2014-2015年江苏省苏州市吴中区九年级(上)期中数学试卷和答案
【初三数学】苏州市九年级数学上期中考试单元检测试卷(含答案解析)

新九年级上学期期中考试数学试题(答案)一、选择题(每小题3分,共30分)1.一元二次方程3x 2-6x -1=0的二次项系数、一次项系数、常数项分别是( ) A .3,6,1 B .3,6,-1 C .3,-6,1 D .3,-6,-12.用配方法解方程x 2-4x +2=0,配方正确的是( ) A .(x -2)2=2 B .(x +2)2=2C .(x -2)2=-2D . (x -2)2=63.下列手机手势解锁图案中,是中心对称图形的是( )A .B .C .D . 4.已知x 1,x 2是一元二次方程x 2-6x -5=0的两个根,则x 1+x 2的值是( ) A .6 B .-6 C .5 D .-5 5.如图,⊙O 的直径为10,弦AB =8,P 是AB 上一个动点,则OP 的最小值为( )A .2B .3C .4D .56.某市“赏花节”观赏人数逐年增加,据有关部门统计,2016年约为20万人次,2018年约为28.8万人次,设观赏人数年均增长率为x ,则下列方程中正确的是( ) A .20(1+2x )=28.8 B .28.8(1+x )2=20C .20(1+x )2=28.8D .20+20(1+2x )+ 20(1+x )2=28.87.如图,在Rt △ABC 中,∠BAC =90°,将Rt △ABC 绕点C 按逆时针方向旋转48°得到Rt △A ′B ′C ′,点A 在B ′C 上,则∠B ′的大小为( ) A .42° B .48° C .52° D .58° 8.如图,AB 为⊙O 的直径,CD 是⊙O 的弦,∠ADC =35°,则∠CAB 的度数为( ) A .35°B .45°C .55°D .65°9.抛物线y =ax 2-2ax -3a 上有A (-0.5,y 1),B (2,y 2)和C (3,y 3)三点,若抛物线与y 轴的交点在正半轴上,则y 1,y 2,y 3的大小关系为( ) A .y 3<y 1<y 2 B .y 3<y 2<y 1C .y 2<y 1<y 3D .y 1<y 2<y 3第5题图第7题图ABCA 'B 'A第8题图10.某学习小组在研究函数y =16x 3-2x 的图象和性质时,已列表、描点并画出了图象的一部分,则方程16x 3-2x =1实数根的个数为( )A .1B .2C .3D .4二、填空题(每小题3分,共18分)11.一元二次方程x 2-9=0的解是 .12.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有 个班级参赛.13.抛物线y =12x 2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是 .14.飞机着陆后滑行的距离s (m )与滑行时间t (s )的函数关系式为s =60t-1.5t 2,飞机着陆后滑行 m 才能停下来.15.如图,将⊙O沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧AB 上的一动点,则∠APB 的大小是 度.16.如图,⊙O 的半径是1,AB 为⊙O 的弦,将弦AB 绕点A 逆时针旋转120°,得到AC ,连OC ,则OC 的最大值为 .第10题图第16题图第15题图三、解答题(本大题共8小题,共72分)17.(本题8分)解方程x2-3x+1=018.(本题8分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)直接写出方程ax2+bx+c=2的根;(2)直接写出不等式ax2+bx+c<0的解集.19.(本题8分) 关于x的一元二次方程x2+(2m-1)x+m2=0有实数根. (1)求m的取值范围;(2)若两根为x1、x2且x12+x22=7,求m的值.20.(本题8分) 如图,△ABC是等边三角形.(1)作△ABC的外接圆;(2)在劣弧BC上取点D,分别连接BD,CD,并将△ABD绕A点逆时针旋转60°;(3)若AD=4,直接写出四边形ABDC的面积.21.(本题8分) 如图,AB为⊙O的直径,且AB=10,C为⊙O上一点,AC平分∠DAB交⊙O于点E,AE=6,,AD⊥CD于D,F为半圆弧AB的中点,EF交AC于点G.(1)求CD的长;(2)求EG的长.第18题图第20题图AB C第21题图A B22.(本题10分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和100米长的木栏围成一个矩形菜园ABC D.(1)如图1,已知矩形菜园的一边靠墙,且AD≤MN,设AD=x米.①若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;②求矩形菜园ABCD面积的最大值;(2)如图2,若a=20,则旧墙和木栏能围成的矩形菜园ABCD面积的最大值是米2.23.(本题10分) 如图,在等腰Rt△ABC中,∠ACB=90°,点P是△ABC内一点,连接PA,PB,PC,且PA,设∠APB=α,∠CPB=β.(1)如图1,若∠ACP=45°,将△PBC绕点C顺时针旋转90°至△DAC,连结新九年级(上)数学期中考试试题(含答案)(1)一、选择题(本大题共10小题,共30.0分)1.下列运算中,结果正确的是()A. B. C. D.2.若是关于x.y的方程2x-y+2a=0的一个解,则常数a为()A. 1B. 2C. 3D. 43.下列由左到右边的变形中,是因式分解的是()A. B.C. D.4.如图,直线a∥b,∠1=120°,则∠2的度数是()A.B.C.D. AB CD M NNMDCBA第22题图2第22题图15.已知a m=6,a n=3,则a2m-3n的值为()A. B. C. 2 D. 96.下列代数式变形中,是因式分解的是()A. B.C. D.7.已知4y2+my+9是完全平方式,则m为()A. 6B.C.D. 128.803-80能被()整除.A. 76B. 78C. 79D. 829.如果x=3m+1,y=2+9m,那么用x的代数式表示y为()A. B. C. D.10.已知关于x,y的方程组,则下列结论中正确的是()①当a=5时,方程组的解是;②当x,y的值互为相反数时,a=20;③不存在一个实数a使得x=y;④若22a-3y=27,则a=2.A. B. C. D.二、填空题(本大题共6小题,共24.0分)11.在方程4x-2y=7中,如果用含有x的式子表示y,则y=______.12.将方程3x+2y=7变形成用含y的代数式表示x,得到______.13.若要(a-1)a-4=1成立,则a=______.14.如图,将△ABC平移到△A′B′C′的位置(点B′在AC边上),若∠B=55°,∠C=100°,则∠AB′A′的度数为______°.15.有若干张如图所示的正方形A类、B类卡片和长方形C类卡片,如果要拼成一个长为(2a+b),宽为(a+2b)的大长方形,则需要C类卡片______张.16.若x+y+z=2,x2-(y+z)2=8时,x-y-z=______.三、计算题(本大题共2小题,共20.0分)17.计算:(1)(8a3b-5a2b2)÷4ab(2)(2x+y)2-(2x+3y)(2x-3y)18.我县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是170cm×40cm的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材.如图1所示,(单位:cm)(1)列出方程(组),求出图甲中a与b的值.(2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图2的竖式与横式两种无盖礼品盒.①两种裁法共产生A型板材______张,B型板材______张;y个,根据题意完成表格:B型(张)x③做成的竖式和横式两种无盖礼品盒总数最多是______个;此时,横式无盖礼品盒可以做______个.(在横线上直接写出答案,无需书写过程)四、解答题(本大题共5小题,共36.0分)19.化简:(1)(2a2)4÷3a2(2)(1+a)(1-a)+a(a-3)20.先化简,再求值:(2x+3)(2x-3)-(x-2)2-3x(x-1),其中x=2.21.已知a-b=7,ab=-12.(1)求a2b-ab2的值;(2)求a2+b2的值;(3)求a+b的值.22.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数.23.已知:如图,AB∥CD,BD平分∠ABC,CE平分∠DCF,∠ACE=90°.(1)请问BD和CE是否平行?请你说明理由.(2)AC和BD的位置关系怎样?请说明判断的理由.答案和解析1.【答案】A【解析】解:A、x3•x3=x6,本选项正确;B、3x2+2x2=5x2,本选项错误;C、(x2)3=x6,本选项错误;D、(x+y)2=x2+2xy+y2,本选项错误,故选:A.A、利用同底数幂的乘法法则计算得到结果,即可做出判断;B、合并同类项得到结果,即可做出判断;C、利用幂的乘方运算法则计算得到结果,即可做出判断;D、利用完全平方公式展开得到结果,即可做出判断.此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及幂的乘方,熟练掌握公式及法则是解本题的关键.2.【答案】B【解析】解:将x=-1,y=2代入方程2x-y+2a=0得:-2-2+2a=0,解得:a=2.故选:B.将x=-1,y=2代入方程中计算,即可求出a的值.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.3.【答案】D【解析】解:A、(x+2)(x-2)=x2-4,是多项式乘法,故此选项错误;B、x2-1=(x+1)(x-1),故此选项错误;C、x2-4+3x=(x+4)(x-1),故此选项错误;D、x2-4=(x+2)(x-2),正确.故选:D.直接利用因式分解的意义分别判断得出答案.此题主要考查了因式分解的意义,正确把握定义是解题关键.4.【答案】C【解析】解:∵a∥b∴∠3=∠2,∵∠3=180°-∠1,∠1=120°,∴∠2=∠3=180°-120°=60°,故选C.如图根据平行线的性质可以∠2=∠3,根据邻补角的定义求出∠3即可.本题考查平行线的性质,利用两直线平行同位角相等是解题的关键,记住平行线的性质,注意灵活应用,属于中考常考题型.5.【答案】A【解析】解:∵a m=6,a n=3,∴原式=(a m)2÷(a n)3=36÷27=,故选:A.原式利用同底数幂的除法法则及幂的乘方运算法则变形,将已知等式代入计算即可求出值.此题考查了同底数幂的除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.6.【答案】D【解析】解:A、是整式的乘法,故A错误;B、左边不等于右边,故B错误;C、没把一个多项式转化成几个整式乘积的形式,故C错误;D、把一个多项式转化成几个整式乘积的形式,故D正确;故选:D.根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.本题考查了因式分解的意义,把一个多项式转化成几个整式乘积的形式是解题关键.7.【答案】C【解析】解:∵4y2+my+9是完全平方式,∴m=±2×2×3=±12.故选:C.原式利用完全平方公式的结构特征求出m的值即可.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.8.【答案】C【解析】解:∵803-80=80×(802-1)=80×(80+1)×(80-1)=80×81×79.∴803-80能被79整除.故选:C.先提取公因式80,再根据平方查公式进行二次分解,即可得803-80=80×81×79,继而求得答案.本题考查了提公因式法,公式法分解因式.注意提取公因式后,利用平方差公式进行二次分解是关键.9.【答案】C【解析】解:x=3m+1,y=2+9m,3m=x-1,y=2+(3m)2,y=(x-1)2+2,故选:C.根据移项,可得3m的形式,根据幂的运算,把3m代入,可得答案.本题考查了幂的乘方与积的乘方,先化成要求的形式,把3m代入得出答案.10.【答案】D【解析】解:把a=5代入方程组得:,解得:,本选项错误;由x与y互为相反数,得到x+y=0,即y=-x,代入方程组得:,解得:a=20,本选项正确;若x=y,则有,可得a=a-5,矛盾,故不存在一个实数a使得x=y,本选项正确;方程组解得:,由题意得:2a-3y=7,把x=25-a,y=15-a代入得:2a-45+3a=7,解得:a=,本选项错误,则正确的选项有,故选:D.把a=5代入方程组求出解,即可做出判断;根据题意得到x+y=0,代入方程组求出a的值,即可做出判断;假如x=y,得到a无解,本选项正确;根据题中等式得到2a-3y=7,代入方程组求出a的值,即可做出判断.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.11.【答案】【解析】解:4x-2y=7,解得:y=.故答案为:将x看做已知数求出y即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.12.【答案】x=【解析】解:由题意可知:x=故答案为:x=根据等式的性质即可求出答案.本题考查等式的性质,解题的关键是熟练运用等式的性质,本题属于基础题型.13.【答案】4,2,0【解析】解:a-4=0,即a=4时,(a-1)a-4=1,当a-1=1,即a=2时,(a-1)a-4=1.当a-1=-1,即a=0时,(a-1)a-4=1故a=4,2,0.故答案为:4,2,0.根据任何非0的数的0次幂等于1,以及1的任何次幂等于1、-1的偶次幂等于1即可求解.本题考查了整数指数幂的意义,正确进行讨论是关键.14.【答案】25【解析】解:∵∠B=55°,∠C=100°,∴∠A=180°-∠B-∠C=180°-55°-100°=25°,∵△ABC平移得到△A′B′C′,∴AB∥A′B′,∴∠AB′A′=∠A=25°.故答案为:25.根据三角形的内角和定理求出∠A,再根据平移的性质可得AB∥A′B′,然后根据两直线平行,内错角相等可得∠AB′A′=∠A.本题考查了平移的性质,三角形的内角和定理,平行线的性质,熟记平移的性质得到AB∥A′B′是解题的关键.15.【答案】5【解析】解:长方形的面积=(2a+b)(a+2b)=2a2+5ab+b2,所以要拼成一个长为(2a+b),宽为(a+2b)的大长方形,则需要A类卡片2张,B类卡片1张,C类卡片5张.