信号的调制与解调(完整版)
信号的GMSK调制与解调

二比特延迟差分检测框图如图4.3所示。
Cp(t)
图4.3二比特延迟差分检测器框图
如图4.3所示,采用2bit差分解调是,中频滤波器输出首先通过硬限幅电路消除振幅的变化,再与经过2 时延的信号相乘后的输出为:
(4.6)
式中
(4.7)
当 (k为整数)时,
图3.4波形储存正交调制器产生GMSK信号
4.GMSK解调
4.1一比特差分检测
在接收端,调制后的GMSK信号经过数字下变频后恢复成I、O两路信号后,可以运用一比特差分检测进行解调。根据1比特差分检测算法找出在一比特周期内接收到的信号在相位方面的改变量。这种相位方面的改变量可以用(4.1)式表示:
(4.1)
2.把差分编码器的输出数据用串/并变换器分成两路,并相互交错一个比特宽度Tb;
3.用加权函数 和 分别对两路数据进行加权;
4.用两路加权后的数据分别对正交载波 和 进行调制;
5.把两路输出信号叠加。
MSK信号属于数字频率调制信号,因此可以采用一般鉴频器方式进行解调,其原理如图2.4所示。鉴频器解调方式结构简单,容易实现。
由于 及 小于 ,故式(4.5)的第一项在 时刻的抽样值为正值,设为 第二项在 时刻的抽样值可能为正值也可能为负值。若当前码元与前一码元相同,则 与 的符号相同,即第二项的抽样值为正。若当前码元与前一码元不同,则第二项的抽样值为负。可见,若令
(4.12)
则可将信息代码 表示为
(4.13)
称 为绝代吗, 为相对码(差分码)即对输入数据进行差分编码。
高斯低通滤波器的传输函数为
(3.1)
式中,a是与高斯滤波器的3dB带快 有关的一个常数。有3dB带宽定义有
(3.2)
AM信号的调制与解调

一、题目分析调幅调制和解调在理论上包括了信号处理,调幅调制和解调在理论上包括了信号处理,模拟电子,模拟电子,高频电子和通信原理等知识,识,涉及比较广泛。
涉及比较广泛。
涉及比较广泛。
在实际上包括了各种不同信息传输的最基本原理,在实际上包括了各种不同信息传输的最基本原理,在实际上包括了各种不同信息传输的最基本原理,是大多数是大多数设备发射与接收的基本部分,所以我们做的这个课题是有很大的意义的。
本设计报告总体分为两大问题:本设计报告总体分为两大问题:信号的解调和调制。
信号的解调和调制。
在调制部分省略了载波信号的放大、的放大、功放部分,功放部分,功放部分,要调制的信号也同样省略了放大部分,要调制的信号也同样省略了放大部分,要调制的信号也同样省略了放大部分,所以在调制中保留了所以在调制中保留了调制器中的主要部分—乘法器,调制器中的主要部分—乘法器,在解调部分也只是保留了检波器部分,在解调部分也只是保留了检波器部分,在解调部分也只是保留了检波器部分,即二极管即二极管检波器。
检波器。
在确定电路后,利用了EDA 软件Multisim 进行仿真来验证结果。
进行仿真来验证结果。
二、电路的总框图三、调制部分 1、AM 调制波电路图调制信号调制信号乘法器乘法器载波信号半波整流器半波整流器低通滤波器已调波已调波R1500ΩR2500ΩR3500ΩQ12N2222Q32N2222Q22N2222Q52N2222Q72N2222Q42N2222Q62N2222Q82N2222Q92N2222R951ΩR46.8kΩR851ΩR1010kΩKey=A50%W1500kΩKey=A 50%R1110kΩKey=A50%C3100uFC210nF R1451ΩR71kΩR131kΩR121kΩR53.9kΩR63.9kΩC110nF C410nFC510nF Q102N2222R1675kΩR1775kΩR182kΩR192kΩVCC12VVEE -8VXFG1XFG2XSC2V2120 60 0°XSC3V3120 Vrms 60 Hz 0°XSC4V5120 Vrms 60 Hz 0° V4120 Vrms 60 Hz 0°32310302928027252410VEE VCC 0181514171613121198750643213322载波信号载波信号调制信号调制信号A 模拟乘法器模拟乘法器AM 波三极管放大电路三极管放大电路调制信号:fs=10kHz Vsm=22mv 已调信号已调信号频谱图C62nFC72nF 100uF R20510¦510¦¸¸R2110k¦10k¦¸¸R2210k¦10k¦¸XSC1A BExt Trig++__+_V1120 Vrms60 Hz 0¡0¡ããD11LH62XSA2TIN 21201926二极管峰值包络检波器 二极管峰值包络检波器解调后的信号的周期f=10kHz 与要调制的信号周期保持不变,而幅值变为原来调制信号幅值的1/4。
信号调制解调

