚段关节采用,四跨,五跨锚段关节,安装处理上,尽量缩短接触导线工作支和非工作支同时接触受电弓滑板的长度,提高非工作支的坡度,并保证过度平滑,避免出现硬点和刮弓 8.接触导线(承力索)张力:锚段两端的补偿装置,通过坠砣的重力与补偿滑轮的变比后对接触线(承力索)的拉力。京哈线接触线的额定张力为15KN。接触线的张力,驰度符合安装曲线的规定,预留驰度为当量跨距的1‰。

什么环网供电方式-什么是环网开关柜-

什么环网供电方式?什么是环网开关柜? 一、什么环网供电方式 供电网络是用电力导线相互连接起来用于传输电力能源的网络。 环网供电就是用一个闭环的网络结构把取自不同电源点的电力通过供电网络与负荷以开环的形式连接起来。 网络结构形式影响网络的安全稳定性和可靠性。目前供电网络结构主要有三种形式。(1)“手拉手”单环网络形式。 (2)“多备份”连环网络形式 (3)“多联络”开环网络形式 环网供电网络管理的复杂程度。电力系统在运行时,在电源电势激励作用下,电流或功率从电源通过系统各元件流入负荷,分布于电力网络线路的各个负荷点,称为电力潮流方向。用标准模型和参数对照评价线路的优劣性的设计方法。评价目前系统的负荷量、损失、电压降等,重新调整常时开放点的开关位置,以达到电量损失最小化和线路负荷承载率平均化。分布式结构的每一个对等网络管理都有各自的独立功能。可以分别执行多种任务,监管功能也是分布的。 通过供电网络信息系统都能获得所有的网络信息、警报和事件。 二、什么是环网开关柜 环网柜是一组高压开关设备装在钢板金属柜体内或做成拼装间隔式环网供电单元的电气设备,其核心部分采用负荷开关和熔断器,具有结构简单、体积小、价格低、可提高供电参数和性能以及供电安全等优点。 环网柜用于分合负荷电流,开断短路电流及变压器空载电流,一定距离架空线路、电缆线路的充电电流,起控制和保护作用,是环网供电和终端供电的重要开关设备。 传统的电气开关设备制造正在融合物联网、大数据的生产方式,实现信息化技术与工业设备的融合。从而催生出智能环网柜的应用。 (1)、智能装备是将机器、人、控制系统与信息系统有效连接的网络信息系统,一定要具

高速铁路接触网精测精修实施办法

高速铁路接触网精测精修实施办法讲义 在中国高速铁路快速发展的今天,我国通过几年高速铁路的运行总结的基础上,总公司运输局从2016年9月1日起开始施行铁总运(2015)363号,为中国高速铁路的检修模式开始新的探讨。下面根据363号文件一起学习。本办法共分8章,内容主要在前7章,37条。 第一章总则 第一条为加强高速铁路接触网性能和状态管理,规范高速铁路接触网精测精修工作,确保高速铁路接触网运行安全,在总结高速铁路接触网运营规律的基础上,依据《高速铁路接触网运行维修规则》,制定本办法。 第二条接触网精测精修是指通过检测动态条件下的弓网作用参数,测量静态条件下的接触网几何位置,检验零部件质量状态,依据检测、检验分析结果,全面调整接触网静态几何参数、更换失效或接近预期寿命的零部件和设备、更换局部磨耗接近限界的接触导线,恢复接触网标准状态。 接触网精测精修包括精确检测、零部件检验、分析诊断与设计、精确修理、验收等工作。 第三条标准状态资料至少包括相关设计文件、接触网平面竣工图、“一杆一档”数据和非接触测量的完整数据(含波形图)以及接触网零部件预期寿命状态等资料。 第四条接触网精测精修工作应参照《铁路技术管理规程(高速铁路部分)》《高速铁路电力牵引供电工程施工技术规程》《高速铁路电力牵引供电工程施工质量验收标准》《高速铁路工程动态验收技术规范》《铁路营业线施工安全管理办法》等文件执行。 第五条本办法适用于200km/h及以上的铁路和200km/h以下仅运行