故答案为5.计算长方形的面积得到(2a+b)(a+2b),再利用多项式乘多项式展开后合并,然后确定ab的系数即可得到需要C类卡片的张数.本题考查了多项式乘多项式相乘:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.16.【答案】4【解析】解:∵x2-(y+z)2=8,∴(x-y-z)(x+y+z)=8,∵x+y+z=2,∴x-y-z=8÷2=4,故答案为:4.首先把x2-(y+z)2=8的左边分解因式,再把x+y+z=2代入即可得到答案.此题主要考查了因式分解的应用,关键是熟练掌握平方差公式分解因式.平方差公式:a2-b2=(a+b)(a-b).17.【答案】解:(1)原式=2a2-ab;(2)原式=4x2+4xy+y2-4x2+9y2=10y2+4xy.【解析】(1)原式利用多项式除以单项式法则计算即可求出值;(2)原式利用完全平方公式,以及平方差公式计算,去括号合并即可得到结果.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.18.【答案】64 38 20 16或17或18【解析】解:(1)由题意得:,解得:,答:图甲中a与b的值分别为:60、40.(2)由图示裁法一产生A型板材为:2×30=60,裁法二产生A型板材为:1×4=4,所以两种裁法共产生A型板材为60+4=64(张),由图示裁法一产生B型板材为:1×30=30,裁法二产生A型板材为,2×4=8,所以两种裁法共产生B型板材为30+8=38(张),故答案为:64,38.由已知和图示得:横式无盖礼品盒的y个,每个礼品盒用2张B型板材,所以用B型板材2y张.由上表可知横式无盖款式共5y个面,用A型3y张,则B型需要2y张.则做两款盒子共需要A型4x+3y张,B型x+2y张.则4x+3y≤64;x+2y≤38.两式相加得5x+5y≤102.则x+y≤20.4.所以最多做20个.两式相减得3x+y≤26.则2x≤5.6,解得x≤2.8.则y≤18.则横式可做16,17或18个.故答案为:20,16或17或18.(1)由图示列出关于a、b的二元一次方程组求解.(2)根据已知和图示计算出两种裁法共产生A型板材和B型板材的张数,同样由图示完成表格,并完成计算.本题考查的知识点是二元一次方程组的应用,关键是根据已知先列出二元一次方程组求出a、b的值,再是根据图示解答.19.【答案】解:(1)原式=24a8÷3a2=.(2)原式=1-a2+a2-3a=1-3a.【解析】(1)根据单项式的幂的乘方法则和除法法则进行计算.(2)根据多项式的乘法法则以及单项式乘多项式的法则进行计算.本题考查单项式的乘方法则、单项式除以单项式的法则、乘法公式等知识,正确运用法则是解题的关键.20.【答案】解:(2x+3)(2x-3)-(x-2)2-3x(x-1)=4x2-9-x2+4x-4-3x2+3x=7x-13,当x=2时,原式=7×2-13=1.【解析】利用平方差及完全平方公式化简,再把x=2代入求解即可.本题主要考查了整式的化简求值,解题的关键是正确的化简.21.【答案】解:(1)∵a-b=7,ab=-12,∴a2b-ab2=ab(a-b)=-12×7=-84;(2)∵a-b=7,ab=-12,∴(a-b)2=49,∴a2+b2-2ab=49,∴a2+b2=25;(3)∵a2+b2=25,∴(a+b)2=25+2ab=25-24=1,∴a+b=±1.【解析】(1)直接提取公因式ab,进而分解因式得出答案;(2)直接利用完全平方公式进而求出答案;(3)直接利用(2)中所求,结合完全平方公式求出答案.此题主要考查了完全平方公式以及提取公因式法分解因式,正确应用完全平方公式是解题关键.22.【答案】解:∵AD∥BC,∴∠DEF=∠EFB=20°,在图b中∠GFC=180°-2∠EFG=140°,在图c中∠CFE=∠GFC-∠EFG=120°.【解析】由平行线的性质知∠DEF=∠EFB=20°,进而得到图b 中∠GFC=140°,依据图c 中的∠CFE=∠GFC-∠EFG 进行计算.本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性新九年级上册数学期中考试试题(答案)一、选择题(每小题3分,共30分)1.下列四个图形中是中心对称图形的为(A )2.方程2x 2=3x 的解为(D )A .x =0B .x =32C .x =-32D .x 1=0,x 2=323.(2018·岳阳)抛物线y =3(x -2)2+5的顶点坐标是(C )A .(-2,5)B .(-2,-5)C .(2,5)D .(2,-5)4.(2018·淮安)若关于x 的一元二次方程x 2-2x -k +1=0有两个相等的实数根,则k 的值是(B )A .-1B .0C .1D .25.(2018·成都)关于二次函数y =2x 2+4x -1,下列说法正确的是(D )A .图象与y 轴的交点坐标为(0,1)B .图象的对称轴在y 轴的右侧C .当x <0时,y 的值随x 值的增大而减小D .y 的最小值为-36.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD.下列结论一定正确的是(C )A .∠ABD =∠EB .∠CBE =∠C C .AD ∥BC D .AD =BC,第6题图) ,第9题图),第10题图)7.(2018·贵港)已知α,β是一元二次方程x 2+x -2=0的两个实数根,则α+β-αβ的值是(B )A .3B .1C .-1D .-38.(2018·赤峰)2017~2018赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场,若设参赛队伍有x 支,则可列方程为(B )A .12x(x -1)=380B .x(x -1)=380C .12x(x +1)=380 D .x(x +1)=380 9.如图,有一块边长为6 cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是(C )A . 3 cm 2B .32 3 cm 2C .92 3 cm 2D .2723 cm 2 10.(2018·贵阳)已知二次函数y =-x 2+x +6及一次函数y =-x +m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数(如图所示),当直线y =-x +m 与新图象有4个交点时,m 的取值范围是(D )A .-254<m <3B .-254<m <2 C .-2<m <3 D .-6<m <-2 二、填空题(每小题3分,共24分)11.已知x =1是关于x 的方程ax 2-2x +3=0的一个根,则a =-1.12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x +21=0的根,则三角形的周长为16.13.用一条长40 cm 的绳子围成一个面积为64 cm 2的矩形.设矩形的一边长为x cm ,则可列方程为x(20-x)=64.14.(2018·孝感)如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A(-2,4),B(1,1),则方程ax 2=bx +c 的解是x 1=-2,x 2=1.,第14题图) ,第15题图) ,第17题图) ,第18题图)15.如图,在△ABC 中,AB =4,BC =7,∠B =60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为3.16.(2018·内江)已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a(x +1)2+b(x +1)+1=0的两根之和为1.17.(2018·沈阳)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900 m (篱笆的厚度忽略不计),当AB =150m 时,矩形土地ABCD 的面积最大.18.如图是抛物线y 1=ax 2+bx +c(a ≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x 轴的一个交点是B(4,0),直线y 2=mx +n(m ≠0)与抛物线交于A ,B 两点,下列结论:①abc >0;②方程ax 2+bx +c =3有两个相等的实数根;③抛物线与x 轴的另一个交点是(-1,0);④当1<x <4时,有y 2>y 1;⑤x(ax +b)≤a +b ,其中正确的结论是②⑤.(只填写序号) 三、解答题(共66分)19.(6分)用适当的方法解下列方程.(1)(2x +3)2-16=0; (2)2x 2=3(2x +1).(1)x 1=12,x 2=-72 解:(2)x 1=3+152,x 2=3-15220.(6分)已知2-5是一元二次方程x 2-4x +c =0的一个根,求它的另一个根及c 的值. 设方程的另一根为t ,则2-5+t =4,(2-5)t =c ,解得 t =2+ 5. c =-1.∴它的另一个根是2+5,c 的值是121.(6分)已知抛物线y =ax 2+bx +c ,当x =-1时,y =-22;当x =0时,y =-8;当x =2时,y =8.(1)求抛物线解析式;(2)判断点(-2,-40)是否在该抛物线上?说明理由.(1)将(-1,-22),(0,-8),(2,8)代入抛物线,得⎩⎨⎧-22=a -b +c ,-8=c ,8=4a +2b +c ,解得⎩⎨⎧a =-2,b =12,c =-8,所以,抛物线解析式:y =-2x 2+12x -8 (2)把x =-2代入抛物线解析式,则有y =-40,所以点(-2,-40)在抛物线上22.(8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度.已知△ABC.(1)作出△ABC 以O 为旋转中心,顺时针旋转90°的△A 1B 1C 1;(只画出图形)(2)作出△ABC 关于原点O 成中心对称的△A 2B 2C 2(只画出图形),写出B 2和C 2的坐标.(1)△A 1B 1C 1如图所示 (2)△A 2B 2C 2如图所示,B 2(4,-1),C 2(1,-2)23.(8分)关于x 的一元二次方程x 2+2x +2m =0有两个不相等的实数根.(1)求m 的取值范围;(2)若x 1,x 2是一元二次方程x 2+2x +2m =0的两个根,且x 12+x 22=8,求m 的值.(1)∵一元二次方程x 2+2x +2m =0有两个不相等的实数根,∴Δ=22-4×1×2m =4-8m >0,解得m <12.∴m 的取值范围为m <12(2)∵x 1,x 2是一元二次方程x 2+2x +2m =0的两个根,∴x 1+x 2=-2,x 1·x 2=2m ,∴x 12+x 22=(x 1+x 2)2-2x 1·x 2=4-4m =8,解得m =-1.当m =-1时,Δ=4-8m =12>0.∴m 的值为-124.(10分)(2018·遵义)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.新九年级上册数学期中考试试题(答案)一、选择题(每小题3分,共30分)1.下列四个图形中是中心对称图形的为(A )2.方程2x 2=3x 的解为(D )A .x =0B .x =32C .x =-32D .x 1=0,x 2=323.(2018·岳阳)抛物线y =3(x -2)2+5的顶点坐标是(C )A .(-2,5)B .(-2,-5)C .(2,5)D .(2,-5)4.(2018·淮安)若关于x 的一元二次方程x 2-2x -k +1=0有两个相等的实数根,则k 的值是(B )A .-1B .0C .1D .25.(2018·成都)关于二次函数y =2x 2+4x -1,下列说法正确的是(D )A .图象与y 轴的交点坐标为(0,1)B .图象的对称轴在y 轴的右侧C .当x <0时,y 的值随x 值的增大而减小D .y 的最小值为-36.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD.下列结论一定正确的是(C )A .∠ABD =∠EB .∠CBE =∠C C .AD ∥BC D .AD =BC ,第6题图) ,第9题图),第10题图)7.(2018·贵港)已知α,β是一元二次方程x 2+x -2=0的两个实数根,则α+β-αβ的值是(B )A .3B .1C .-1D .-38.(2018·赤峰)2017~2018赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场,若设参赛队伍有x 支,则可列方程为(B )A .12x(x -1)=380B .x(x -1)=380C .12x(x +1)=380 D .x(x +1)=380 9.如图,有一块边长为6 cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是(C )A . 3 cm 2B .32 3 cm 2C .92 3 cm 2D .2723 cm 2 10.(2018·贵阳)已知二次函数y =-x 2+x +6及一次函数y =-x +m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数(如图所示),当直线y =-x +m 与新图象有4个交点时,m 的取值范围是(D )A .-254<m <3B .-254<m <2 C .-2<m <3 D .-6<m <-2 二、填空题(每小题3分,共24分)11.已知x =1是关于x 的方程ax 2-2x +3=0的一个根,则a =-1.12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x +21=0的根,则三角形的周长为16.13.用一条长40 cm 的绳子围成一个面积为64 cm 2的矩形.设矩形的一边长为x cm ,则可列方程为x(20-x)=64.14.(2018·孝感)如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A(-2,4),B(1,1),则方程ax 2=bx +c 的解是x 1=-2,x 2=1.,第14题图) ,第15题图) ,第17题图) ,第18题图)15.如图,在△ABC 中,AB =4,BC =7,∠B =60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为3.16.