岩石气体渗透率的测定实验报告

岩石气体渗透率的测定实验报告
岩石气体渗透率的测定实验报告

中国石油大学(油层物理)实验报告

实验日期:2011-10-19 成绩:

班级: 中石化0903 学号:09133206 姓名: 冯延苹 教师:

同组者: 无

实验二 岩石气体渗透率的测定

一. 实验目的

1.巩固渗透率的概念,掌握气测渗透率原理; 2.掌握气体渗透率仪的流程和实验步骤。

二. 实验原理

渗透率的大小表示岩石允许流体通过能力的大小。根据达西公式,气体渗透率的计算公式为:

1000

)(22

22

100?-=

P P A L Q P K μ (

)10(33m μ-) 令A

L h CQ K h Q Q P P P c w r w r 200,200;)

(2000000222

10==

-=

则μ (2-5) 式中,K —气体渗透率,

;1023m μ- A —岩样截面积,2cm ; L —岩样长度,cm ; 21P P 、—岩心入口及出口大气压力,0.1Mpa;

-0P 大气压力, 0.1Mpa; μ—气体的粘度,s mPa ?

0Q —大气压力下的流量,s cm /3;r Q

0—孔板流量计常数,s cm /3

w

h —孔板压差计高度,mm ; C —与压力有关的常数。

测出C (或21P P 、)、

w

h 、

r

Q 0及岩样尺寸,即可求出渗透率。

三. 实验设备

(a)流程图

(b)控制面板

图1 GD-1型气体渗透率仪

四. 实验步骤

1. 测量岩样的长度和直径,将岩样装入岩心夹持器;把换向阀指向“环压”,关闭环压放空阀,打开环压阀,缓慢打开气源阀,使环压表指针到达1.2~

1.4MPa;

2. 低渗岩心渗透率的测定

低渗样品需要较高压力,C值由C表的刻度读取。

(1)关闭汞柱阀及中间水柱阀,打开孔板放空阀;把换向阀转向“供气”,调节减压阀,控制供气压力为0.2~0.3MPa (请勿超过0.3MPa ,否则将损坏定值器);

(2)选取数值最小的孔板,插入岩心出口端的胶皮管上,缓慢关闭孔板放空阀;

(3)缓慢调节供压阀,建立适当的C 值(15~6之间最佳),同时观察孔板压差计上液面,不要使水喷出。如果在C=30时,孔板水柱高度超过200mm ,则换一个较大的孔板,直到孔板水柱在100~200mm 之间为止;

(4)待孔板压差计液面稳定后,记录孔板水柱高度、值和孔板流量计常数C ; (5)调节供压阀,改变岩心两端压差,测量三个不同压差下的渗透率值; (6)调节供压阀,将C 表压力降至零;打开孔板放空阀,取下孔板;关闭气源阀,打开环压放空阀,取出岩心。

五. 数据处理与计算

由岩样的几何尺寸A 、L 和测得C 、r Q 0、w

h 的代入公式(2-5),即可计算岩样的

渗透率。

表1 气体渗透率测定数据记录表

样品 编号

L cm

D cm

s

cm Q /3or

C 值 (水银柱) mm

w h 2

310m K

μ-

2

m 3-10μK

GT-45 7.394 2.500 14.232

10

95.0 131.834 129.047

9 120.0 129.262 8

154.0

126.042

根据实验测得的数据可以求得:

岩样截面积2

22909.42

500.22cm D A =?=?=)()(ππ

当C=10时,气体渗透率 )(10834.131909

.4200394.7.0231232.41102002301m A L h CQ K w r μ-?=????==

当C=9时,气体渗透率 )(10262.129909

.4200394

.70.341232.1492002302m A L h CQ K w r μ-?=????==

当C=8时,气体渗透率

)(10046.126909

.4200394

.70.471232.4182002303m A L h CQ K w r μ-?=????==

平均气体渗透率

)(10047.129103

046

.126262.129834.1313233321m K K K K μ--?=?++=++=

六. 实验总结

通过本次实验,使我巩固渗透率的概念,加深了我对渗透率的理解,并掌握

了气体渗透率测定的原理。在老师的耐心指导下,通过自己亲手操作我熟练掌握了气体渗透率仪的流程和使用方法。在实验过程中,培养了我的耐心、细心以及动手操作能力。最后,感谢老师的精彩指导讲解

七.实验原始数据记录表

表 2

气体渗透率测定原始数据记录 样品 编号

L cm

D cm

s

cm Q /3or

C 值

(水银柱) mm

w h

2

310m K

μ-

2

m 3-10μK

GT-45 7.394 2.500 14.232

10

95.0

9 120.0 8

154.0

超声光栅测液体中的声速 实验报告

实验设计说明书题目:利用超声光栅测液体中的声速 院部:理工科基础教学部 专业班级:物理学(创新实验班)1班 学生姓名:某某某 学号:41106XXX 实验日期: 2013年5月21日

超声光栅测液体中的声速 人耳能听到的声波,其频率在16Hz 到20kHz 范围内。超过20Hz 的机械波称为超声波。光通过受超声波扰动的介质时会发生衍射现象,这种现象称为声光效应。利用声光效应测量超声波在液体中传播速度是声光学领域具有代表性的实验。 一、实验目的 (1)学习声光学实验的设计思想及其基本的观测方法。 (2)测定超声波在液体中的传播速度。 (3)了解超声波的产生方法。 二、 仪器用具 分光计,超声光栅盒,高频振荡器,数字频率计,纳米灯。 三、 实验原理 将某些材料(如石英、铌酸锂或锆钛酸铅陶瓷等)的晶体沿一定方向切割成晶片,在其表面上加以交流电压,在交变电场作用下,晶片会产生与外加电压频率相同的机械振动,这种特性称为晶体的反压电效应。把具有反压电效应的晶片置于液体介质中,当晶片上加的交变电压频率等于晶片的固有频率时,晶片的振动会向周围介质传播出去,就得到了最强的超声波。 正文: 光声效应的发现无疑是物理学两大分支的又一次融合,利用超声光栅测量液体中的声速就是这一物理现象的应用。此次实验的仪器包括超声光栅池、超声仪、分光计、测微目镜以及光源。 由于声波是纵波,所以当超声波在液体(本实验用的是水)传播时,声波的振动会引起液体密度空间分布的周期性变化(如右图),进而导致液体的折射率亦呈周期性分布(如右图)。如果在某一时间t 0,液体密度的空间函数为: ()0s 02sin x t x π ρρρωλ??=+?- ? ?? ? ① 其中,0ρ是液体的静态密度,ρ?是密度的变化幅度,s ω是超声波的角频率,λ是超声波长,x 是超声波的传播方向,也是密度变化的空间方向;此时,折射率 的空间函数为:()0s 02sin n x n n t x πωλ? ?=+?-? ?? ?②,其中0n 为液体的静态折射率