动车组列车的铁路。 第二章一般规定 第六条正常情况下,一般运行7年或弓架次达到50万次以上应安排进行一次精测精修。 遇有动态检测发现弓网动态作用特性成区段持续不良;接触网超标值增多或故障多发且分析后认为有必要实施精测精修,以及线路纵断面发生调整的区段,应在规定时间内提报精测精修计划。 第七条接触网精测精修工作执行铁路营运线施工有关规定,安排在天窗时间内进行,接触网精测精修天窗时间一般不少于4小时,一个任务周期内,天窗日计划原则上应逐日安排连续进行。 第八条铁路总公司监督、检查、指导全路高速铁路接触网精测精修实施情况。各铁路局负责编制接触网精测精修计划,组织审批设计和实施方案,组织实施和竣工验收。 第三章精确检测 第九条接触网精确检测和分析工作一般应由具有高速铁路接触网综合检测设备、具备高速铁路接触网检测数据和设备质量分析诊断能力的专业单位承担,如需要外部单位承担,应通过公开招标方式选择有相应业绩的专业单位。 第十条精确检测一般由综合检测列车、高铁接触网检测车或者其他能够完成精确检测任务的设备实施。精测设备应经过标定且在合格的周期内,通过精测前的现场测试验证,满足精度要求。 第十一条精确检测一般采用非接触检测和接触检测两种方式。非接触检测主要用于测量接触网几何位置。接触检测主要用于测量弓网动态性能参数。 第十二条动态检测可结合综合检测车检测工作周期统筹安排。根据

环网供电的实现

环网供电的实现 1环网供电的实施原则 把两条线路组成一条手拉手环网,对每条线路进行分段设置控制开关,线路的连接点设置联络开关,利用设备的延时进行停电区间的负荷转换。当供电线路的某一区发生故障时,配电系统具备自动隔离故障区段、自动恢复非故障区段的供电能力,从而达到缩小停电范围和减少用户停电时间、提高对用户供电可靠性的目的。 (1)线路选择和设计首先应当具备互带能力。 (2)通过实施线路分段原则,缩小个别用户或线路故障带来的整体停电,通过合理的线路分段数量和设置合理分段点,使用户享有尽可能高的供电可靠性。 (3)干线的分段原则:①负荷均等原则;②线路长度均等原则;③用户数量均等原则中符合具体应用条件的原则执行。 (4)选择设备具备满足当线路故障时,能自动隔离故障区段、自动恢复非故障区段的供电功能。 (5)选择设备应当满足配电网自动化升级的要求,从而能够实现配电网设备运行工况的远方监视和监测及与系统配合完成网络重构和负荷转带等功能。 (6)负荷较重的分支线路尽量布置分段分支开关,以保证隔离分支故障,保证主干线畅通。 (7)联络开关按合理的位置布置。 2环网供电的技术特点 (1)具备就地保护功能: 从配网技术发展的角度看,随着电网改造逐步实现无油化、绝缘化,一年内线路故障发生的几率相对较少,由此提出了配电自动化设备与系统的配合采用了这样一种设想,即利用设备的智能化功能,就地保护将故障隔离,利用系统的集中管理功能完成负荷转移、优化等高级功能,从而大大提高了设备利用率,并从技术层面避免了10kV复杂配电网络依赖集中保护而带来的供电不可靠,顺应了当今技术发展采用就地保护的趋势。在这里提及的环网供电,即可利用具有智能化故障查寻、就地隔离功能的故障搜查控制器FDR进行就地保护,并隔离故障。其就地保护功能包含了时限顺送/逆送功能:时限投入、时限锁定、瞬时加压锁定、两侧电源锁定。 (2)不依赖于通信来完成事故时的处理: 将故障的快速实时处理功能下放到现场设备就地处理,避免了配电网中因过度依赖通信完成故障处理可能造成的配电网供电大面积停电。