(2018·内江)已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a(x +1)2+b(x +1)+1=0的两根之和为1.17.(2018·沈阳)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900 m (篱笆的厚度忽略不计),当AB =150m 时,矩形土地ABCD 的面积最大.18.如图是抛物线y 1=ax 2+bx +c(a ≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x 轴的一个交点是B(4,0),直线y 2=mx +n(m ≠0)与抛物线交于A ,B 两点,下列结论:①abc >0;②方程ax 2+bx +c =3有两个相等的实数根;③抛物线与x 轴的另一个交点是(-1,0);④当1<x <4时,有y 2>y 1;⑤x(ax +b)≤a +b ,其中正确的结论是②⑤.(只填写序号)三、解答题(共66分)19.(6分)用适当的方法解下列方程.(1)(2x +3)2-16=0; (2)2x 2=3(2x +1).(1)x 1=12,x 2=-72 解:(2)x 1=3+152,x 2=3-15220.(6分)已知2-5是一元二次方程x 2-4x +c =0的一个根,求它的另一个根及c 的值. 设方程的另一根为t ,则2-5+t =4,(2-5)t =c ,解得 t =2+ 5. c =-1.∴它的另一个根是2+5,c 的值是121.(6分)已知抛物线y =ax 2+bx +c ,当x =-1时,y =-22;当x =0时,y =-8;当x =2时,y =8.(1)求抛物线解析式;(2)判断点(-2,-40)是否在该抛物线上?说明理由.(1)将(-1,-22),(0,-8),(2,8)代入抛物线,得⎩⎨⎧-22=a -b +c ,-8=c ,8=4a +2b +c ,解得⎩⎨⎧a =-2,b =12,c =-8,所以,抛物线解析式:y =-2x 2+12x -8 (2)把x =-2代入抛物线解析式,则有y =-40,所以点(-2,-40)在抛物线上22.(8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度.已知△ABC.(1)作出△ABC 以O 为旋转中心,顺时针旋转90°的△A 1B 1C 1;(只画出图形)(2)作出△ABC 关于原点O 成中心对称的△A 2B 2C 2(只画出图形),写出B 2和C 2的坐标.(1)△A 1B 1C 1如图所示 (2)△A 2B 2C 2如图所示,B 2(4,-1),C 2(1,-2)23.(8分)关于x 的一元二次方程x 2+2x +2m =0有两个不相等的实数根.(1)求m 的取值范围;(2)若x 1,x 2是一元二次方程x 2+2x +2m =0的两个根,且x 12+x 22=8,求m 的值.(1)∵一元二次方程x 2+2x +2m =0有两个不相等的实数根,∴Δ=22-4×1×2m =4-8m >0,解得m <12.∴m 的取值范围为m <12(2)∵x 1,x 2是一元二次方程x 2+2x +2m =0的两个根,∴x 1+x 2=-2,x 1·x 2=2m ,∴x 12+x 22=(x 1+x 2)2-2x 1·x 2=4-4m =8,解得m =-1.当m =-1时,Δ=4-8m =12>0.∴m 的值为-124.(10分)(2018·遵义)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.新九年级上册数学期中考试试题(答案)一、选择题(每小题3分,共30分)1.下列四个图形中是中心对称图形的为(A )2.方程2x 2=3x 的解为(D )A .x =0B .x =32C .x =-32D .x 1=0,x 2=323.(2018·岳阳)抛物线y =3(x -2)2+5的顶点坐标是(C )A .(-2,5)B .(-2,-5)C .(2,5)D .(2,-5)4.(2018·淮安)若关于x 的一元二次方程x 2-2x -k +1=0有两个相等的实数根,则k 的值是(B )A .-1B .0C .1D .25.(2018·成都)关于二次函数y =2x 2+4x -1,下列说法正确的是(D )A .图象与y 轴的交点坐标为(0,1)B .图象的对称轴在y 轴的右侧C .当x <0时,y 的值随x 值的增大而减小D .y 的最小值为-36.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD.下列结论一定正确的是(C )A .∠ABD =∠EB .∠CBE =∠C C .AD ∥BC D .AD =BC,第6题图) ,第9题图),第10题图)7.(2018·贵港)已知α,β是一元二次方程x 2+x -2=0的两个实数根,则α+β-αβ的值是(B )A .3B .1C .-1D .-38.(2018·赤峰)2017~2018赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场,若设参赛队伍有x 支,则可列方程为(B )A .12x(x -1)=380B .x(x -1)=380C .12x(x +1)=380 D .x(x +1)=380 9.如图,有一块边长为6 cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是(C )A . 3 cm 2B .32 3 cm 2C .92 3 cm 2D .2723 cm 2 10.(2018·贵阳)已知二次函数y =-x 2+x +6及一次函数y =-x +m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数(如图所示),当直线y =-x +m 与新图象有4个交点时,m 的取值范围是(D )A .-254<m <3B .-254<m <2 C .-2<m <3 D .-6<m <-2 二、填空题(每小题3分,共24分)11.已知x =1是关于x 的方程ax 2-2x +3=0的一个根,则a =-1.12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x +21=0的根,则三角形的周长为16.13.用一条长40 cm 的绳子围成一个面积为64 cm 2的矩形.设矩形的一边长为x cm ,则可列方程为x(20-x)=64.14.(2018·孝感)如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A(-2,4),B(1,1),则方程ax 2=bx +c 的解是x 1=-2,x 2=1.,第14题图) ,第15题图) ,第17题图) ,第18题图)15.如图,在△ABC 中,AB =4,BC =7,∠B =60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为3.16.(2018·内江)已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a(x +1)2+b(x +1)+1=0的两根之和为1.17.(2018·沈阳)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900 m (篱笆的厚度忽略不计),当AB =150m 时,矩形土地ABCD 的面积最大.18.如图是抛物线y 1=ax 2+bx +c(a ≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x 轴的一个交点是B(4,0),直线y 2=mx +n(m ≠0)与抛物线交于A ,B 两点,下列结论:①abc >0;②方程ax 2+bx +c =3有两个相等的实数根;③抛物线与x 轴的另一个交点是(-1,0);④当1<x <4时,有y 2>y 1;⑤x(ax +b)≤a +b ,其中正确的结论是②⑤.(只填写序号)三、解答题(共66分)19.(6分)用适当的方法解下列方程.(1)(2x +3)2-16=0; (2)2x 2=3(2x +1).(1)x 1=12,x 2=-72 解:(2)x 1=3+152,x 2=3-15220.(6分)已知2-5是一元二次方程x 2-4x +c =0的一个根,求它的另一个根及c 的值. 设方程的另一根为t ,则2-5+t =4,(2-5)t =c ,解得 t =2+ 5. c =-1.∴它的另一个根是2+5,c 的值是121.(6分)已知抛物线y =ax 2+bx +c ,当x =-1时,y =-22;当x =0时,y =-8;当x =2时,y =8.(1)求抛物线解析式;(2)判断点(-2,-40)是否在该抛物线上?说明理由.(1)将(-1,-22),(0,-8),(2,8)代入抛物线,得⎩⎨⎧-22=a -b +c ,-8=c ,8=4a +2b +c ,解得⎩⎨⎧a =-2,b =12,c =-8,所以,抛物线解析式:y =-2x 2+12x -8 (2)把x =-2代入抛物线解析式,则有y =-40,所以点(-2,-40)在抛物线上22.(8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度.已知△ABC.(1)作出△ABC 以O 为旋转中心,顺时针旋转90°的△A 1B 1C 1;(只画出图形)(2)作出△ABC 关于原点O 成中心对称的△A 2B 2C 2(只画出图形),写出B 2和C 2的坐标.(1)△A 1B 1C 1如图所示 (2)△A 2B 2C 2如图所示,B 2(4,-1),C 2(1,-2)23.(8分)关于x 的一元二次方程x 2+2x +2m =0有两个不相等的实数根.(1)求m 的取值范围;(2)若x 1,x 2是一元二次方程x 2+2x +2m =0的两个根,且x 12+x 22=8,求m 的值.(1)∵一元二次方程x 2+2x +2m =0有两个不相等的实数根,∴Δ=22-4×1×2m =4-8m >0,解得m <12.∴m 的取值范围为m <12(2)∵x 1,x 2是一元二次方程x 2+2x +2m =0的两个根,∴x 1+x 2=-2,x 1·x 2=2m ,∴x 12+x 22=(x 1+x 2)2-2x 1·x 2=4-4m =8,解得m =-1.当m =-1时,Δ=4-8m =12>0.∴m 的值为-124.(10分)(2018·遵义)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.。
2014-2015学年江苏省重点中学九年级(上)期中数学模拟试卷(二)(含答案)

2014-2015学年江苏省扬州重点中学九年级(上)期中数学模拟试卷(二)一.选择题(共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!B D3.(3分)如图,过⊙O内一点M的最长弦长为12cm,最短弦长为8cm,那么OM长为()cm cm D4.(3分)下列命题正确的个数是()①平分弧的直径垂直平分弧所对的弦;②平分弦的直径平分弦所对的弧;③垂直于弦的直线必过圆心;26.(3分)已知点E在半径为5的⊙O上运动,AB是⊙O的一条弦且AB=8,则使△ABE的面积为8的点7.(3分)在同一平面直角坐标系中,函数y=kx+2k和函数y=﹣kx2+4x+2(k是常数,且k≠0)的图象可能是()BD8.(3分)(2008•潍坊)如图,△ABC 内接于圆O ,∠A=50°,∠ABC=60°,BD 是圆O 的直径,BD 交AC 于点E ,连接DC ,则∠AEB 等于( )9.(3分)二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,给出下列结论:①b 2﹣4ac >0; ②2a+b <0; ③4a ﹣2b+c=0; ④a :b :c=﹣1:2:3.其中正确的个数是( )10.(3分)(2005•深圳)如图,AB 是⊙O 的直径,点D 、E 是半圆的三等分点,AE 、BD 的延长线交于点C ,若CE=2,则图中阴影部分的面积是( )π﹣Bππ﹣Dπ二.填空题:(本题共6小题,每小题4分,共24分)温馨提示:填空题应将最简洁最正确的答案填在空格内!11.(4分)已知,则=_________.12.(4分)如果二次函数y=ax2+bx+c的图象的顶点坐标是(2,4),且直线y=x+4依次与y轴和抛物线相交于P、Q、R三点,PQ:QR=1:3,则这个二次函数解析式为_________.13.(4分)(2014•巴中)在四边形ABCD中,(1)AB∥CD,(2)AD∥BC,(3)AB=CD,(4)AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是_________.14.(4分)如图,在Rt△ABC中,∠C=90°,∠A=60°,AB=2cm,将△ABC绕点B旋转至△A1BC1的位置,且使A、B、C1三点在同一直线上,则点A经过的路线的长度是_________.15.(4分)如图,平面直角坐标系中,点A(2,9),B(2,3),C(3,2),D(9,2)在⊙P上,Q是⊙P上的一个动点.(1)点P坐标为_________;(2)Q点在圆上坐标为_________时,△ABQ是直角三角形.16.(4分)△ABC是一张等腰直角三角形纸板,∠C=Rt∠,AC=BC=2,在这张纸板中剪出一个尽可能大的正方形称为第1次剪取,记所得正方形面积为s1(如图1);在余下的Rt△ADE和Rt△BDF中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为s2(如图2);继续操作下去…;则第10次剪取时,s10=_________;第2012次剪取后,余下的所有小三角形的面积之和是_________.三.解答题(共7题,共66分)温馨提示:解答题应完整地表述出解答过程!17.(6分)在直径是52cm的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度CD为16cm,求油面宽度AB的长.18.(8分)(2014•重庆)为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1﹣5月新注册小型企业一共有_________家.请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.19.