油层物理实验报告

油层物理实验报告

目录 实验一岩石孔隙度的测定错误!未定义书签。 实验二岩石比面的测定错误!未定义书签。 实验三岩心流体饱和度的测定错误!未定义书签。 实验四岩石碳酸盐含量的测定错误!未定义书签。 实验五岩石气体渗透率的测定错误!未定义书签。 实验六压汞毛管力曲线测定错误!未定义书签。 中国石油大学(油层物理)实验报告 实验日期:2010/10/20 成绩: 班级:石工08-X班学号:0802XXX 姓名:XX 教师:XXX 同组者: 实验一岩石孔隙度的测定

一.实验目的 1.巩固岩石孔隙度的概念,掌握其测定原理; 2.掌握测量岩石孔隙度的流程和操作步骤。 二.实验原理 根据玻义尔-马略特定律,在恒定温度下,岩心室体积一定,放入岩心室岩样的固相(颗粒)体积越小,则岩心室中气体所占体积越大,与标准室连通后,平衡压力越低;反之,当放入岩心室内的岩样固相体积越大,平衡压力越高。 绘制标准块的体积(固相体积)与平衡压力的标准曲线,测定待测岩样平衡压力,据标准曲线反求岩样固相体积。按下式计算岩样孔隙度: 式中,Φ-孔隙度,%;Vs-岩样固相体积,cm3;Vf-岩样外表体积,cm3。 三.实验流程与设备 (a)流程图

(b)控制面板 图1 QKY-Ⅱ型气体孔隙度仪 仪器由下列不见组成: ①气源阀:供给孔隙度仪调节低于10kpa的气体,当供气阀开启时,调节器通过常泄,使压力保持恒定。 ②调节阀:将10kpa的气体压力准确的调节到指定压力(小于10kpa)。 ③供气阀:连接经调节阀调压后的气体到标准室和压力传感器。 ④压力传感器:测量体系中气体压力,用来指示准确标准室的压力,并指示体系的平衡压力。 ⑤样品阀:能使标准室内的气体连接到岩心室。 ⑥放空阀:使岩心室中的初始压力为大气压,也可使平衡后岩心室与标准室的气体放入大气。四.实验步骤 1.用游标卡尺测量各个钢圆盘和岩样的直径与长度(为了便于区分,将钢圆盘从小到大编号为1、2、3、4),并记录在数据表中; 2.将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T形转柄,使之密封。打开样品阀及放空阀,确保岩心室气体为大气压; 3.关样品阀及放空阀,开气源阀和供气阀。调节调压阀,将标准室气体压力调至某一值,如560kPa。待压力稳定后,关闭供气阀,并记录标准室气体压力; 4.开样品阀,气体膨胀到岩心室,待压力稳定后,记录平衡压力; 5.打开放空阀,逆时针转动T形转柄,将岩心杯向外推出,取出钢圆盘; 6.用同样方法将3号、4号及全部(1~4号)钢圆盘装入岩心杯中,重复步骤2~5,记录平衡压力; 7.将待测岩样装入岩心杯,按上述方法测定装岩样后的平衡压力。 8.将上述数据填入原始记录表。 五.数据处理与计算 1.计算各个钢圆盘体积和岩样外表体积; 2.绘制标准曲线:以钢圆盘体积为横坐标,相应的平衡压力为纵坐标绘制标准曲线,如图所示(用坐标纸绘制); 3.据待测岩样测得的平衡压力,在标准曲线上反查出岩样固相体积; 4.计算岩样外表体积 L d V f2 4 1 π = ,求岩样的孔隙度; 5.符号说明:P—平衡压力,KPa; V s —岩样固相体积,cm3; V f—岩样外表体积,cm3;d—岩样直径,cm; L—岩样长度,cm;Φ—孔隙度,%。表一原始数据记录表

渗流力学实验报告

实验二 不可压缩液体的平面径向稳定渗流 一、实验目的: 1. 验证不可压缩液体按线性定律作平面径向稳定渗流时压力分布规律、 产量和压降的关系; 2. 绘制产量和压降的关系曲线及压力分布曲线; 3. 测定孔隙介质的渗透率。 二、实验装置: 1、2…8测压孔;9马略特瓶;10地层模型;11测压管;12螺丝夹。 三、实验原理: 当不可压缩液体在水平的等厚的均质地层中,做平面径向稳定渗流时,流量与压降成正比,压力分布曲线为一对数型曲线。 在扇形地层中,流量的计算公式: 1 8 ln 3602R R P Kh q μαπ?=

所以渗透率的计算公式: P h R R q K ?=πμα 218ln 360 式中:q —— 流量,m 3/s K —— 渗透率, m 2 h —— 地层厚度, m ΔP —— 测压孔8与测压孔1间的压差, Pa α —— 扇形中心角, R8 —— 测压孔8距中心的距离, m R1 —— 测压孔1距中心的距离, m 四、实验步骤: 1. 检查各测压管内液体是否在同一水平面上。 2. 稍微打开出口螺丝夹,等渗滤稳定后记录各测压管的高度,同时用量筒秒表 测量液体的流量。 3. 再微开出口螺丝夹,重复步骤2,在不同的流量下测量三次。 4. 关闭出口螺丝夹,将装置恢复原状。 有关固定数据: α=30 h=0.018m 各测压管距中心距离:R1=0.05, R2=0.1, R3=0.15, R4=0.20m, R5=0.25m, R6=0.40m, R7=0.55m, R8=0.75m. 五、实验要求: 1. 求孔隙介质的渗透率及平均渗透率; 2. 在直角坐标纸中分别绘制压力分布曲线及指示曲线; 3. 在半对数坐标纸中绘制出不同流量下的压力分布曲线; 4. 示例。 实验数据记录表第套年月日

软件测试实验报告96812

实验一:软件测试方法 一:实验题目 采用白盒测试技术和黑盒测试技术对给出的案例进行测试 二:试验目的 本次实验的目的是采用软件测试中的白盒测试技术和黑盒测试技术对给出的案例进行测试用例设计。从而巩固所学的软件测试知识,对软件测试有更深层的理解。 三:实验设备 个人PC机(装有数据库和集成开发环境软件) 四:实验内容 1):为以下流程图所示的程序段设计一组测,分别满足语句覆盖、判定覆盖、条件覆盖、判定/条件覆盖、组合覆盖和路径覆盖。并在各题下面写出测试用例、覆盖路径及结果等。 2):画出下列代码相应的程序流程图,并采用基本路径测试方法为以下程序段设计测试用例(需列出具体实验步骤)。 void Do (int X,int A,int B) { 1 if ( (A>1)&&(B==0) ) 2 X = X/A; 3 if ( (A==2)||(X>1) ) 4 X = X+1;