10kV配电网环网供电安全运行方式

10kV配电网环网供电安全运行方式 摘要:随着我国社会经济的发展,各行各业对于电力的需求逐年增加,人们也 越来越重视供电质量及供电安全,但在日常管理工作中仍旧存在不少安全问题, 对电力分配、输送以及电网地有效运行造成了极大的恶劣影响,同时也给人民的 日常生产生活活动以及社会的发展造成了一定的阻碍。本文笔者基于此探究当前 我国输配电及用电工程的安全管理策略,以供同行参阅。 关键词:输配电;用电工程;安全管理 引言 在现今的电力输配方面由于相应的电力使用单位对输配电线路的安全运行管 理欠缺,这就使得电力系统的稳定性受到威胁,还会造成输配电线路方面产生一 系列不安全隐患,这不仅对相应的输配电单位的安全运行产生一定的消极影响, 还会对人们日常的生产、生活产生相应的影响。因此,研究电力输配电安全风险 成因与管理具有十分重要的意义。 110kV配电网环网供电工作原理 10kV配电网环网工作原理,以电压—延时方式作为基础。部分断路器处于分 段点相应位置,在正常工作情况下,呈现出常闭状态。当线路呈现出停电状态, 或者处于故障失压状态时,全部断路器均呈现出打开状态。首次重合闸,借助控 制器设计相应的延时装置,实施逐个重合,当某断路器在重合状态下再次发生跳闸,故障所在区段其两侧相应的断路器实现对故障电压的有效感应而实施闭锁, 当再次实施合闸后,正常区间实现了对正常供电的有效恢复,通过闭锁,实现对 故障所在区段的有效隔离。对于处于联络点相应位置的断路器,在正常供电状态下,实现对两侧电压有效感应,而呈现出常开状态,当一侧电源处于失压状态时,该断路器即对故障确认进行延时,故障侧相应线路对故障确定并完成闭锁的实际 时间即为延时时间具体整定值。延时时间实现完成后,联络断路器进行投入,后 备电源对故障所在线路相应的故障后端保持正常的相关区间实现供电的正常恢复。 2电力输配电安全风险成因 2.1雷击因素 在现今的电力输配运行过程中,电力输配所存在的安全风险不仅对整个电力 系统的稳定运行有很大的影响,还会危机社会生活的正常运行。在现阶段,电力 输配电方面的安全风险主要是由于外界因素的影响,在电力输配中,一般由于电 的线路都比较长,使得安装过程的复杂程度比较高,且处于外界环境中容易受到 自然因素的影响,从而导致整个输电线路的运行出现安全问题。目前比较容易受 到的安全风险因素就有雷击的影响,在外界因素中,雷击的影响比较强且所辐射 的范围也比较广,是电力输配中的主要故障因素。在线路输配过程中,因为处于 自然环境中,且线路所处的位置也比较特殊,在雷雨天气时电力输配线路很容易 受到雷电的袭击,使得线路的运行出现闪络的情况,以此造成线路运行的不稳定,最终使得整个电力输配受到影响。对此,相应的电力单位在进行电力输配线路的 安装过程中就要进行相应的防雷工作,对线路的耐雷水平进行合理的分析,并建 立相应的雷击防护措施,在输配线路受到雷击后及时采取措施,确保输配线路绝 缘不出现闪络,以此来保证电力输配稳定的工频电弧,进而确保电力供应的不中断。 2.2线路绝缘子污染因素 在电力输配电安全风险中,不仅会由于外界环境因素的影响造成电力系统的