(8分)(2012•沈阳)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD(1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.20.(10分)已知二次函数的图象经过点(0,3),顶点坐标为(1,4),(1)求这个二次函数的解析式;(2)求图象与x轴交点A、B两点的坐标;(3)图象与y轴交点为点C,求三角形ABC的面积.21.(10分)当a>0且x>0时,因为≥0,所以≥0,从而≥(当时取等号).记函数,由上述结论可知:当时,该函数有最小值为.(1)已知函数y1=x(x>0)与函数,则当x=_________时,y1+y2取得最小值为_________.(2)已知函数y1=x+1(x>﹣1)与函数,求的最小值,并指出取得该最小值时相应的x的值.22.(12分)如图,△ABC内接于⊙O,AB是⊙O的直径,C是的中点,弦CE⊥AB于点H,连结AD,分别交CE、BC于点P、Q,连结BD(1)求证:∠ACH=∠CBD;(2)求证:P是线段AQ的中点;(3)若⊙O 的半径为5,BH=8,求CE的长.23.(12分)如图,直线y=﹣x+3与x轴,y轴分别交于B,C两点,抛物线y=﹣x2+bx+c经过B,C两点,点A是抛物线与x轴的另一个交点.(1)求B、C两点坐标;(2)求此抛物线的函数解析式;(3)在抛物线上是否存在点P,使S△PAB=S△CAB,若存在,求出P点坐标,若不存在,请说明理由.2014-2015学年江苏省重点中学九年级(上)期中数学模拟试卷(二)参考答案与试题解析一.选择题(共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!,B D的概率是:.3.(3分)如图,过⊙O内一点M的最长弦长为12cm,最短弦长为8cm,那么OM长为()cm cm DCM=MD=CD=4cmOM===24.(3分)下列命题正确的个数是()①平分弧的直径垂直平分弧所对的弦;②平分弦的直径平分弦所对的弧;③垂直于弦的直线必过圆心;26.(3分)已知点E在半径为5的⊙O上运动,AB是⊙O的一条弦且AB=8,则使△ABE的面积为8的点×=37.(3分)在同一平面直角坐标系中,函数y=kx+2k和函数y=﹣kx2+4x+2(k是常数,且k≠0)的图象可能是()BD8.(3分)(2008•潍坊)如图,△ABC 内接于圆O ,∠A=50°,∠ABC=60°,BD 是圆O 的直径,BD 交AC 于点E ,连接DC ,则∠AEB 等于( )9.(3分)二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,给出下列结论: ①b 2﹣4ac >0; ②2a+b <0;③4a﹣2b+c=0;④a:b:c=﹣1:2:3.其中正确的个数是();根据对称轴即可得出﹣=1=110.(3分)(2005•深圳)如图,AB是⊙O的直径,点D、E是半圆的三等分点,AE、BD的延长线交于点C,若CE=2,则图中阴影部分的面积是()π﹣Bππ﹣Dπ==﹣二.填空题:(本题共6小题,每小题4分,共24分)温馨提示:填空题应将最简洁最正确的答案填在空格内!11.(4分)已知,则=.根据比例的性质,把写成解:∵=∴+1=+1=.故答案为:写成12.(4分)如果二次函数y=ax2+bx+c的图象的顶点坐标是(2,4),且直线y=x+4依次与y轴和抛物线相交于P、Q、R三点,PQ:QR=1:3,则这个二次函数解析式为y=x2﹣4x+8或y=﹣x2+x+.|PQ|=====,|xx+4﹣x x+,+x+13.(4分)(2014•巴中)在四边形ABCD中,(1)AB∥CD,(2)AD∥BC,(3)AB=CD,(4)AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是.=.故答案为:14.(4分)如图,在Rt△ABC中,∠C=90°,∠A=60°,AB=2cm,将△ABC绕点B旋转至△A1BC1的位置,且使A、B、C1三点在同一直线上,则点A经过的路线的长度是πcm.==故答案为l=,其中15.(4分)如图,平面直角坐标系中,点A(2,9),B(2,3),C(3,2),D(9,2)在⊙P上,Q是⊙P上的一个动点.(1)点P坐标为(6,6);(2)Q点在圆上坐标为(10,9)或(10,3)时,△ABQ是直角三角形.16.(4分)△ABC是一张等腰直角三角形纸板,∠C=Rt∠,AC=BC=2,在这张纸板中剪出一个尽可能大的正方形称为第1次剪取,记所得正方形面积为s1(如图1);在余下的Rt△ADE和Rt△BDF中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为s2(如图2);继续操作下去…;则第10次剪取时,s10=;第2012次剪取后,余下的所有小三角形的面积之和是.﹣=S﹣==S=;=和三.解答题(共7题,共66分)温馨提示:解答题应完整地表述出解答过程!17.(6分)在直径是52cm的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度CD为16cm,求油面宽度AB的长.18.(8分)(2014•重庆)为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1﹣5月新注册小型企业一共有16家.请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.家企业恰好都是餐饮企业的概率为:=19.(8分)(2012•沈阳)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD(1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.=,又由在同圆或等圆中,同弧或等弧∴,ABOD=AB20.(10分)已知二次函数的图象经过点(0,3),顶点坐标为(1,4),(1)求这个二次函数的解析式;(2)求图象与x轴交点A、B两点的坐标;(3)图象与y轴交点为点C,求三角形ABC的面积.×21.(10分)当a>0且x>0时,因为≥0,所以≥0,从而≥(当时取等号).记函数,由上述结论可知:当时,该函数有最小值为.(1)已知函数y1=x(x>0)与函数,则当x=1时,y1+y2取得最小值为2.(2)已知函数y1=x+1(x>﹣1)与函数,求的最小值,并指出取得该最小值时相应的x的值.)先得出的表达式,然后将(函数当该函数有最小值为,则当x=∴∴有最小值为的最小值为22.(12分)如图,△ABC内接于⊙O,AB是⊙O的直径,C是的中点,弦CE⊥AB于点H,连结AD,分别交CE、BC于点P、Q,连结BD(1)求证:∠ACH=∠CBD;(2)求证:P是线段AQ的中点;(3)若⊙O 的半径为5,BH=8,求CE的长.是CH=23.(12分)如图,直线y=﹣x+3与x轴,y轴分别交于B,C两点,抛物线y=﹣x2+bx+c经过B,C 两点,点A是抛物线与x轴的另一个交点.(1)求B、C两点坐标;(2)求此抛物线的函数解析式;(3)在抛物线上是否存在点P,使S△PAB=S△CAB,若存在,求出P点坐标,若不存在,请说明理由.∴.∴,,﹣﹣,﹣,﹣。
2015年江苏省苏州市吴中、相城、吴江区中考一模数学试卷(解析版)

2015年江苏省苏州市吴中、相城、吴江区中考数学一模试卷一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的.)1.(3分)化简|﹣2|的结果是()A.一2B.2C.D.±22.(3分)下列腾讯QQ表情中,不是轴对称图形的是()A.B.C.D.3.(3分)下列运算正确的是()A.x3+x3=2x6B.(﹣x5)4=x20C.x m•x n=x mn D.x8÷x2=x4 4.(3分)如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是()A.17°B.34°C.56°D.68°5.(3分)在平面直角坐标系中,将直线x=0绕原点顺时针旋转45°,再向上平移1个单位后得到直线a,则直线a对应的函数表达式为()A.y=x B.y=x﹣1C.y=x+1D.y=﹣x+1 6.(3分)我国古代问题:以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?(注:绳儿折即把绳平均分成几等分.)()A.36,8B.28,6C.28,8D.13,37.(3分)设函数y=x+5与的图象的两个交点的横坐标为a、b,则的值是()A.B.C.D.8.(3分)在△ABC中,∠C=90°,∠A=60°,AC=1,D在BC上,E在AB上,使得△ADE为等腰直角三角形,∠ADE=90°,则BE的长为()A.B.C.D.9.(3分)在平面直角坐标系中,一次函数y=x的图象、反比例函数y=图象以及二次函数y=x2﹣6x的对称轴围成一个封闭的平面区域(含边界),从该区域内所有格点(横、纵坐标均为整数的点称为格点)中任取3个,则该3点恰能作为一个三角形的三个顶点的概率是()A.B.C.D.10.(3分)定义一个新的运算:a⊕b=,则运算x⊕2的最小值为()A.﹣3B.﹣2C.2D.3二、填空题(本大题共8小题,每小题3分,共24分.)11.(3分)已知1nm等于0.000001mm,则0.000001用科学记数法可表示为•12.(3分)某班30位女生所穿鞋子的尺码.数据如下(单位:码):记众数为a,中位数为b,则a+b=.13.(3分)“两直线平行,内错角相等”的逆命题是.14.(3分)分解因式:2x2+x﹣6=.15.(3分)如图,AB是⊙O的切线,切点为B,AO交⊙O于点C,且AC=OC,若⊙O的半径为5,则图中阴影部分的面积是.16.(3分)若二次函数y=ax2+bx+c(a<0)的对称轴为直线x=﹣1,图象经过点(1,0),有下列结论:①abc<0;②2a﹣b=0;③a+b+c>0;④b2>5ac,则以上结论一定正确的个数是.17.(3分)若关于x,y的二元一次方程组的解满足2x+y≤2,则t的取值范围为.18.(3分)设抛物线y=﹣x2+2x+3的顶点为E,与y轴交于点C,EF⊥x轴于点,若点M(m,0)是x轴上的动点,且满足以MC为直径的圆与线段EF 有公共点,则实数m的取值范围是.三、解答题(本大题共11小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.(5分)计算:.20.(5分)解不等式组.21.(5分)先化简,再求值:,其中.22.(6分)现有甲、乙两种金属的合金10kg,如果加入甲种金属若干,那么重新熔炼后的合金中乙种金属占2份,甲种金属占3份,如果加入的甲种金属是第一次加入的2倍,那么重新熔炼后的合金中乙种金属占3份,甲种金属占7份,第一次加入的甲种金属多少?原来这块合金中甲种金属的百分比是多少?23.(6分)解分式方程:.24.(6分)苏州某中学为了迎接第53届世乒赛,在九年级举行了“乒乓球知识竞赛”,从全年级600名学生的成绩中随机抽选了100名学生的成绩,根据测试成绩绘制成以下不完整的频数分布表和频数分布直方图:频率分布表:请结合图表完成下列各题:(1)求表中a的值:(2)请把频数分布直方图补充完整;(3)若测试成绩不低于90分的同学可以获得第53届世乒赛吉祥物“乒宝”,请你估计该校九年级有多少位同学可以获得“乒宝”25.(7分)某研究性学习小组,为了测量某池塘边A、B两点间的距离,让一架航模在直线AB的正上方24米的高度飞行,当航模位于点D处时,在A点处测得航模仰角为60°,5分钟后,当航模在点C处时,在B点测得航模仰角为45°,已知航模飞行的速度为每分钟45米,试计算A、B两点的距离.(结果精确到0.1米,参考数据:=1.73.)26.(8分)有两张相同的矩形纸片ABCD和A′B′C′D′,其中AB=3,BC =8.(1)若将其中一张矩形纸片ABCD沿着BD折叠,点A落在点E处(如图1),设DE与BC相交于点F,求BF的长;(2)若将这两张矩形纸片交叉叠放(如图2),试判断四边形MNPQ的形状,并证明.27.(9分)如图,在平面直角坐标系中,已知点A(0,6),B(8,0).点P从A点出发,以每秒1个单位的速度沿AO运动;同时,点Q从O出发,以每秒2个单位的速度沿OB运动,当Q点到达B点时,P、Q两点同时停止运动.(1)求运动时间t的取值范围;(2)t为何值时,△POQ的面积最大?最大值是多少?(3)t为何值时,以点P、0、Q为顶点的三角形与Rt△AOB相似?28.(9分)如图所示,D是以AB为直径的半圆O上的一点,C是弧AD的中点,点M在AB上,AD与CM交于点N,CN=AN.(1)求证:CM⊥AB;(2)若AC=;,BD=2,求半圆的直径.29.(10分)如图所示,已知点C(﹣3,m),点D(m﹣3,0).直线CD交y 轴于点A.作CE与X轴垂直,垂足为E,以点B(﹣1,0)为顶点的抛物线恰好经过点A、C.(1)则∠CDE=;(2)求抛物线对应的函数关系式;(3)设P(x,y)为抛物线上一点(其中﹣3<x<﹣1或﹣1<x<1,连结BP并延长交直线CE于点N,记N点的纵坐标为y N,连结CP并延长交X 轴于点M.①试证明:EM•(EC+y N)为定值;②试判断EM+EC+y N是否有最小值,并说明理由.2015年江苏省苏州市吴中、相城、吴江区中考数学一模试卷参考答案与试题解析一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的.)1.(3分)化简|﹣2|的结果是()A.一2B.2C.D.±2【解答】解:|﹣2|=2,故选:B.2.(3分)下列腾讯QQ表情中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误.故选:C.3.(3分)下列运算正确的是()A.x3+x3=2x6B.(﹣x5)4=x20C.x m•x n=x mn D.x8÷x2=x4【解答】解:A.x3+x3=2x3,故错误;B.正确;C.x m•x n=x m+n,故错误;D.x8÷x2=x6,故错误;故选:B.4.(3分)如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是()A.17°B.34°C.56°D.68°【解答】解:∵AB∥CD,∴∠ABC=∠C=34°,∵BC平分∠ABE,∴∠CBE=∠ABC=34°,∴∠BED=∠C+∠CBE=68°.故选:D.5.(3分)在平面直角坐标系中,将直线x=0绕原点顺时针旋转45°,再向上平移1个单位后得到直线a,则直线a对应的函数表达式为()A.y=x B.y=x﹣1C.y=x+1D.y=﹣x+1【解答】解:∵直线x=0与x轴的夹角是90°,∴将直线x=0绕原点顺时针旋转45°后的直线与x轴的夹角为45°,∴此时的直线方程为y=x.