5 } 采用基本路经测试方法测试用例,并写出具体步骤 3):在某网站申请免费信箱时,要求用户必须输入用户名、密码及确认密码,对每一项输入条件的要求如下: 用户名:要求为4位以上,16位以下,使用英文字母、数字、“-”、“_”,并且首字符必须为字母或数字; 密码:要求为6~16位之间,只能使用英文字母、数字以及“-”、“_”,并且区分大小写。测试以上用例。 用所学的语言进行编码,然后进行等价类测试,当用户名和密码正确输入时提示注册成功;当错误输入时,显示不同的错误提示 通过分析测试用例以及最后得到的测试用例表分析所测程序的正确性,最后总结自己在这次试验中的收获并写出自己在这次试验中的心得体会。 五:实验步骤 1) (1)用语句覆盖方法进行测试 语句覆盖的基本思想是设计若干测试用例,运行被测程序,使程序中每个可执行语句至少被执行一次。由流程图可知该程序有四条不同的路径: P1:A-B-D P2:A-B-E P3:A-C-F P4:A-C-G 由于p1p2p4包含了所有可执行的语句,按照语句覆盖的测试用力设计原则,设计测试用例 无法检测出逻辑错误 (2)用判定覆盖方法进行测试 判定覆盖的基本思想是设计若干测试用例,运行被测程序,使得程序每个判断的取真和取假分支至少各执行一次,即判断条件真假均被满足。 条件覆盖测试用例 (3)用条件覆盖进行测试 条件覆盖的基本思想是设计若干测试用例,执行被测程序后要使每个判断中每个条件的可能取值至少满足一次。对于第一个判定条件A,可以分割如下: ?条件x>8:取真时为T1,取假时为F1;

利用牛顿环测液体折射率实验报告[1]

利用牛顿环测液体的折射率 实验者:姜晨彬 同组实验者:朱欣 指导教师:夏老师 (A09港航 090304134 655162) 【摘要】本文结合牛顿环干涉原理测量空气折射率的方法,阐述了测量液体折射率的实验原理,并研究出了具体的测量方法,最后对水的折射率进行了测量,并得出了较为准确的测量结果。 【关键词】牛顿环 空气 蒸馏水 干涉 折射率 一、引言 牛顿环是一种典型的等厚薄膜干涉现象,能充分显示光的波动性。本文通过研究对比空气和水在牛顿环里发生的干涉现象,更新了液体折射率的测试方法,使牛顿环的应用更加丰富,开拓了物理实验的新视野。 二、设计原理 当以波长为x 的钠黄光垂直照射到平凸透镜上时,由液体膜上,下表面反射光的光程差以及干涉相消。 即暗纹条件: )1......)(2,1,0(2/)12(2/2=+=+=n n ne λλδ 式中e 为某一暗纹中心,所在处的液体膜厚度,k 为干涉级次。 利用图中的几何关系,可得:R r e 2/2 = (r 为条纹半径),代入(1)式,有 ......)2,1,0(2/)12(2//2=+=+=n n R nr λλδ (2) 则暗纹半径......)2,1,0(/==n k nR r k λ (3) 若取暗纹观察,则第m ,k 级对应的暗环半径的平方 n mR r m /2 λ= (4) k nR r n /2 λ= (5) 两式相减得平凸透镜的曲率半径)/()(2 2n m n r r R n m --= (6) 观察牛顿环时我们也将会发现牛顿环中心由于形变,灰尘,水等的影响,中心不是一点,而是一个不甚清晰的暗或亮的圆斑。目因而圆心不易确定。故常取暗环的直径替换。进而有 λ)(4/)(2 2n m n D D R n m --= (7) 同理对于空气膜。则有λ)(4/2 '2'n m D D R n m --= (8) 式(7)与式(8)相比,可得:)/()(2 22'2'n m n m D D D D n --= (9) 由(9)式可知,只要测出同一装置(相同的平凸透镜和平面的玻璃板)下的空气膜和液体膜的条纹直径,即可求出液体的折射率。

中国石油大学岩石气体渗透率的测定

中国石油大学 油层物理 实验报告 实验日期: 成绩: 班级: 学号: 姓名 教师: 同组者: 实验二 岩石气体渗透率的测定 一. 实验目的 1.巩固渗透率的概念,掌握气测渗透率原理; 2.掌握气体渗透率仪的流程和实验步骤。 二. 实验原理 渗透率的大小表示岩石允许流体通过能力的大小。根据达西公式,气体渗透率的计算公式为: 1000 )(22 22 100?-= P P A L Q P K μ )10(33m μ- (2-1) 令 ,200 ;) (2000002 2210 w r h Q Q P P P c = -= μ 代入式(2-1) 则有 A L h CQ K w r 2000= (2-2) 式中,K —气体渗透率, ;1023m μ- A —岩样截面积,2 cm ; L —岩样长度,cm ; 21P P 、—岩心入口及出口大气压力,0.1Mpa; -0P 大气压力, 0.1Mpa; μ—气体的粘度,s mPa ? 0Q —大气压力下的流量,s cm /3;r Q 0—孔板流量计常数,s cm /3 w h —孔板压差计高度,mm ; C —与压力有关的常数。 测出C (或21P P 、)、 w h 、 r Q 0及岩样尺寸,即可求出渗透率。 三. 实验工具 如下图所示,GD-1型气体渗透率仪。

(a)流程图 (b)控制面板 图1 GD-1型气体渗透率仪 四. 实验步骤 1. 测量岩样的长度和直径,并记录。 2. 将岩样装入岩心夹持器;把换向阀指向“环压”,关闭环压放空阀,打开环压阀,缓慢打开气源阀,使环压表指针到达1.2~1.4MPa; 3. 低渗岩心渗透率的测定 低渗样品需要较高压力,C值由C表的刻度读取。