接触网供电方式及优缺点

电气化铁道牵引供电装置,又称为牵引供电系统,其系统本身没有发电设备,而是从电力系统取得电能。目前我国一般由110kV以上的高压电力系统向牵引变电所供电。 目前牵引供电系统的供电方式有直接供电方式、BT供电方式、AT供电方式、同轴电缆和直供加回流线供电方式四种,京沪、沪杭、浙赣都是采用的直供加回流线方式。 一、直接供电方式 直接供电方式(TR供电)是指牵引变电所通过接触网直接向电力机车供电,及回流经钢轨及大地直接返回牵引变电所的供电方式。 这种供电方式的电路构成及结构简单,设备少,施工及运营维修都较方便,因此造价也低。但由于接触网在空中产生的强大磁场得不到平衡,对邻近的广播、通信干扰较大,所以一般不采用。我国现在多采用加回流线的直接供电方式。二、BT供电方式 所谓BT供电方式就是在牵引供电系统中加装吸流变压器(约3~4km安装一台)和回流线的供电方式。这种供电方式由于在接触网同高度的外侧增设了一条回流线,回流线上的电流与接触网上的电流方向相反,这样大大减轻了接触网对邻近通信线路的干扰。 BT供电的电路是由牵引变电所、接触悬挂、回流线、轨道以及吸上线等组成。由图可知,牵引变电所作为电源向接触网供电;电力机车(EL)运行于接触网与轨道之间;吸流变压器的原边串接在接触网中,副边串接在回流线中。吸流变压器是变比为1:1的特殊变压器。它使流过原、副边线圈的电流相等,即接触网上的电流和回流线上的电流相等。因此可以说是吸流变压器把经钢轨、大地回路返回变电所的电流吸引到回流线上,经回流线返回牵引变电所。这样,回流线上的电流与接触网上的电流大小基本相等,方向却相反,故能抵消接触网产生的电磁场,从而起到防干扰作用。 以上是从理论上分析的理想情况,但实际上由于吸流变压器线圈中总需要励磁电流,所以经回流线的电流总小于接触网上的电流,因此不能完全抵消接触网对通信线路的电磁感应影响。另外,当机车位于吸流变压器附近时回流还是从轨道中流过一段距离,至吸上线处才流向回流线,则该段回流线上的电流会小于接触网上的电流,这种情况称为“半段效应”。此外,吸流变压器的原边线圈串接在接触网中,所以在每个吸流变压器安装处接触网必须安装电分段,这样就增加了接触网的维修工作量和事故率。当高速大功率机车通过,该电分段时产生很大电弧,极易烧损机车受电弓和接触线。且BT供电方式的牵引网阻抗较大,造成较大的电压和电能损失,故已很小采用。

环网供电技术在地铁供电中的运用

环网供电技术在地铁供电中的运用 摘要:城镇经济的飞速发展,公共交通网络化体系的不断完善,使得城市交通 运输需求逐步提升。为缓解道路拥堵情况,地铁的发展与建设成为交通运输现代 化管理的重要内容。在此基础之上,为保证地铁系统的安全运行,为有轨运输提 供稳定的电力支持,相关部门应结合地铁供电的具体需求,合理选择环网接线模式。当前阶段,国内环网接线的常见模式包括牵引动力照明的独立网络形式与混 合网络形式。 关键词:电缆双环网;动力牵引照明;混合接线 环形电网的运行模式分为开环运行、闭环运行,供电系统中通常选择闭环运 行模式,以保证供电的连续性与稳定性。与此相对应的,在配电管理中,通常选 择开环运行。本文主要研究在地铁供电程序中环网技术的应用情况,及不同供电 模式下的接线技术的选择。 一、环网供电在地铁运行系统中的应用形式、技术优势及设计原则 1、环网供电在地铁运行系统中的应用形式 在地铁运行系统中,常见的环网供电接线形式包括:手拉手、网格式、电缆 双环网以及单环网等。现阶段,手拉手以及网格式的接线方式已经逐步被淘汰。 以某沿海地区的地铁接线系统为例,由于设置了独立式的接线网络,选择单环网 模式,可以满足地铁消防等方面的供电需要,但对于照明网络的适用性不强,因 此被其他电网接线模式取代。当前阶段,国内地铁的环网接线通常选择双环网。 电缆双环网属于典型的环网供电接线模式,实际是单环网的规律组合,依照 二回线路,可以有效解决单环网接线中低压设备、变压器以及电缆线路由于故障 引发的停电问题,减轻变压器的实际负荷,设置两个电源体系。由于双环网接线 的安全性与灵活性,可以保证地铁供电系统的稳定运转,实现双电源供电的目的。与此同时,当双环网中某一电缆或环网单元需要进行检修或者出现突发故障时, 由于低压母线的联合,能够保证地铁供电不间断。 2、地铁环网系统的设计原则 在进行环网系统的设计时,应该在确定电压等级的基础上,遵循以下几方面 的原则:第一,保证供电系统的运行安全与稳定;第二,一个变电所需要设置两 个电源;第三,保证硬件设备的电压与容量满足地铁运行需要;第四,电力负荷 的分配应该兼具平衡性与标准性;第五,供电系统分区应该按照就近原则装配电源,避免出现返向送电的情况;第六,供电系统的建设应该与经济指标相匹配; 第七,确保继电保护系统的可靠性;第八,接线方式以简单、灵活为主;第九, 变电所设置主接线时,应保证线路的一致性;第十,可以保证倒闸、运行管理的 操作需求;第十一,合理选择设备类型。 3、环网供电在地铁运行系统中的技术优势 环网供电模式的运行原理是利用中压电缆,将上级主变电与下级牵引变电的 系统纵向连接,将全线牵引变电与降压变电所横向连接起来,然后发挥输电线路 的电力承载、运输功能。通常情况下,环网供电程序中的单一用电点都会设有两 个单元的电路系统与电源进行连接,以此形成环状的供电网络,确保地铁运行的 供电稳定。与此同时,环网供电相较于过去的供电系统,具有停电故障发生次数少、电力调节便利、误操作可能性低等方面的优势。在电力系统发生故障问题时,环网技术可以通过SCADA系统,快速的对故障点进行监测并发出警报,便于维护小组及时对故障进行处理,在控制故障影响范围的同时,保证地铁运行系统中电