∴再向上平移1个单位得到直线a的解析式为:y=x+1.故选:C.6.(3分)我国古代问题:以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?(注:绳儿折即把绳平均分成几等分.)()A.36,8B.28,6C.28,8D.13,3【解答】解:设绳长x米、井深y米,依题意有,解得.答:绳长36米、井深8米.故选:A.7.(3分)设函数y=x+5与的图象的两个交点的横坐标为a、b,则的值是()A.B.C.D.【解答】解:联立消掉y得,x2+5x﹣3=0,∵两个交点的横坐标为a、b,∴a+b=﹣5,ab=﹣3,∴===.故选:B.8.(3分)在△ABC中,∠C=90°,∠A=60°,AC=1,D在BC上,E在AB 上,使得△ADE为等腰直角三角形,∠ADE=90°,则BE的长为()A.B.C.D.【解答】解:过点E作EF作∥AC,交BC于点F,∴∠BFC=∠C=90°,∵∠C=90°,∠BAC=60°,∴∠B=30°∴AB=2AC=2,在Rt△ABC中,由勾股定理得:CB===,∵△ADE是等腰直角三角形,∴DE=DA,∵∠DAC+∠ADC=90°,∠EDF+∠ADC=90°,∴∠DAC=∠EDF在△ADC和△DEF中,,∴△ADC≌△DEF(AAS),∴DF=AC=1,设CD=x,所以EF=x,BF=﹣1﹣x∵EF∥AC∴=,即=,解得:x=2﹣,∴BE=2x=4﹣2.故选:A.9.(3分)在平面直角坐标系中,一次函数y=x的图象、反比例函数y=图象以及二次函数y=x2﹣6x的对称轴围成一个封闭的平面区域(含边界),从该区域内所有格点(横、纵坐标均为整数的点称为格点)中任取3个,则该3点恰能作为一个三角形的三个顶点的概率是()A.B.C.D.【解答】解:如图,二次函数y=x2﹣6x的对称轴为直线x==3,当x=,解得x=±,因为>1,所以封闭的平面区域(含边界)不含横坐标为1的点,当x=2时,y=x=2,而y==0.55,则点A(2,1)、点B(2,2)满足条件的点;当x=3时,y=x=3,而y=≈0.37,则点C(3,1)、点D(3,2)、点E(3,3)为满足条件的点;从5个点中任取3个点共有(ABC、ABD、ABE、ACD、ACE、ADE、BCD、BCE、BDE、CDE)10中等可能的结果数,其中有9种结果数作为一个三角形,所以3点恰能作为一个三角形的三个顶点的概率是.故选:D.10.(3分)定义一个新的运算:a⊕b=,则运算x⊕2的最小值为()A.﹣3B.﹣2C.2D.3【解答】解:当x≤2时,x⊕2=﹣2x+2,此时当x=2时有最小值﹣2;当x>2时,x⊕2==﹣,此时没有最小值,综上,最小值为﹣2,故选:B.二、填空题(本大题共8小题,每小题3分,共24分.)11.(3分)已知1nm等于0.000001mm,则0.000001用科学记数法可表示为1×10﹣6•【解答】解:0.000 001=1×10﹣6,故答案为:1×10﹣6.12.(3分)某班30位女生所穿鞋子的尺码.数据如下(单位:码):记众数为a ,中位数为b ,则a +b = 70 . 【解答】解:∵35出现的次数最多, ∴众数a =35,把这组数据从小到大排列,最中间两个数的平均数是=35,则中位数为b =35, 则a +b =35+35=70; 故答案为:70.13.(3分)“两直线平行,内错角相等”的逆命题是 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行 .【解答】解:“两直线平行,内错角相等”的条件是:两直线平行,结论是:内错角相等.将条件和结论互换得逆命题为:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.故答案为:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 14.(3分)分解因式:2x 2+x ﹣6= (2x ﹣3)(x +2) . 【解答】解:原式=(2x ﹣3)(x +2). 故答案为:(2x ﹣3)(x +2)15.(3分)如图,AB 是⊙O 的切线,切点为B ,AO 交⊙O 于点C ,且AC =OC ,若⊙O 的半径为5,则图中阴影部分的面积是.【解答】解:连接OB ,∵AB 是⊙O 的切线,切点为B , ∴∠OBBA =90°,∵AC =OC ,⊙O 的半径为5, ∴AC =5,AB =5,∴∠A =30°,则∠BOC =60°,∴图中阴影部分的面积为:S △OBA ﹣S 扇形BOC =×BO ×AB ﹣=﹣.故答案为:﹣.16.(3分)若二次函数y=ax2+bx+c(a<0)的对称轴为直线x=﹣1,图象经过点(1,0),有下列结论:①abc<0;②2a﹣b=0;③a+b+c>0;④b2>5ac,则以上结论一定正确的个数是2.【解答】解:①∵二次函数图象与y轴交于正半轴,∴c>0,∵二次函数图象的对称轴是直线x=﹣1,∴﹣=﹣1,∴b=2a,∵a<0,∴b<0,∴abc>0,∴①不正确;②∵b=2a,∴2a﹣b=0,②正确;③图象经过点(1,0),∴a+b+c=0,③不正确;④图象与x轴有两个交点,∴b2﹣4ac>0,∵ac<0,∴b2>5ac,④正确,故答案为:2.17.(3分)若关于x,y的二元一次方程组的解满足2x+y≤2,则t的取值范围为t≤0.【解答】解:,①+②得,4x+2y=4+t,∵2x+y≤2,∴4x+2y≤4,可得:4+t≤4,解得:t≤0,故答案为:t≤0.18.(3分)设抛物线y=﹣x2+2x+3的顶点为E,与y轴交于点C,EF⊥x轴于点,若点M(m,0)是x轴上的动点,且满足以MC为直径的圆与线段EF 有公共点,则实数m的取值范围是﹣≤m≤5.【解答】解:∵M(m,0),C(0,3),∴圆心N的坐标(,),圆N的半径为:,圆心到EF的距离为:|1﹣|,由题意得,|1﹣|≤≤,解得:﹣≤m≤5.故答案为:﹣≤m≤5.三、解答题(本大题共11小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.(5分)计算:.【解答】解:原式=3+1+3﹣2×=4+2.20.(5分)解不等式组.【解答】解(1)由①得,x≤4,由②得,x>2,∴不等式组的解集为:2<x≤4.21.(5分)先化简,再求值:,其中.【解答】解:原式=×﹣=﹣=﹣,把x=+2代入原式=﹣=﹣=﹣1﹣.22.(6分)现有甲、乙两种金属的合金10kg,如果加入甲种金属若干,那么重新熔炼后的合金中乙种金属占2份,甲种金属占3份,如果加入的甲种金属是第一次加入的2倍,那么重新熔炼后的合金中乙种金属占3份,甲种金属占7份,第一次加入的甲种金属多少?原来这块合金中甲种金属的百分比是多少?【解答】解:设原来这块合金中甲种金属的百分比是x,则甲种金属有10xkg,乙种金属有(10﹣10x)kg,根据题意得(10﹣10x)÷﹣10=2×[(10﹣10x)÷﹣10],解得x=40%.则(10﹣10×40%)÷﹣10=5(kg).答:第一次加入的甲种金属是5kg,原来这块合金中甲种金属的百分比是40%.23.(6分)解分式方程:.【解答】解:去分母得:15x﹣12=4x+10﹣6x+12,移项合并得:17x=34,解得:x=2,经检验x=2是增根,分式方程无解.24.(6分)苏州某中学为了迎接第53届世乒赛,在九年级举行了“乒乓球知识竞赛”,从全年级600名学生的成绩中随机抽选了100名学生的成绩,根据测试成绩绘制成以下不完整的频数分布表和频数分布直方图:频率分布表:请结合图表完成下列各题:(1)求表中a的值:(2)请把频数分布直方图补充完整;(3)若测试成绩不低于90分的同学可以获得第53届世乒赛吉祥物“乒宝”,请你估计该校九年级有多少位同学可以获得“乒宝”【解答】解:(1)a=100﹣(8+16+32+20)=24;(2)根据题意补图如下:(3)根据题意得:600×=120(人),答:该校九年级有120人可以获得“乒宝”.25.(7分)某研究性学习小组,为了测量某池塘边A、B两点间的距离,让一架航模在直线AB的正上方24米的高度飞行,当航模位于点D处时,在A点处测得航模仰角为60°,5分钟后,当航模在点C处时,在B点测得航模仰角为45°,已知航模飞行的速度为每分钟45米,试计算A、B两点的距离.(结果精确到0.1米,参考数据:=1.73.)【解答】解:如图所示,作DM⊥AB于M,BN⊥CD于N,则DM=BN=24米,在Rt△ADM中,由题意∠DAM=60°,∴AM==8米,在Rt△BNC中,由题意∠NCB=45°,∴DN=DC﹣NC=45×5﹣24=201米,∴AB=AM+MB=8+201=214.8米,答:A、B两点的距离214.8米.26.(8分)有两张相同的矩形纸片ABCD和A′B′C′D′,其中AB=3,BC =8.(1)若将其中一张矩形纸片ABCD沿着BD折叠,点A落在点E处(如图1),设DE与BC相交于点F,求BF的长;(2)若将这两张矩形纸片交叉叠放(如图2),试判断四边形MNPQ的形状,并证明.【解答】解:(1)由折叠得,∠ADB=∠EDB,∵矩形ABCD的对边AD∥BC,∴∠ADB=∠DBC,∴∠FBD=∠FDB,∴BF=DF,设BF=x,则CF=8﹣x,在Rt△CDF中,CD2+CF2=DF2即32+(8﹣x)2=x2,解得:x=,即BF=;(2)四边形MNPQ的形状是菱形,证明:∵矩形纸片ABCD和A′B′C′D′,∴MN∥PQ,MQ∥AP,∴四边形MNPQ是平行四边形,①如图2,过点N分别做NE⊥MQ,NF⊥QP,垂足分别为E、F,∴NF=NE,=NE•MQ=NF•PQ,∵S平行四边形MNPQ∴MQ=PQ,②由①②知,四边形MNPQ是菱形.27.(9分)如图,在平面直角坐标系中,已知点A(0,6),B(8,0).点P从A点出发,以每秒1个单位的速度沿AO运动;同时,点Q从O出发,以每秒2个单位的速度沿OB运动,当Q点到达B点时,P、Q两点同时停止运动.(1)求运动时间t的取值范围;(2)t为何值时,△POQ的面积最大?最大值是多少?(3)t为何值时,以点P、0、Q为顶点的三角形与Rt△AOB相似?【解答】解:(1)∵点A(0,6),B(8,0),∴OA=6,OB=8,∵点Q从O出发,以每秒2个单位的速度沿OB运动,当Q点到达B点时,P、Q两点同时停止运动,∴2t=8,解得:t=4,∴0≤t≤4;(2)根据题意得:经过t秒后,AP=t,OQ=2t,∴OP=OA﹣AP=6﹣t,∵△POQ的面积=•OP•OQ,即△POQ的面积=(6﹣t)×2t=﹣t2+6t.∵a=﹣1<0,∴△POQ的面积有最大值,当t=﹣=3时,△POQ的面积的最大值==9,即当t=3时,△POQ的面积最大,最大值是9.(3)①若Rt△POQ∽Rt△AOB时,∵Rt△POQ∽Rt△AOB,∴,即=,解得:t=;②若Rt△QOP∽Rt△AOB时,∵Rt△QOP∽Rt△AOB,∴,即,解得:t=.所以当t为或时,以点P、0、Q为顶点的三角形与Rt△AOB相似.28.(9分)如图所示,D是以AB为直径的半圆O上的一点,C是弧AD的中点,点M在AB上,AD与CM交于点N,CN=AN.(1)求证:CM⊥AB;(2)若AC=;,BD=2,求半圆的直径.【解答】(1)证明:如图1,连接BC,则∠ACB=90°,∵CN=AN,∴∠NCA=∠NAC,∴∠MCA=∠DAC,∵C是弧AD的中点,∴∠ABC=∠DAC,∴∠MCA=∠ABC,∵∠CAB=∠BAC,∴△ABC∽△ACM,∴∠AMC=90°,∴CM⊥AB;(2)解:如图2,连接CD,作CE⊥BD,交BD的延长线于E,在△CMB与△BCE中,,∴△CMB≌△CEB,∴BM=BE,CM=CE,∵C是弧AD的中点,∴AC=CD,在R t△ACM与R t△CED中,,∴R t△ACM≌R t△CED,∴AM=DE,设AM=x,则BM=BE=BD+DE=2+x,∴AB=AM+BM=2+2x,∵∠ACB=∠AMC=90°,∴AC2=AM•AB,∴12=x(2+2x),解得:x=2,∴AB=6.29.(10分)如图所示,已知点C(﹣3,m),点D(m﹣3,0).直线CD交y 轴于点A.作CE与X轴垂直,垂足为E,以点B(﹣1,0)为顶点的抛物线恰好经过点A、C.(1)则∠CDE=45°;(2)求抛物线对应的函数关系式;(3)设P(x,y)为抛物线上一点(其中﹣3<x<﹣1或﹣1<x<1,连结BP并延长交直线CE于点N,记N点的纵坐标为y N,连结CP并延长交X 轴于点M.①试证明:EM•(EC+y N)为定值;②试判断EM+EC+y N是否有最小值,并说明理由.【解答】解:(1)∵AE=m﹣3﹣(﹣3)=m,CE=m,∴AE=CE,∴∠EAC=45°.(2)设E点横坐标为x E,D点横坐标为x D,则ED=x D﹣x E=m,又C(﹣3,m),∴EC=ED,即∠CDE=45°,∴OA=OD=m﹣3,即A(0,m﹣3),设抛物线的方程为y=a(x+1)2,则,解得,a=1,m=4,故抛物线方程为y=(x+1)2.(3)①设P(x,x2+2x+1),作PQ⊥x轴于Q,如图:由Rt△BPQ∽Rt△BNE,可得y N=﹣2(x+1),由Rt△MPQ∽Rt△MCE可得,EM=,∴EM•(EC+y N)=•(﹣2x﹣2+4)=8(为定值)(﹣3<x<﹣1和﹣1<x<1两种情况完全相同).②有最小值.记y=EM+EC+y N,s=EM,t=EC+y N,由①st=8,∴y=s+t=t+=(﹣)2+4,此时,(﹣)2=0,化简得t=2,即x=1﹣时,取到最小值.。
江苏省苏州市吴中区九年级数学上学期期中试卷(含解析) 苏科版