岩石力学研究进展报告

岩石力学研究新进展报告 姓名:XXX 学号:XXXXXXXX 专业:岩土工程

岩石力学研究新进展报告 1 引言 时光如白驹过隙,一学期的《XXXXX》课程在不知不觉间结课了。这一学期的学习,使我在岩石力学方面有了很大的启发,特别是分形理论在岩石力学中的应用令我神往。下面我对岩石力学研究的新进展做简要报告。 岩石力学可以作为固体力学的一个新分支,用以研究岩石材料的力学性能和岩石工程的特殊设计方法。岩石力学经过近50年的发展,在土木工程、水利工程、采矿工程、石油工程、国防工程等领域都得到了广泛的应用,随着科学技术的进步,岩石力学涉及的领域会进一步扩大。岩石力学是一门内涵深,工程实践性强的发展中学科。岩石力学面对的是“数据有限”的问题,输入给模型的基本参数很难确定,而且没有多少对过程(特别是非线性工程)的演化提供信息的测试手段。另一方面,对岩体的破坏机体还不能准确的解释。岩石力学所涉及的力学问题是多场(应力场、温度场、渗流场、甚至还存在电磁场等)、多相(固、液、气)影响下的地质构造和工程构造相互作用的耦合问题。这就表明,工程岩体的变形破坏特征是极为复杂的,其大多数是高度非线性的。目前,岩石力学的许多数学模型是不准确和不完整的,可以广泛接受和适用的概化模型并不多。基于此,近年来,多种数值方法、细观力学、断裂与损伤力学、系统科学、分形理论、块体理论等在岩石力学中的应用以及各种人工智能、神经网络、遗传算法、进化算法、非确定性数学等域岩石力学的交叉学科的兴起,为我们提供了全新和有效的思维方式和研究方法,更能激发研究者的创新精神,这也为突破岩石力学的确定性研究方法提供了强有力的理论基础[1]。 本报告主要对分形岩石力学、块体岩石力学、断裂与损伤岩石力学和岩石细观力学四部分的研究新进展做简要报告。由于时间和精力有限(最近导师安排的任务非常多,而且要准备英语和政治期末考试),每部分内容除第一大段的研究新进展综述外,只对近几年的三篇比较好的文献做分析说明,包括两篇中文学术论文和一篇外文学术论文,这12篇学术论文我都比较仔细的看了。以后若有机会和时间,我会在导师和各位老师同学的不吝赐教下,努力做岩石力学的创新性研究,届时会在文献综述部分查阅和介绍更多最新以及更优秀的文献。 2 分形岩石力学 从古至今,岩石已成为人们熟知的工程材料,它是由矿物晶粒、胶结物质和大量各种不同阶次、不规则分布的裂隙、薄弱夹层等缺陷构成,是一种成分和结构高度复杂的孔隙体。岩石力学经过近50年的发展,人们尝试用各种数学力学方法研究和描述岩石复杂的自然结构性状和物理力学性质,提出了多种岩石力学分析和计算方法,为解决实际工程中的岩石力学问题创造了条件。19世纪70年代Mandelbrot创立分形几何学,提出了一种定量研究和描述自然界中极不规则且看似无序的复杂结构、现象或行为的新方法,从此分形几何学广泛地应用于自然科学研究的各个领域,并且在经济学等社会科学也有很巧妙的应用。19世纪80年代,分形几何学开始应用于岩石力学研究,开始形成分形岩石力学这一门新兴交叉学科。人们逐渐发现岩石力学领域中的分形现象相当普遍,不仅岩石的自然结构性状、缺陷几何形态、分布以及地质结构产状、断层几何形态、分布都观察到分形特征或分形结构,而且岩石体强度、变形、破断力学行为以及能量耗

阿贝折射仪测介质折射率

实验阿贝折射仪测介质折射率 折射率是透明材料的一个重要光学常数。测定透明材料折射率的方法很多,如全反射法和最小偏向角法,最小偏向角法具有测量精度高、被测折射率的大小不受限制、不需要已知折射率的标准试件而能直接测出被测材料的折射率等优点。但是,被测材料要制成棱镜,而且对棱镜的技术条件要求高,不便快速测量。全反射法具有测量方便快捷,对环境要求不高,不需要单色光源等特点。然而,因全反射法属于比较测量,故其测量准确度不高(大约Δn=3×10-4),被测材料的折射率的大小受到限制(约为1.3~1.7),且对固体材料还需制成试件。尽管如此,在一些精度要求不高的测量中,全反射法仍被广泛使用。 阿贝折射仪就是根据全反射原理制成的一种专门用于测量透明或半透明液体和固体折射率及色散率的仪器,它还可用来测量糖溶液的含糖浓度。它是石油化工、光学仪器、食品工业等有关工厂、科研机构及学校的常用仪器。 【实验目的】 1.加深对全反射原理的理解,掌握应用方法。 2.了解阿贝折射仪的结构和测量原理,熟悉其使用方法。 3.通过对葡萄糖溶液折射率的测定确定其浓度。 【实验仪器】 WAY阿贝折射仪、标准玻璃块一块,折射率液(溴代萘)一瓶,待测液(自来水,酒精,糖溶液)、滴管、脱脂棉及擦镜纸 【实验原理】 一、仪器描述 阿贝折射仪是测量物质折射率的专用仪器,它能快速而准确地测出透明、半透明液体或固体材料的折射率(测量范围一般为1.4-1.7),它还可以与恒温、测温装置连用,测定折射率与温度的变化关系。 阿贝折射仪的光学系统由望远系统和读数系统组成,如图1所示。 望远系统。光线进入进光棱镜1与折射棱镜2之间有一微小均匀的间隙,被测液体就放在此空隙内。当光线(自然光或白炽灯)射入进光棱镜1时便在磨砂面上

低渗透岩心渗透率测试方法总结

低渗岩心渗透率的测试方法:1、稳态法2、脉冲衰减法3、周期振荡法 一、稳态法测量渗透率 1、测试原理 根据达西定律Q / S=-k△P/ηL 式中;Q 为流量(m3/s);S 为样品横截面积(m2);L为样品长度(m);η为流体黏滞系数(Pa·s);k 为渗透率(m2);ΔP 为样品上、下游的压力差(Pa)。在岩样的上、下游端施加稳定的压力差ΔP,通过测量流经样品的流量Q 得到渗透率,或者保持恒定的流量Q 而测量上、下游端的压力差ΔP 而得到渗透率。 2、适用条件 达西定律定压法测渗透率适用的条件之一是测试介质在岩石孔隙中的渗流需达到稳定状态,对于中高渗岩样来说$达到稳定状态所需时间较短,因而测试时间较短但是对于低渗岩样达西实验装置提供的较小压差达到平衡状态时间长伴随长时间平衡过程带来的是环境因素对测量结果的影响增大 3、实验装备 1)定压法 石油工业所熟知的达西实验原理即是采用的定压法 室内常用定压法测渗透率装置简图 2)定流量法 定流量法是通过提供稳定流量监测岩样两端压力变化因为高精度压力监测比流量计量更准确因而测量也更精确 定流量法测试渗透率装置简图 4、优缺点 此法对于渗透率大于10×10?3μm2中高渗透率的储层岩石,测试结果较为准确,但是若为了保证精度,对设备装置的要求就很高,并且在测量时需要很长的流速