接触网的供电方式及其供电示意图讲解学习

接触网的供电方式及其供电示意图

接触网的供电及其供电示意图 一、接触网的供电方式 接触网是架设在铁路线上空向电力机车提供电能的特殊形式的输电线路。电能由地方电力网输送到铁路牵引变电所后,经主变压器降压达到电力机车正常使用所需电压等级,再由馈电线将电能送至接触网。电力机车靠从接触网上获取电能以提供牵引动力,保证列车运行。 目前,我国电气化铁道干线上牵引变电所牵引侧母线上的额定电压为27.5kV(自耦变压器供电方式为2×27.5kV),接触网的额定电压为25kV,最高电压为29kV。在供电距离较长时,电能在输电线路和接触网中产生电能损耗,使接触网末端电压降低。但接触网末端电压不应低于电力机车的最低工作电压20kV,系统在非正常运行情况(检修或事故)下,机车受电弓上的电压不得低于19kV,所以两牵引变电所之间的距离一般为40~60km,具体间距需经供电计算确定。 电压从牵引变电所经馈电线送至接触网,流过电力机车,再经轨道回路和回流线,流回牵引变电所。应该指出:由于轨道和大地间是不绝缘的,在电力机车的电流流到轨道以后,并非全部电流都沿着轨道流回牵引变电所。实际上有部分电流进入大地,并在地中流回牵引变电所。这种由大地中流经的电流称地中电流(又称泄漏电流或杂散电流)。牵引变电所向接触网正常供电的方式有两种:单边供电和双边供电。如图1—3—1所示。

图1-3-1 电气化铁道供电系统 1—发电厂;2—区域变电所;3—输电线;4—分区亭;5—牵引变电所 1.单边供电 两个牵引变电所之间将接触网分成两个供电分区(又称供电臂),正常情况两相邻供电臂之间的接触网在电气上是绝缘的,每个供电分区只从一端牵引变电所获得电能的供电方式称为单边供电。单边供电时,相邻供电臂电气上独立,运行灵活;接触网发生故障时,只影响到本供电分区,故障范围小;牵引变电所馈线保护装置较简单。这是中国电气化铁道采用的主要形式,乐昌供电车间也在用这种供电方式。 2.双边供电 若两个供电分区通过开关设备,在电路上连通,两个供电分区可同时从两个牵引变电所获得电能,这种供电方式称为双边供电。双边供电可提高接触网电压水平,减少电能损耗。但馈线及分区亭的保护及开关设备都教复杂,因此,目前采用较少。 3.越区供电 单边和双边供电为正常的供电方式,还有一种非正常供电方式(也称事故供电方式)叫越区供电,如图l一3—2所示。

相关文档
最新文档