江苏省苏州市吴中区2016-2017学年九年级(上)期中数学试卷一、选择题1.下列方程中,是一元二次方程的是()A.x2+=0 B.ax2+bx+c=0C.(x﹣1)(x﹣2)=1 D.3x2﹣2xy﹣5y2=02.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于()A.60° B.80° C.40° D.50°3.用配方法解一元二次方程x2﹣2x﹣3=0时,方程变形正确的是()A.(x﹣1)2=2 B.(x﹣1)2=4 C.(x﹣1)2=1 D.(x﹣1)2=74.一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根 B.有一个实数根C.有两个相等的实数根D.没有实数根5.如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=8,且AE:BE=1:4,则AB的长度为()A.10 B.5 C.12 D.56.已知圆锥的底面半径为3cm,母线长为5cm,则圆锥的侧面积是()A.20cm2B.20πcm2C.15cm2D.15πcm27.在平面直角坐标系中,⊙O的半径为5,圆心O为坐标原点,则点P(3,﹣4)与⊙O的位置关系是()A.点P在⊙O上B.点P在⊙O外部C.点P在⊙O内部D.不能确定8.如图,PA、PB切⊙O于点A、B,CD是⊙O的切线,交PA、PB于C、D两点,△PCD的周长是36,则AP的长为()A.12 B.18 C.24 D.99.下列说法一定正确的是()A.三角形的内心是三内角角平分线的交点B.过三点一定能作一个圆C.同圆中,同弦所对的圆周角相等D.三角形的外心到三边的距离相等10.如图,半径为1的⊙O与正五边形ABCDE的边AB、AE相切于点M、N,则劣弧MN的长度为()A.π B.π C.πD.π二、填空题11.方程x2=x的解是.12.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为.13.若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是.14.一种药品经过两次降价,药价从原来每盒60元降至到现在48.6元,设平均每次降价的百分率为x,则列方程为.15.直角三角形的两直角边长分别为6和8,它的外接圆的半径是.16.如图,经过原点O的⊙P与x、y轴分别交于A、B两点,点C是劣弧上一点,则∠ACB= .17.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为的中点.若∠A=40°,则∠B= 度.18.如图,P为⊙O的直径AB延长线上的一点,PC切⊙O于点C,弦CD⊥AB,垂足为点E,若PC=3,PB=2.则圆的半径为.19.已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n= .20.在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为.三、解答题(共70分)21.(8分)解下列方程:(1)x2﹣4x﹣3=0;(2)(x﹣1)(x+2)=2(x+2).22.(8分)已知关于x的一元二次方程kx2﹣4x+2=0有实数根.(1)求k的取值范围;(2)若△ABC中,AB=AC=2,AB,BC的长是方程kx2﹣4x+2=0的两根,求BC的长.23.(8分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=8,AC=6,求DE的长.24.(9分)如图,在平面直角坐标系中,过格点A,B,C作一圆弧.(1)画出圆弧所在圆的圆心P;(2)过点B画一条直线,使它与该圆弧相切;(3)连结AC,求线段AC和弧AC围成的图形的面积.25.(8分)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?26.(9分)如图,在平面直角坐标系中,点A、C的坐标分别为(0,8)、(6,0),以AC为直径作⊙O,交坐标轴于点B,点D是⊙O 上一点,且弧BD=弧AD,过点D作DE⊥BC,垂足为E.(1)求证:CD平分∠ACE;(2)判断直线ED与⊙O的位置关系,并说明理由;(3)求线段CE的长.27.(10分)如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD.(1)求证:AD=AN;(2)若AB=4,ON=1,求⊙O的半径;(3)若S△CMN:S△ADN=1:8,且AE=4,求CM.28.(10分)如图,Rt△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,且∠ACB=90°,AB=5,BC=3,点P在射线AC上运动,过点P作PH⊥AB,垂足为H.(1)直接写出线段AD及⊙O半径的长;(2)设PH=x,PC=y,求y关于x的函数关系式;(3)当PH与⊙O相切时,求相应的y值.2016-2017学年江苏省苏州市吴中区九年级(上)期中数学试卷参考答案与试题解析一、选择题1.下列方程中,是一元二次方程的是()A.x2+=0 B.ax2+bx+c=0C.(x﹣1)(x﹣2)=1 D.3x2﹣2xy﹣5y2=0【考点】一元二次方程的定义.【分析】根据一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件进行解答.【解答】解:A、不是关于x的一元二次方程,故此选项错误;B、a=0时不是一元二次方程,故此选项错误;C、是一元二次方程,故此选项正确;D、不是一元二次方程,故此选项错误;故选:C.【点评】此题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于()A.60° B.80° C.40° D.50°【考点】三角形的外接圆与外心.【分析】由OB=OC,∠OCB=40°,根据等边对等角与三角形内角和定理,即可求得∠BOC的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,求得∠A的度数.【解答】解:∵OB=OC,∠OCB=40°,∴∠OBC=∠OCB=40°,∴∠BOC=180°﹣40°﹣40°=100°,∴∠A=∠BOC=50°.故选D.【点评】此题考查了圆周角定理与等腰三角形的性质.此题比较简单,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.3.用配方法解一元二次方程x2﹣2x﹣3=0时,方程变形正确的是()A.(x﹣1)2=2 B.(x﹣1)2=4 C.(x﹣1)2=1 D.(x﹣1)2=7【考点】解一元二次方程-配方法.【分析】利用配方法解已知方程时,首先将﹣3变号后移项到方程右边,然后方程左右两边都加上一次项系数一半的平方1,左边化为完全平方式,右边合并为一个非负常数,即可得到所求的式子.【解答】解:x2﹣2x﹣3=0,移项得:x2﹣2x=3,两边都加上1得:x2﹣2x+1=3+1,即(x﹣1)2=4,则用配方法解一元二次方程x2﹣2x﹣3=0时,方程变形正确的是(x﹣1)2=4.故选:B【点评】此题考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将方程常数项移动方程右边,二次项系数化为1,然后方程左右两边都加上一次项系数一半的平方,方程左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程来求解.4.一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根 B.有一个实数根C.有两个相等的实数根D.没有实数根【考点】根的判别式.【分析】要判断方程x2﹣4x+4=0的根的情况就要求出方程的根的判别式,然后根据判别式的正负情况即可作出判断.【解答】解:∵a=1,b=﹣4,c=4,∴△=16﹣16=0,∴方程有两个相等的实数根.故选C.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5.如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=8,且AE:BE=1:4,则AB的长度为()A.10 B.5 C.12 D.5【考点】垂径定理;勾股定理.【分析】连接OC,设AE=x,表示出半径,在Rt△OCE中,用勾股定理得出x的值,从而得出AB的长.【解答】解:连接OC,设AE=x,∵AE:BE=1:4,∴BE=4x,∴OC=2.5x,∴OE=1.5x,∵CD⊥AB,∴CE=DE,∵CD=8,∴CE=4,Rt△OCE中,OE2+CE2=OC2,∴(1.5x)2+42=(2.5x)2,∴x=2,∴AB=10,故选A.【点评】本题考查了勾股定理以及垂径定理,掌握勾股定理以及垂径定理的用法是解题的关键.6.已知圆锥的底面半径为3cm,母线长为5cm,则圆锥的侧面积是()A.20cm2B.20πcm2C.15cm2D.15πcm2【考点】圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×3×5÷2=15π.故选D.【点评】本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.7.在平面直角坐标系中,⊙O的半径为5,圆心O为坐标原点,则点P(3,﹣4)与⊙O的位置关系是()A.点P在⊙O上B.点P在⊙O外部C.点P在⊙O内部D.不能确定【考点】点与圆的位置关系;坐标与图形性质.【分析】先根据勾股定理求出OP的长,再与⊙P的半径为5相比较即可.【解答】解:∵圆心P的坐标为(3,﹣4),∴OP==5.∵⊙P的半径为5,∴原点O在⊙P上.故选A.【点评】本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.8.如图,PA、PB切⊙O于点A、B,CD是⊙O的切线,交PA、PB于C、D两点,△PCD的周长是36,则AP的长为()A.12 B.18 C.24 D.9【考点】切线的性质.【分析】由于DA、DC、BC都是⊙O的切线,可根据切线长定理,将△PCD的周长转换为PA、PB的长,然后再进行求解即可.【解答】解:∵PA、PB分别是⊙O的切线,且切点为A、B;∴PA=PB;同理,可得:DE=DA,CE=CB;则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=36,∴PA=PB=18,故选B.【点评】此题主要考查了切线长定理的应用,能够将△PCD的周长转换为切线PA、PB的长是解答此题的关键.9.下列说法一定正确的是()A.三角形的内心是三内角角平分线的交点B.过三点一定能作一个圆C.同圆中,同弦所对的圆周角相等D.三角形的外心到三边的距离相等【考点】三角形的内切圆与内心;角平分线的性质;三角形的外接圆与外心.【分析】分别根据确定圆的条件、垂径定理、三角形的外心与内心的定义对各选项进行逐一分析即可.【解答】解:A、符合内心的定义,故本选项正确.B、不在同一直线上的三点确定一个圆,故本选项错误;C、同圆中,同弦所对的圆周角不一定相等,故本选项错误;D、不符合外心的定义,故本选项错误;故选A.【点评】本题考查的是三角形的内切圆与内心,熟知三角形三个内角角平分线的交点叫三角形的内心是解答此题的关键.10.如图,半径为1的⊙O与正五边形ABCDE的边AB、AE相切于点M、N,则劣弧MN的长度为()A.π B.π C.πD.π【考点】正多边形和圆;切线的性质;弧长的计算.【分析】连接OM,ON,首先根据切线的性质和正五边形的性质求得圆心角的度数,然后利用弧长公式进行计算.【解答】解:如图:连接OM,ON,∵⊙O与正五边形ABCDE的边AB、AE相切于点M、N,∴OM⊥AB,ON⊥AC,∵∠A=108°,∴∠MON=72°,∵半径为1,∴劣弧MN的长度为: =π,故选B.【点评】本题考查了正多边形和圆的知识,解题的关键是能够连接OM和ON,从而求得劣弧所在扇形的圆心角,利用扇形弧长公式求解.二、填空题11.方程x2=x的解是x1=0,x2=1 .【考点】解一元二次方程-因式分解法.【分析】将方程化为一般形式,提取公因式分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【解答】解:x2=x,移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1【点评】此题考查了解一元二次方程﹣因式分解法,利用此方法解方程时,首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.12.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为﹣2 .【考点】根与系数的关系.【分析】设关于x的方程x2+3x+a=0的两根分别为m、n,由根与系数的关系可得出m+n=﹣3,结合m=﹣1,即可得出结论.【解答】解:设关于x的方程x2+3x+a=0的两根分别为m、n,由已知得:,解得:n=﹣2.故答案为:﹣2.【点评】本题考查了根与系数的关系以及解一元一次方程,解题的关键是得出方程两根之和为﹣3.本题属于基础题,难度不大,解决该题型题目时,由根与系数的关系得出两根之和与两根之积是关键.13.若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是相离.【考点】直线与圆的位置关系.【分析】先求出⊙O的半径,再根据圆心O到直线l的距离为3即可得出结论.【解答】解:∵⊙O的直径是4,∴⊙O的半径r=2,∵圆心O到直线l的距离为3,3>2,∴直线l与⊙O相离.故答案为:相离.【点评】本题考查的是直线与圆的位置关系,若圆的半径为r,圆心到直线的距离为d,d >r时,圆和直线相离;d=r时,圆和直线相切;d<r时,圆和直线相交.14.一种药品经过两次降价,药价从原来每盒60元降至到现在48.6元,设平均每次降价的百分率为x,则列方程为60(1﹣x)2=48.6 .【考点】由实际问题抽象出一元二次方程.【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降价的百分率)=48.6,把相应数值代入即可求解.【解答】解:第一次降价后的价格为60×(1﹣x),二次降价后的价格在第一次降价后的价格的基础上降低的,为60×(1﹣x)×(1﹣x),所以可列方程为60(1﹣x)2=48.6.【点评】考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.15.直角三角形的两直角边长分别为6和8,它的外接圆的半径是 5 .【考点】三角形的外接圆与外心.【分析】首先根据勾股定理,得斜边是10,再根据其外接圆的半径是斜边的一半,得出其外接圆的半径.【解答】解:∵直角边长分别为6和8,∴斜边是10,∴这个直角三角形的外接圆的半径为5.故答案为:5.【点评】本题考查的是直角三角形的外接圆半径,重点在于理解直角三角形的外接圆是以斜边中点为圆心,斜边长的一半为半径的圆.16.如图,经过原点O的⊙P与x、y轴分别交于A、B两点,点C是劣弧上一点,则∠ACB= 90°.【考点】圆周角定理;坐标与图形性质.【分析】由经过原点O的⊙P与x、y轴分别交于A、B两点,点C是劣弧上一点,根据在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得答案.【解答】解:∵∠AOB=90°,∴∠ACB=∠AOB=90°.故答案为:90°.【点评】此题考查了圆周角的性质.注意在同圆或等圆中,同弧或等弧所对的圆周角相等.17.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为的中点.