稳定时间。 二、脉冲衰减法 1、测试原理及装置图解 与常规稳态法渗透率测试原理不同,脉冲衰减法是基于一维非稳态渗流理论,通过测试岩样一维非稳态渗流过程中孔隙压力随时间的衰减数据,并结合相应的数学模型,对渗流方程的精确解答和合适的误差控制简化,就可以获得测试岩样的脉冲渗透率计算模型和方法。 1)瞬态压力脉冲法: 瞬态压力脉冲法最早在测量花岗岩渗透系数时提出其原理并给出其近似解在测试样两端各有一个封闭的容器,测试时待上下容器和岩样内部压力平衡后,给上端容器一个压力脉冲。然后上部容器压力将慢慢降低,下部容器压力慢慢增加,监测两端压力随时间变化情况,直至容器内达到新的压力平衡状态。 瞬态压力脉冲法原理图 通过上下游压力衰减曲线可求得测试样渗透率。W F Brace给出了计算渗透率的近似解析解: Δp(t) P i =e?θt(1) θ=kA μw C w L (1 V u +1 V d )(2) 式中Δp(t)——岩样两端压差实测值;P i——初始脉冲压力;θ——衰减曲线斜率;V u、V d——上下游容积体积 瞬态压力脉冲法在非稳态下测量渗透率,较传统稳态法所需测试时间大大缩短,而且高精度的压力计量要比传统流体计量更准确,因而测试结果也更精确。目前此方法已广泛应用于致密低渗岩样的测量实验中。但是W F Brace 在测量花岗岩渗透率求解过程中是假定岩样孔隙度为零,这在计算致密孔岩样时有一定的合理性,但在计算页岩等孔隙度相对不能忽略的岩样时其误差较大,后继研究者在求解方法上做了很多研究,提出了精确的解析解和图解法。A I Dicker等详细讨论了上下端容器体积对测量过程的影响,S C Jones提出的渗透率测量装置下限达到0.01μd目前基于此原理制备的PDP-200已有商业制品出售,在测量如页岩气等超低渗储层岩心方面效果较好。

岩石力学试验报告-2010

长沙理工大学 岩石力学试验报告 年级班号姓名同组姓名实验日期月日理论课教师:指导教师签字:批阅教师签字: 实验一 实验二 实验三 实验四 实验五 实验六 实验七

试验一、岩石单向抗压强度的测定 一、试验的目的: 测定岩石的单轴抗压强度Rc。当无侧限试样在纵向压力作用下出现压缩破坏时,单位面积上所承受的载荷称为岩石的单轴抗压强度,即试样破坏时的最大载荷与垂直于加载方向的截面积之比。 本次试验主要测定天然状态下试样的单轴抗压强度。 二、试样制备: 1、试料可用钻孔岩心或坑槽探中采取的岩块。在取料和试样制备过程中,不允许人为裂隙出现。 2、本次试验采用圆柱体作为标准试样,直径为5cm,允许变化范围为4.8~5.4cm,高度为10cm,允许变化范围为9.5~10.5cm。 3、对于非均质的粗粒结构岩石,或取样尺寸小于标准尺寸者,允许采用非标准试样,但高径之比宜为2.0~2.5。 4、制备试样时采用的冷却液,必须是洁净水,不许使用油液。 5、对于遇水崩解、溶解和干缩湿胀的岩石,应采用干法制样。 6、试样数量:每组须制备3个。 7、试样制备的精度。 (1)在试样整个高度上,直径误差不得超过0.3mm。 (2)两端面的不平行度,最大不超过0.05mm。 (3)端面应垂直于试样轴线,最大偏差不超过0.25。 三、试样描述: 试验前的描述,应包括如下内容: 1、岩石名称、颜色、结构、矿物成分、颗粒大小,风化程度,胶结物性质等特征。 2、节理裂隙的发育程度及其分布,并记述受载方向与层理、片理及节理裂隙之间的关系。 3、量测试样尺寸,检查试样加工精度,并记录试样加工过程中的缺陷。 试件压坏后,应描述其破坏方式。若发现异常现象,应对其进行描述和解释。 四、主要仪器设备:

测液体折射率实验报告

实验题目:表面等离激元共振法测液体折射率实验 预习报告与原始数据见纸质报告。 实验步骤: 1.调整分光计,实验部件安装和线路连接已经完成; 2.传感器中心调整 粗调:将微调座放到载物台上,固定好调节架后,在调节架中心放上准星,调节载物台锁紧螺钉使激光光斑至粗调对准处,不断调节平行光管光轴水平调节螺钉与微调座的两颗微调螺钉,使当游标盘转动一圈时,激光光斑一直照在该处; 细调:调节平行光管光轴高低调节螺钉,使激光光斑射在细调对准处,不断调节平行光管与微调座使当转动游标盘一圈时,激光光斑一直射在该处; 中心调节:继续调节平行光管光轴高低调节螺钉,使激光光斑射在准星顶尖处,再次调节使转动游标盘一圈时,激光光斑一直射在顶尖处。 3.测量前准备调节 中心调节完毕后,移去准星,放入敏感元件,将游标盘和刻度盘调节到合适位置;调整敏感元件使光垂直入射至半圆柱棱镜中的镀金属膜上,拧紧游标盘止动螺钉;转动刻度盘使刻度盘0o对准游标盘0o;拧紧转座与刻度盘止动螺钉,松开游标盘止动螺钉,从此刻开始刻度盘始终保持不动,将游标盘转回至刻度盘所示65o位置处锁定,测量前准备调节完毕。

4.测量读数 保持刻度盘和游标盘不动,转动望远镜支臂,观察功率计读数,记录其中的最大读数;保持刻度盘不动,移动游标盘从66o到88o,入射角没增加1o,记录功率计最大读数。 5.数据表格与数据处理 (1)数据表格自拟; (2)画出相对光强与入射角的关系曲线图; (3)比较不同溶液的共振角有何差异。 实验样本: 本实验采用样本为:纯净水;无水乙醇;水:乙醇=1:1的乙醇溶液。 实验数据: 1.纯净水 角度(°)666768697071 角度(°)72737475767778相对光强243273376480554581641653角度(°)7980818283848586相对光强700705713733741741758765角度(°)8788