若∠A=40°,则∠B= 70 度.【考点】圆周角定理;圆心角、弧、弦的关系.【分析】首先连接BD,由AB为⊙O的直径,根据直径所对的圆周角是直角,可求得∠ADB 的度数,继而求得∠ABD的度数,由圆的内接四边形的性质,求得∠C的度数,然后由点C为的中点,可得CB=CD,即可求得∠CBD的度数,继而求得答案.【解答】解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠A=40°,∴∠ABD=90°﹣∠A=50°,∠C=180°﹣∠A=140°,∵点C为的中点,∴CD=CB,∴∠CBD=∠CDB=20°,∴∠ABC=∠ABD+∠CBD=70°.故答案为:70°.【点评】此题考查了圆周角定理、圆的内接四边形的性质以及弧与弦的关系.注意准确作出辅助线是解此题的关键.18.如图,P为⊙O的直径AB延长线上的一点,PC切⊙O于点C,弦CD⊥AB,垂足为点E,若PC=3,PB=2.则圆的半径为.【考点】切线的性质;勾股定理;垂径定理.【分析】首先连接OC,由PC切⊙O于点C,OC⊥PC,然后设圆的半径为x,由勾股定理可得方程:x2+32=(x+2)2,解此方程即可求得答案.【解答】解:连接OC,∵PC切⊙O于点C,∴OC⊥PC,∴OC2+PC2=OP2,设圆的半径为x,则OC=x,OP=OB+PB=x+2,∴x2+32=(x+2)2,解得:x=,∴圆的半径为:.故答案为:.【点评】此题考查了切线的性质以及勾股定理的应用.注意准确作出辅助线,利用方程思想求解是解此题的关键19.已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n= 8 .【考点】根与系数的关系;一元二次方程的解.【分析】根据m+n=﹣=﹣2,m•n=﹣5,直接求出m、n即可解题.【解答】解:∵m、n是方程x2+2x﹣5=0的两个实数根,∴mn=﹣5,m+n=﹣2,∵m2+2m﹣5=0∴m2=5﹣2mm2﹣mn+3m+n=(5﹣2m)﹣(﹣5)+3m+n=10+m+n=10﹣2=8故答案为:8.【点评】此题主要考查了一元二次方程根根的计算公式,根据题意得出m和n的值是解决问题的关键.20.在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为24 .【考点】一次函数综合题.【分析】根据直线y=kx﹣3k+4必过点D(3,4),求出最短的弦CB是过点D且与该圆直径垂直的弦,再求出OD的长,再根据以原点O为圆心的圆过点A(13,0),求出OB的长,再利用勾股定理求出BD,即可得出答案.【解答】解:∵直线y=kx﹣3k+4=k(x﹣3)+4,∴k(x﹣3)=y﹣4,∵k有无数个值,∴x﹣3=0,y﹣4=0,解得x=3,y=4,∴直线必过点D(3,4),∴最短的弦CB是过点D且与该圆直径垂直的弦,∵点D的坐标是(3,4),∴OD=5,∵以原点O为圆心的圆过点A(13,0),∴圆的半径为13,∴OB=13,∴BD=12,∴BC的长的最小值为24;故答案为:24.【点评】此题考查了一次函数的综合,用到的知识点是垂径定理、勾股定理、圆的有关性质,关键是求出BC最短时的位置.三、解答题(共70分)21.解下列方程:(1)x2﹣4x﹣3=0;(2)(x﹣1)(x+2)=2(x+2).【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)将方程的左边配成完全平方式即可求解;(2)移项然后提取公因式即可求解.【解答】解:(1)∵x2﹣4x﹣3=0,∴x2﹣4x+4﹣4﹣3=0,∴(x﹣2)2=7,∴x﹣2=±∴x1=2﹣,x2=2+;(2)∵(x﹣1)(x+2)=2(x+2),∴(x+2)(x﹣1﹣2)=0,∴x+2=0或x﹣3=0,∴x1=﹣2,x2=3.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.22.已知关于x的一元二次方程kx2﹣4x+2=0有实数根.(1)求k的取值范围;(2)若△ABC中,AB=AC=2,AB,BC的长是方程kx2﹣4x+2=0的两根,求BC的长.【考点】解一元二次方程-因式分解法;根的判别式;三角形三边关系.【分析】(1)若一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于k的不等式,即可求出k的取值范围.(2)由于AB=2是方程kx2﹣4x+2=0,所以可以确定k的值,进而再解方程求出BC的值.【解答】解:(1)∵方程有实数根,∴△=b2﹣4ac=(﹣4)2﹣4×k×2=16﹣8k≥0,解得:k≤2,又因为k是二次项系数,所以k≠0,所以k的取值范围是k≤2且k≠0.(2)由于AB=2是方程kx2﹣4x+2=0,所以把x=2代入方程,可得k=,所以原方程是:3x2﹣8x+4=0,解得:x1=2,x2=,所以BC的值是.【点评】本题主要考查了一元二次方程的根的判别式的应用,容易出现的错误是忽视根的判别式应用的前提条件:二次项系数k≠0.23.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=8,AC=6,求DE的长.【考点】圆周角定理;勾股定理;垂径定理.【分析】(1)根据圆周角定理可得∠ACB=90°,则∠CAB的度数即可求得,在等腰△AOD 中,根据等边对等角求得∠DAO的度数,则∠CAD即可求得;(2)易证OE是△ABC的中位线,利用中位线定理求得OE的长,则DE即可求得.【解答】解:(1)∵AB是半圆O的直径,∴∠ACB=90°,又∵OD∥BC,∴∠AOD=∠B=70°,∴∠CAB=90°﹣∠B=90°﹣70°=20°,∵OA=OD,∴∠DAO=∠ADO===55°,∴∠CAD=∠DAO ﹣∠CAB=55°﹣20°=35°;(2)在直角△ABC 中,BC===2,∵OE ⊥AC ,∴AE=EC ,又∵OA=OB ,∴OE=BC=. 又∵OD=AB=4,∴DE=OD ﹣OE=4﹣.【点评】本题主要考查了圆周角定理以及三角形的中位线定理,正确证明OE 是△ABC 的中位线是解答此题的关键.24.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧.(1)画出圆弧所在圆的圆心P ;(2)过点B 画一条直线,使它与该圆弧相切;(3)连结AC ,求线段AC 和弧AC 围成的图形的面积.【考点】作图—复杂作图;垂径定理;切线的判定;扇形面积的计算.【分析】(1)连接BC ,作BC 的垂直平分线,交坐标轴与P ,P 即为圆心;(2)先连接BP ,再过B 点作BP 的垂线即为所求过点B 且与该弧相切的直线;(3)首先得出∠APC=90°,进而利用扇形面积以及三角形面积公式求出即可.【解答】解:(1)连接BC ,作BC 的垂直平分线,再利用网格得出AB 的垂直平分线,即可得出交点P 的位置;(2)如图所示:EF即为所求;(3)连接AP,PC,AC,∵AP=,PC=,AC=,∴AP2+PC2=AC2,∴△APC是直角三角形,∴∠APC=90°,∴S扇形APC==,S△APC=××=,∴线段AC和弧AC围成的图形的面积为:﹣.【点评】本题主要考查作图﹣复杂作图以及等腰直角三角形的判定和扇形面积与三角形面积求法等知识,关键是根据题意确定出圆心P的位置.25.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?【考点】一元二次方程的应用.【分析】根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可.【解答】解:设购买了x件这种服装且多于10件,根据题意得出:[80﹣2(x﹣10)]x=1200,解得:x1=20,x2=30,当x=20时,80﹣2(20﹣10)=60元>50元,符合题意;当x=30时,80﹣2(30﹣10)=40元<50元,不合题意,舍去;答:她购买了20件这种服装.【点评】此题主要考查了一元二次方程的应用,根据已知得出每件服装的单价是解题关键.26.如图,在平面直角坐标系中,点A、C的坐标分别为(0,8)、(6,0),以AC为直径作⊙O,交坐标轴于点B,点D是⊙O 上一点,且弧BD=弧AD,过点D作DE⊥BC,垂足为E.(1)求证:CD平分∠ACE;(2)判断直线ED与⊙O的位置关系,并说明理由;(3)求线段CE的长.【考点】圆的综合题.【分析】(1)根据四边形ABCD是⊙O内接四边形,可得∠DCE=∠BAD,根据弧BD=弧AD,可得∠BAD=∠ACD,等量代换得到∠DCE=∠ACD,从而求解;(2)直线ED与⊙O相切.连接OD.根据圆的性质和等边对等角可得∠ODC=∠OCD,等量代换得到∠DCE=∠ODC,根据平行线的判定和性质得到∠ODE=∠DEC,再根据垂直的定义和性质可得OD⊥DE,根据切线的判定即可求解;(3)延长DO交AB于点H.根据三角形中位线定理可得HO=BC=3,根据勾股定理可得OD,得到HD,再根据矩形的判定和性质得到BE=HD=8,从而得到CE的长.【解答】解:(1)∵四边形ABCD是⊙O内接四边形,∴∠BAD+∠BCD=180°,又∵∠BCD+∠DCE=180°,∴∠DCE=∠BAD,∵弧BD=弧AD,∴∠BAD=∠ACD,∴∠DCE=∠ACD,∴CD平分∠ACE.(2)直线ED与⊙O相切.连接OD.∵OC=OD,∴∠ODC=∠OCD,又∵∠DCE=∠ACD,∴∠DCE=∠ODC,∵OD∥BE,∴∠ODE=∠DEC,又∵DE⊥BC,∴∠DEC=90°,∴∠ODE=90°∴OD⊥DE,∴ED与⊙O相切.(3)延长DO交AB于点H.∵OD∥BE,O是AC的中点,∴H是AB的中点,∴HO是△ABC的中位线,∴HO=BC=3,又∵AC为直径,∴∠ADC=90°,又∵O是AC的中点∴OD=AC=×=5,∴HD=3+5=8,∵∠ABC=∠DEC=∠ODE=90°,∴四边形BEDH是矩形,∴BE=HD=8,∴CE=8﹣6=2.【点评】考查了圆的综合题,涉及的知识点有:内接四边形的性质,等弧对等角,圆的性质和等边对等角,平行线的判定和性质,垂直的定义和性质,切线的判定,三角形中位线定理,勾股定理,矩形的判定和性质.综合性较强,有一定的难度.27.(10分)(2016秋•吴中区期中)如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD.(1)求证:AD=AN;(2)若AB=4,ON=1,求⊙O的半径;(3)若S△CMN:S△ADN=1:8,且AE=4,求CM.【考点】相似三角形的判定与性质;勾股定理;垂径定理.【分析】(1)先根据圆周角定理得出∠BAD=∠BCD,再由直角三角形的性质得出∠ANE=∠CNM,故可得出∠BCD=∠BAM,由全等三角形的判定定理得出△ANE≌△ADE,故可得出结论;(2)先根据垂径定理求出AE的长,设NE=x,则OE=x﹣1,NE=ED=x,r=OD=OE+ED=2x﹣1,连结AO,则AO=OD=2x﹣1,在Rt△AOE中根据勾股定理可得出x的值,进而得出结论;(3)根据线段垂直平分线的判定得到AE平分ND,于是得到S△AEN=S△ADE通过△CMN∽△AEN,即可得到结论.【解答】(1)证明:∵∠BAD与∠BCD是同弧所对的圆周角,∴∠BAD=∠BCD,∵AE⊥CD,AM⊥BC,∴∠AMC=∠AEN=90°,∵∠ANE=∠CNM,∴∠BCD=∠BAM,∴∠BAM=BAD,在△ANE与△ADE中,,∴△ANE≌△ADE,∴AD=AN;(2)解:∵AB=4,AE⊥CD,∴AE=2,又∵ON=1,∴设NE=x,则OE=x﹣1,NE=ED=x,r=OD=OE+ED=2x﹣1连结AO,则AO=OD=2x﹣1,∵△AOE是直角三角形,AE=2,OE=x﹣1,AO=2x﹣1,∴(2)2+(x﹣1)2=(2x﹣1)2,解得x=2,∴r=2x﹣1=3;(3)解:∵AD=AN,AB⊥CD,∴AE平分ND,∴S△AEN=S△ADE∵S△CMN:S△AND=1:8,∴S△CMN:S△AEN=1:4,又∵△CMN∽△AEN,∴()2=,∵AE=4,∴CM=2.【点评】本题考查的是垂径定理,相似三角形的判定和性质,勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.28.(10分)(2016秋•吴中区期中)如图,Rt△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,且∠ACB=90°,AB=5,BC=3,点P在射线AC上运动,过点P作PH⊥AB,垂足为H.(1)直接写出线段AD及⊙O半径的长;(2)设PH=x,PC=y,求y关于x的函数关系式;(3)当PH与⊙O相切时,求相应的y值.【考点】圆的综合题.【分析】(1)三角形的内切圆的性质即可;(2)先判断出∠C=∠PHA=90°,进而得出,△AHP∽△ACB,得出的比例式建立方程即可;(3)分当点P在线段AC上时和当点P在AC的延长线上时两种情况讨论计算.【解答】解:(1)⊙O的半径r=(AC+BC﹣AB)=(4+3﹣5)=1;∴AD=3(2)①如图1,若点P在线段AC上时.在Rt△ABC中,AB=5,AC=4,BC=3,∵∠C=90°,PH⊥AB,∴∠C=∠PHA=90°,∵∠A=∠A,∴△PAH∽△BAC,∴∴y=﹣x+4,即y与x的函数关系式是y=﹣x+4(0≤x≤2.4);②同理,当点P在线段AC的延长线上时,△AHP∽△ACB,∴y=x﹣4,即y与x的函数关系式是y=x﹣4(x>2.4),(3)①当点P在线段AC上时,如图2,P′H′与⊙O相切.∵∠OMH′=∠MH′D=∠H′DO=90°,OM=OD,∴四边形OMH′D是正方形,∴MH′=OM=1;由(1)知,四边形CFOE是正方形,CF=OF=1,∴P′H′=P′M+MH′=P′F+FC=P′C,即x=y;又由(2)知,y=﹣x+4,解得,y=.②当点P在AC的延长线上时,如图,P″H″与⊙O相切.此时y=1.【点评】此题是圆的综合题,主要考查了圆的性质,正方形的判定和性质,相似三角形的判定和性质,解本题的关键是判断出,△AHP∽△ACB.。
2014-2015学年苏科版九年级上期中数学模拟试卷及答案

2014-2015学年江苏省扬州市宝应县曹甸中学九年级(上)期中数学模拟试卷(二)
一.选择题(共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来! 1.(3分)已知一个扇形的弧长为10πcm,圆心角是150°,则它的半径长为( ) A. 12cm B. 10cm C. 8cm D. 6cm
2.(3分)(2014•临沂)从1、2、3、4中任取两个不同的数,其乘积大于4的概率是( ) A. B. C. D.