破碎岩石气体渗透性的试验测定方法

破碎岩石气体渗透性的试验测定方法 发表时间:2018-10-17T09:25:22.063Z 来源:《基层建设》2018年第27期作者:杜延杰 [导读] 摘要:水和瓦斯等流体在岩相介质特别是破碎岩体中的渗流是采矿和地下工程中普遍遇到的也是重大的难题。 中铁十四局集团建筑工程有限公司山东济南 250000 摘要:水和瓦斯等流体在岩相介质特别是破碎岩体中的渗流是采矿和地下工程中普遍遇到的也是重大的难题。本文设计了与 MTS815.02岩石力学伺服机配套的气体渗透仪和测试系统,利用MTS的两套闭环系统施加轴压和孔压,可测试压力作用下岩石破碎后的渗透系数。 关键词:破碎岩石;气体渗透性;试验测定方法 要解决破碎岩体的渗透测试问题,首先要设计具有渗透功能的特殊容器或将破碎岩石定型固定,不许其发生流动,然后解决加载问题和设计渗透闭环回路,最后还要确定数据采集方式等。在常温下,将破碎岩石定型需要使用特殊的胶粘剂,这容易破坏原有的裂隙通路,而且由于胶粘剂强度有限,用此法形成的试件不可能承受较大荷载。为此,本文选用了容器方式,设计了一种能承压并进行水交换的破碎岩石渗透仪,该渗透仪可联合MTS815.02岩石力学伺服试验系统,以测定各种压力状态下不同破碎程度岩样的渗透系数。 一、工程概况 安哥拉纳米贝RED-4000套项目位于安哥拉纳米贝省,总建筑面积42.15万㎡。包括4000套住房、4所中小学、4所幼儿园、4处垃圾中转站、2座污水处理厂以及普莱亚地块内配套的大小市政、景观绿化等工程。业主原为安哥拉SONIP石油公司、后更换为IMOGSTING公司,工程监理单位为安哥拉当地Wilven、Afribuilding房建监理公司和葡萄牙Fiscangola市政监理公司,施工单位为中铁十四局集团建筑工程有限公司。 二、岩石造成的影响 本项目的重难点工程之一为岩石处理,普莱亚地块位于海滨阶地上,整个场区存在大量的海相砂岩、泥岩、页岩、泥灰岩等,且埋深较浅并有裸露,岩性不一,分布不均,岩石埋深、厚度不一,对房建基础和市政管线施工等均有很大影响。我司项目人员在进场后经研究确定破碎岩石方案并报公司批准后精心组织了大量人力、机械、物力投入到工程破碎岩石的工作中,由于破碎岩石数量上超过10万方且岩石坚硬为赶进度昼夜施工,后通过努力在进度上不仅没有受到影响还取得了可人的成绩,并得到业主认可纳入变更索赔取得了较好的经济收入。“破碎岩石气体渗透性的试验测定方法”为破碎岩石施工中可行性分析的重要组成部分。 三、承压渗透仪及试验系统 与水渗透试验类似,首先要设计具有渗透功能的特殊容器,然后解决加载问题和设计渗透闭环回路,最后确定数据处理方法。承压破碎岩石气体渗透仪的装配高度260mm(其中压头高度110mm,缸筒长度170mm)。缸筒外径260mm,壁厚20mm,加工时用了普通45号钢进行全淬火处理,其底部焊有法兰并加有轴向“O”型密封。压头为凸台设计,这样在强度允许的情况下可有效减轻自重,同时适应MTS上端的位移控制压头。压头中心开有一直径14mm的9O°弯曲气流通道,弯曲设计是为了不影响轴向施压,通道出口为放气口。底座中心也有一直径14mm的9O°弯曲通道,该通道外口为进气口,为了与外部管路衔接,底座和压头的进出两气口均攻有螺纹。此外,压头周围的环向“O”型密封可防止侧漏,缸筒和底座不设计成一体可方便岩样的装卸,上下两块透气板的作用一个是用来搜集气体一个是用来分散气体,在渗透仪中加铺纱布是为了将岩石碎屑挡在渗透仪腔体内以保证管路清洁而不致堵塞。缸筒四周开设的凸台小孔在流场分析时使用,此时需由换向阀切换气流通道,如果只进行渗透试验用橡皮垫和螺柱紧封即可。该气体渗透仪设计最大孔隙气压为10 MPa,最大加载轴压为60 MPa。 四、试件制备和方案选择 首先将岩样进行破碎,再用筛子按不同粒径进行分级,为了研究不同岩石破碎块度对渗透性的影响,试验中需对不同基本粒径情况进行测试,另外,因实际工程中的破碎岩石粒径大小不一,测试一些基本粒径按比例关系混合的级配情况也是相当有必要的。一次试验可能不具代表性,对每种粒径最好准备3组以上的试件。测试前需要对试件用水冲洗,以除去分级时可能遗留的细小颗粒和表面泥土,这样做也是在对试件进行初度饱和。 在MTS815.02伺服机进行渗透试验可用两种方法进行:第一种方法称为瞬态法,即先施加一定的轴压P1、围压P2和孔压P3,然后降 低岩石试件一端的孔压至P4,在试件两端形成渗透压差,从而引起水体通过试件渗流。渗流过程中,不断减少。减少的速率,与岩石种类、岩石组构、试件长度、试件截面尺寸,流体密度与粘度,以及应力状态和应力水平等因素有关。根据试验过程中计算机自动采集的数据,可按式(1)计算岩石渗透率的值。 (1) 式中:μ为动力粘度系数,Pa?s;β为体积压缩系数,1/Pa;V为水箱体积,cm3;A,L为试件截面积与高度,cm2,cm;为试验起始、终止时间,s;为试验起始、终止孔压差,Pa。 如表示成渗透系数,则可通过下面的代换:(2)这里分别为动力粘度和运动粘度;为比重。 第二种方法是稳态法,即通过控制圆柱水槽中柱塞移动的速度进而控制输入试件的水流速度即流量,记录当渗流稳定时试件两端的孔压差,由达西定律的变形式计算渗透系数K的值,即 (3) 式中:Q为试件中的流量,可由柱塞流速通过换算得到,cm3/s;A,L为试件截面积与高度,cm2,cm;为试件两端的水头

岩石力学数值试验实验报告

岩石力学数值试验实验报告 姓名:郑周立学号: 1108010103 班级:采矿111班指导教师:左宇军 同组人:郑周立、周义现、胡斌、朱红伟、高言、 王坤 实验名称:圆孔对岩石力学性质影响的数值加载 试验 2014年5月16日