3.(3分)如图,过⊙O内一点M的最长弦长为12cm,最短弦长为8cm,那么OM长为( )
A. 6cm B. cm C. cm D. 9cm 4.(3分)下列命题正确的个数是( ) ①平分弧的直径垂直平分弧所对的弦; ②平分弦的直径平分弦所对的弧; ③垂直于弦的直线必过圆心; ④垂直于弦的直径平分弦所对的弧. A. 1个 B. 2个 C. 3个 D. 4个
5.(3分)二次函数y=ax2+bx+c的y与x的部分对应值如下表: x … 0 1 3 4 … y … 2 4 2 ﹣2
…
则下列判断中正确的是( ) A. 抛物线开口向上 B. 抛物线与y轴交于负半轴 C. 当x=﹣1时y>0 D. 方程ax2+bx+c=0的负根在0与﹣1之间
6.(3分)已知点E在半径为5的⊙O上运动,AB是⊙O的一条弦且AB=8,则使△ABE的面积为8的点E共有( )个. A. 1 B. 2 C. 3 D. 4
7.(3分)在同一平面直角坐标系中,函数y=kx+2k和函数y=﹣kx2+4x+2(k是常数,且k≠0)的图象可能是( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页(共25页) 2014-2015学年江苏省苏州市吴中区九年级(上)期中数学试卷 一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相对应的位置上.) 1.(3分)下列方程是一元二次方程的是( ) A.x﹣2=0 B.x2﹣4x﹣1=0 C.x2﹣2x﹣3 D.xy+1=0 2.(3分)一元二次方程x2﹣x﹣2=0的解是( ) A.x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=2 D.x1=﹣1,x2=﹣2 3.(3分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是( )
A.CM=DM B. C.∠ACD=∠ADC D.OM=BM 4.(3分)如图,AB是⊙O的直径,若∠BAC=35°,则∠ADC=( )
A.35° B.55° C.70° D.110° 5.(3分)一元二次方程x2﹣4x+5=0的根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.只有一个实数根 D.没有实数根 6.(3分)圆的半径为4,圆心到直线l的距离为3,则直线l与⊙O位置关系是( ) A.相离 B.相切 C.相交 D.相切或相交 7.(3分)如图是某射击选手5次设计成绩的折线图,根据图示信息,这5次成 第2页(共25页)
绩的众数、中位数分别是( ) A.7、8 B.7、9 C.8、9 D.8、10 8.(3分)给出下列四个结论:①经过三点确定一个圆;②所对弦相等的两条弧是等弧;③三角形的内心是三角形三个内角平分线的交点;④正多边形都是轴对称图形.其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个 9.(3分)在一幅长为80cm、宽为50cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是5400cm2,设金色纸边的宽为x cm,那么x满足的方程是( )
A.x2+65x﹣350=0 B.x2+130x﹣1400=0 C.x2﹣65x﹣350=0 D.x2﹣130x﹣1400=0 10.(3分)如图,扇形DOE的半径为3,边长为的菱形OABC的顶点A,C,B分别在OD,OE,上,若把扇形DOE围成一个圆锥,则此圆锥的高为( )
A. B.2 C. D. 第3页(共25页)
二、填空题(本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上.) 11.(3分)把方程x(x+3)=﹣2化为一元二次方程的一般形式(二次项系数为正数)后,常数项是 . 12.(3分)一元二次方程(x﹣1)2=2的根是 . 13.(3分)如图,AB是⊙O的弦,OC⊥AB于C.若AB=,OC=1,则半径OB的长为 .
14.(3分)有一副扑克牌,共52张(不包括大、小王),其中梅花、方块、红心、黑桃四种花色各有13张,把扑克牌充分洗匀后,随意抽取一张,抽得黑桃的概率是 . 15.(3分)⊙O为△ABC的外接圆,∠BOC=100°,则∠A= . 16.(3分)若关于x的一元二次方程x2+3x+a=0有一个根是﹣1,则方程x2﹣ax=0的根是 . 17.(3分)⊙O的半径为R,点O到直线l的距离为d,R,d是方程x2﹣4x+m=0的两根,当直线l与⊙O相切时,m的值为 . 18.(3分)阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为 . 第4页(共25页)
三、解答题(本大题共11小题,共76分,把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.) 19.(8分)解下列关于x的方程: (1)2x2﹣4x+1=0(配方法) (2)2﹣x=3x(x﹣2) 20.(5分)如图,已知直角坐标系中,A(0,4)、B(4,4)、C(6,2), (1)写出经过A、B、C三点的圆弧所在圆的圆心M的坐标:( , ); (2)判断点D(5,﹣2)与圆M的位置关系.
21.(5分)甲、乙两组数据(单位:,厘米)如下: 甲组:173 172 174 174 173 173 172 173 172 174 乙组:173 174 171 173 174 173 173 174 172 173 (1)根据以上数据填表 极差(单位:厘米) 平均数(单位:厘米) 方差(单位:厘米2) 甲组 2 0.6 乙组 173 (2)那一组数据比较稳定?为什么? 22.(5分)一只箱子里共有3个小球,其中2个白球,1个红球,它们除颜色外都相同.从箱子中任意摸出一个小球,不将它放回箱子,搅匀后再摸一个小球,求两次摸出球都是白球的概率.(用树状图表示) 23.(6分)已知a是一元二次方程x2+3x﹣1=0的实数根,求代数式:÷
(a+2﹣)的值. 24.(6分)如图1,已知⊙O的弦MN所对的弧是120°,圆心O到MN所在的直线的距离是4. 第5页(共25页)
(1)求弦MN的长; (2)如图2,若点M是的中点,弦AB与MN交于D,请直接写出:∠ADN= 度.
25.(7分)已知关于x的方程x2﹣mx+﹣=0. (1)求证:无论m取什么数,方程总有两个实数根; (2)若▱ABCD的两边AB,AD的长是已知方程的两个实数根; ①当m为何值时,▱ABCD是菱形?求出这时菱形的边长; ②若AB的长为2,那么▱ABCD的周长是多少? 26.(7分)春秋旅行社为吸引学校组织师生开展社会实践活动,推出了如图对话中收费标准.某校组织师生去无锡开展实践活动,共支付给春秋旅行社活动费用30600元.请问该校这次共有多少名师生去无锡开展社会实践活动?
27.(8分)如图,已知AB为⊙O的直径,弦BD平分∠ABH,过点D作DH⊥BH于点H,BH交⊙O于点C. (1)求证:DH是⊙O的切线; (2)小强同学通过探究发现:BH+CH=AB,请你帮助小强同学证明这一结论. 第6页(共25页)
28.(9分)在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时,点Q从点B出发沿BC边向点C以每秒2cm的速度移动.如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题: (1)运动开始后第几秒时,△PBQ的面积等于8cm2? (2)当运动开始后秒时,试判断△DPQ的形状; (3)在运动过程中,是否存在这样的时刻,使以Q为圆心,PQ为半径的圆正好经过点D?若存在,求出运动时间;若不存在,请说明理由.
29.(10分)已知关于x的方程x2﹣2(k﹣3)x+k2﹣4k﹣1=0. (1)若这个方程有实数根,求实数k的取值范围; (2)若以方程x2﹣2(k﹣3)x+k2﹣4k﹣1=0的两个根x1、x2为横坐标、纵坐标的点恰在直线y=m﹣x上. ①填空:m= (用k的代数式表示); ②若直线y=m﹣x与平面直角坐标系xOy两坐标轴的交点分别为A、B,△AOB的内切圆半径和外接圆半径分别为r、R,是否存在实数k,使(3+2)r2+4R2=x1x2?若存在,求出k的值;若不存在,说明理由. 第7页(共25页) 第8页(共25页)
2014-2015学年江苏省苏州市吴中区九年级(上)期中数学试卷 参考答案与试题解析
一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相对应的位置上.) 1.(3分)下列方程是一元二次方程的是( ) A.x﹣2=0 B.x2﹣4x﹣1=0 C.x2﹣2x﹣3 D.xy+1=0 【解答】解:A、本方程未知数x的最高次数是1;故本选项错误; B、本方程符合一元二次方程的定义;故本选项正确; C、x2﹣2x﹣3是代数式,不是等式;故本选项错误; D、本方程中含有两个未知数x和y;故本选项错误; 故选:B.
2.(3分)一元二次方程x2﹣x﹣2=0的解是( ) A.x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=2 D.x1=﹣1,x2=﹣2 【解答】解:(x﹣2)(x+1)=0 x﹣2=0或x+1=0, 所以x1=2,x2=﹣1. 故选:C.
3.(3分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是( ) 第9页(共25页)
A.CM=DM B. C.∠ACD=∠ADC D.OM=BM 【解答】解:∵AB是⊙O的直径,弦CD⊥AB, ∴CM=DM,=,=, ∴∠ACD=∠ADC. 故选:D.
4.(3分)如图,AB是⊙O的直径,若∠BAC=35°,则∠ADC=( )
A.35° B.55° C.70° D.110° 【解答】解:∵AB是⊙O的直径, ∴∠ACB=90°, ∵∠BAC=35°, ∴∠ABC=180°﹣90°﹣35°=55°, ∴∠ADC=∠ABC=55°. 故选:B.
5.(3分)一元二次方程x2﹣4x+5=0的根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.只有一个实数根 D.没有实数根 【解答】解:∵a=1,b=﹣4,c=5, ∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0, 所以原方程没有实数根.