圆孔对岩石力学性质影响的数值加载试验 一、实验目的: 1.通过对RFPA2D学习,知道RFPA2D基本使用方法。 2.了解RFPA2D模拟试验的条件和RFPA2D的基本功能。 3.通过操作端部效应对岩石力学性质影响的数值实验,了解每一步操作以及岩石破裂过程,最终完成实验得到结果。 二、实验原理: RFPA-2D是一种基于有限元应力分析和统计损伤理论的材料破裂过程分析数值计算方法,是一个能够模拟材料渐进破裂直至失稳全过程的数值试验工具。 三、 1、试样尺寸: 100mm*51mm 2、基元数: 100*51 3、应力分析模式: 平面应变 4、圆孔:半径10mm 5、加载方式:单轴压缩 6、加载条件:竖向位移加载 7、均质度m=2 8、加载量:每步0.002mm

9、实验内容: (1)、应力-应变曲线; (2)、强度; (3)、破坏模式 四、实验内容: (一)、操作步骤: 第一步启动RFPA,新建模型建立存放的根目录 第二步划分网格,单击在弹出的窗口中设置模型的大小,单击确定第三步选择施加荷载模式... (二)实验结果 弹性模量图 第1步

第4步(开始破坏) 第7步(开始横向破坏) 第32步(彻底破坏) 第200步

最大剪应力图第1步

第4步(开始破坏) 第33步(彻底破坏) 第200步 最大主应力图

牛顿环测液体折射率实验报告

牛顿环测液体折射率实 验报告 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

利用牛顿环测液体的折射率 【摘要】本文结合牛顿环干涉原理测量空气折射率的方法,阐述了测量液体折射率的实验原理,并研究出了具体的测量方法,最后对水的折射率进行了测量,并得出了较为准确的测量结果。 一、实验目的: 牛顿环是一种典型的等厚薄膜干涉现象,能充分显示光的波动性。本文通过研究对比空气和水在牛顿环里发生的干涉现象,更新了液体折射率的测试方法,使牛顿环的应用更加丰富,开拓了物理实验的新视野。 二、设计原理 当以波长为x 的钠黄光垂直照射到平凸透镜上时,由液体膜上,下表面反射光的光程差以及干涉相消。 即暗纹条件: 式中e 为某一暗纹中心,所在处的液体膜厚度,k 为干涉级次。 利用图中的几何关系,可得:R r e 2/2= (r 为条纹半径),代入(1)式,有 ......)2,1,0(2/)12(2//2=+=+=n n R nr λλδ (2) 则暗纹半径......)2,1,0(/==n k nR r k λ (3) 若取暗纹观察,则第m ,k 级对应的暗环半径的平方 n mR r m /2λ= (4) k nR r n /2λ= (5) 两式相减得平凸透镜的曲率半径)/()(22n m n r r R n m --= (6)

观察牛顿环时我们也将会发现牛顿环中心由于形变,灰尘,水等的影响,中心不是一点,而是一个不甚清晰的暗或亮的圆斑。目因而圆心不易确定。故常取暗环的直径替 换。进而有λ)(4/)(22n m n D D R n m --= (7) 同理对于空气膜。则有λ)(4/2'2'n m D D R n m --= (8) 式(7)与式(8)相比,可得:)/()(222'2'n m n m D D D D n --= (9) 由(9)式可知,只要测出同一装置(相同的平凸透镜和平面的玻璃板)下的空气膜和液体膜的条纹直径,即可求出液体的折射率。 三、设计方案 1.调整实验装置 将牛顿环装置放在毛玻璃上。点燃钠光灯,调节显微镜前面的透光反射镜的角度,与水平面成045的角度,这样从目镜中看到明亮的光场旋转目镜旋钮,使分化板上的十字线位于目镜的交线上,即从目镜中看到清晰地十字线。缓慢转动手轮,使显微镜自下而上缓慢上移,直到从目镜中看到清晰地干涉图样,并使相与交叉丝无视差。略微移动牛顿环装置,使显微镜十字叉丝位于牛顿环中心。 2.实验操作 将牛顿环装置的凸透镜和平板玻璃拆开,用滴管在平板玻璃上滴一层待测液体,然后压上凸透镜。由于液体有表面张力,能够充满凸透镜和平板玻璃之间的空间。则现在凸透镜和平板玻璃之间形成了液体膜。将此装置放到显微镜的载物台上,调节手轮,使显微镜由低到高缓慢移动,直至在目镜中看到清晰地干涉条纹为止。由于液体膜压得不会很均匀。故在视场中的某个地方会出现一小块空气膜,其干涉花样如上面右图所示。 四、实验结果与分析 数据记录

证券实验报告

实验报告课程名称:证券投资模拟实验 学生姓名:yanyan 学号:xxxxxxxxxxxxx 班级:xxxxx 专业:xxxxxxxx 指导教师:xxxxxxxxx 2015年12 月

一、基本面分析 1.国内外经济宏观形势分析: 国内外宏观经济的当前形势: 2015年中国经济新常态在大改革、大调整等多重因素的冲击下发生变异。一方面,在外需低迷、投资大幅度下滑的作用下,总需求收缩十分明显,经济下滑开始从过去“新常态”潜在增速回落主导的模式转化为“趋势力量”下滑与“周期性力量”回落并行的格局,GDP平减指数全面为负标志着中国总供给与总需求失衡较为严重,需求不足已开始触及底线。另一方面,在不平衡力量持续发力与结构性政策的助推下,中国经济在总体疲软中出现了深度的分化,转型成功省市的繁荣与转型停滞省份的低迷、生产领域的萧条与股票市场的泡沫、传统制造业的困顿与新型产业的崛起同时并存。这不仅标志着中国经济结构深度调整的关键期、风险全面释放的窗口期以及经济增速筑底的关键期已经到来,同时也意味着中国经济在疲软中开始孕育新的生机,在艰难期之中曙光已现,在不断探底的进程中开始铸造下一轮中高速增长的基础。 这一年对于中国的股市来说,是特别有意义的一年,因为中国股市迎来了时隔8年后的又一轮牛市。上证指数已突破5000点大关,迈上5100点大关,并将可能继续向上冲击更高的目标。随着GDP增速回调、结构调整加快,经济运行中出现许多新现象、新特征,将是中国经济发展提质转型的新常态。 增速放缓不意味着中国经济不景气,这是中国经济转型必会出现的阵痛,我相信中国的经济将会健康快速的发展,那么中国的股市也将会重美国的就业状况改善,居民收入增加,这将极大的支撑消费支出增长,美国经济有望进入增长提速期。同时美国的房地产市场持续向好,制造业生产加快,将进一步巩固美国经济增长。另外美国政府减税增支政策也将继续对美国经济产生积极影响。综上来看,美国的经济将会向好的方向转变,那么世界经济将有着向好的方面发展的势头。当然,作为世界上最大的工厂,并且与美国经济密切相关的中国,必当因此受益,那么这些信息传达到股市,必将增强股民的信心,对股市也必将是个好消息!新释放出增长的活力。

岩石力学试验报告

岩石力学实验指导书及实验报告 班级 姓名 山东科技大学土建学院实验中心编

目录 一、岩石比重的测定 二、岩石含水率的测定 三、岩石单轴抗压强度的测定 四、岩石单轴抗拉强度的测定 五、岩石凝聚力及内摩擦角的测定(抗剪强度 试验) 六、岩石变形参数的测定 七、煤的坚固性系数的测定

实验一、岩石比重的测定 岩石比重是指单位体积的岩石(不包括孔隙)在105~110o C 下烘至恒重的重量与同体积4o C 纯水重量的比值。 一、仪器设备 岩石粉碎机、瓷体或玛瑙体、孔径0.2或0.3毫米分样筛、天平(量0.001克)、烘箱、干燥器、沙浴、比重瓶。 二、试验步骤 1、岩样制备:取有代表性的岩样300克左右,用机械粉碎,并全部通过孔径0.2(或0.3)毫米分样筛后待用。 2、将蒸馏水煮沸并冷却至室温取瓶颈与瓶塞相符的100毫升比重瓶,用蒸馏水洗净,注入三分之一的蒸馏水,擦干瓶的外表面。 3、取15g 岩样(称准到0.001克)得g 借助漏斗小心倒入盛有三分之一蒸馏水的比重瓶中,注意勿使岩样抛撒或粘在瓶颈上。 4、将盛有蒸馏水和岩样的比重瓶放在沙浴上煮沸后再继续煮1~1.5小时。 5、将煮沸后的比重瓶自然冷却至室温,然后注入蒸馏水,使液面与瓶塞刚好接触,注意不得留有气泡,擦干瓶的外表面,在天平上称重得g 1。 6、将岩样倒出,比重瓶洗净,最后用蒸馏水刷一遍,向比重瓶内注满蒸馏水,同样使液面与瓶塞刚好接触,不得留有气泡,擦干瓶的外表面,在天平上称重得g 2。 三、结果:按下式计算: s d g g g g d 1 2-+= 式中:d ——岩石比重; g ——岩样重、克; g 1——比重瓶、岩样和蒸馏水合重、克; g 2——比重瓶和满瓶蒸馏水合重、克; d s ——室温下蒸馏水的比重、d s ≈1

《测定三棱镜折射率》物理实验报告标准范本

报告编号:LX-FS-A51476 《测定三棱镜折射率》物理实验报 告标准范本 The Stage T asks Completed According T o The Plan Reflect The Basic Situation In The Work And The Lessons Learned In The Work, So As T o Obtain Further Guidance From The Superior. 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

《测定三棱镜折射率》物理实验报 告标准范本 使用说明:本报告资料适用于按计划完成的阶段任务而进行的,反映工作中的基本情况、工作中取得的经验教训、存在的问题以及今后工作设想的汇报,以取得上级的进一步指导作用。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 【实验目的】 利用分光计测定玻璃三棱镜的折射率; 【实验仪器】 分光计,玻璃三棱镜,钠光灯。 【实验原理】 最小偏向角法是测定三棱镜折射率的基本方法之一,如图10所示,三角形ABC表示玻璃三棱镜的横截面,AB和AC是透光的光学表面,又称折射面,其夹角a称为三棱镜的顶角;BC为毛玻璃面,称为三棱镜的底面。假设某一波长的光线LD入射到

棱镜的AB面上,经过两次折射后沿ER方向射出,则入射线LD与出射线ER的夹角称为偏向角。 【实验内容与步骤】 1.调节分光计 按实验24一1中的要求与步骤调整好分光计。 2.调整平行光管 (1)去掉双面反射镜,打开钠光灯光源。 (2)打开狭缝,松开狭缝锁紧螺丝3。从望远镜中观察,同时前后移动狭缝装置2,直至狭缝成像清晰为止。然后调整狭缝宽度为1毫米左右(用狭缝宽度调节手轮1调节)。 (3)调节平行光管的倾斜度。将狭缝转至水平,调节平行光管光轴仰角调节螺丝29,使狭缝像与望远镜分划板的中心横线重合。然后将狭缝转至竖直方向,使之与分划板十字刻度线的竖线重合,并无视

中国石油大学(华东)油层物理实验报告 岩石气体渗透率的测定

岩石气体渗透率的测定 一、实验目的 1.巩固渗透率的概念,掌握气测渗透率原理; 2.掌握气体渗透率仪的流程和实验步骤。 二、实验原理 渗透率的大小表示岩石允许流体通过能力的大小。根据达西公式,气体渗透率的计算公式为: 3222 122100(10)() o o P Q L K m A P P μμ-= ?- 令22122000() o P C P P μ= -,200or w Q h Q o =,则: 200or w CQ h L K A = 式中: g k —气体渗透率,2m μ; A —岩样截面积,2cm L —岩样长度,cm ; 12,P P —岩心入口及出口压力, 0.1MPa ; 0 P —大气压力,0.1MPa ; μ—气体的粘度 0Q —大气压力下气体的流量,2/cm s ; or Q —孔板流量计常数,3/cm s w h —孔板压差计高度,mm ; C —与压力1P 有关的常数;

三、实验流程 图1 测试流程图 四、实验操作步骤 1.测量岩样的长度和直径,将岩样装入岩心夹持器,把转向阀指向环压,关闭放空阀,缓慢打开气源阀,使环压表指针到达1.2-1.4MPa; 2.低渗透岩心渗透率的测定 低渗样品需要较高压力,C 值由C 表的刻度读取。 (1)关闭汞柱阀及中间水柱阀,打开孔板放空阀;把换向阀转向供气,调节减压阀,控制供气压力0.2MPa ; (2)选取数值最大的孔板,插入岩心出口端的胶皮管上。 (3)缓慢调节供压阀,建立适当的C 值(15-6最佳),缓慢关闭孔板放空阀,同时观察孔板压差计上液面,不要使水喷出。如果在C=30时,孔板水柱高度超过200mm ,则换一个较大的孔板,直到孔板水柱在100-200 mm 之间为止; (4)待孔板压差计液面稳定后,记录孔板水柱高度、C 值和孔板流量计常数; (5)调节供压阀,改变岩心两端压差,测量三个不同压差下的渗透率值; (6)调节供压阀,将C 表压力降至零,打开孔板放空阀,取下孔板,关闭气源阀,打开环压放空阀,取出岩心。

相关文档
最新文档