由上式可见,除了由于载波分量而在处形成两个冲激函数之外,这个频谱与抑制载波的AM的频谱相同。
2。幅度调制在中、短波广播和通信中使用甚多。幅度调制的不足是抗干扰能力差,因为各种工业干扰和天电干扰都会以调幅的形式叠加在载波上,成为干扰和杂波
四.解调的原理
解调是从携带消息的已调信号中恢复消息的过程。在各种信息传输或处理系统中,发送端用所欲传送的消息对载波进行调制,产生携带这一消息的信号。接收端必须恢复所传送的消息才能加以利用,这就是解调。解调是调制的逆过程。调制方式不同,解调方法也不一样。与调制的分类相对应,解调可分为正弦波解调(有时也称为连续波解调)和脉冲波解调。正弦波解调还可再分为幅度解调、频率解调和相位解调,此外还有一些变种如单边带信号解调、残留边带信号解调等。同样,脉冲波解调也可分为脉冲幅度解调、脉冲相位解调、脉冲宽度解调和脉冲编码解调等。对于多重调制需要配以多重解调。
过程:
输入信号经过乘法器与cos0t相乘,得到已调信号fS(t)=m(t)cos0t,其频谱为FS(j)=½{F[j(-0)]+F[j(+0)]}
而h(t)为一带阻滤波器,仅保留有效的频带。
输出得到频谱为 的信号
由此可见,原始信号的频谱被搬移到了频率较高的载频附近,达到了调制的目的。
已调信号的频谱表明原信号的频谱中心位于上,且关于对称。它是一个带通信号。
解调过程除了用于通信、广播、雷达等系统外还广泛用于各种测量和控制设备。例如,在锁相环和自动频率控制电路中采用鉴相器或鉴频器来检测相位或频率的变化,产生控制电压,然后利用负反馈电路实现相位或频率的自动控制。
五.调制解调的应用
调制在无线电发信机中应用最广。图1为发信机的原理框图。高频振荡器负责产生载波信号,把要传送的信号与高频振荡信号一起送入调制器后,高频振荡被调制,经放大后由天线以电磁波的形式辐射出去。其中调制器有两个输入端和一个输出端。这两个输入分别为被调制信号和调制信号。一个输出就是合成的已调制的载波信号。例如,最简单的调制就是把两个输入信号分别加到晶体管的基极和发射极,集电极输出的便是已调信号。
信号调制与解调

一、调制与解调【设计要求】(1) 运用所学知识实现对简单信号的调整和解调。
(2) 在对信号的幅度,频率等的调制中,掌握方法,观察调制波形。
(3) 了解MATLAB有关信号调用的子函数。
【设计工具】MATLAB【设计原理】1、将某一个载有信息的信号嵌入另一个信号的过程一般称之为调制;而将这个载有信息的信号提取出来的过程称为解调。
将会看到,调制技术不仅仅是能将信息嵌入到能有效传输的信号中去,而且还能够把频谱重叠的多个信号通过一种复用的概念在同一信道上同时传输。
2、由相关的理论可知,信号若要从发射端传输到接收端,就必须进行频率搬移。
调制的作用就是进行各种信号的频谱搬移,使其托附在不同频率的载波上,与其他信号互不重叠,占据不同的频率范围,在同一信道内进行互不干扰的传输,实现多路通信。
信号的调制分为幅度调制,频率调制,相位调制。
3、信号的幅度调制与解调信号的幅度调制实际上就是将原时域基带信号与载波信号进行相乘运算,解调则是用已解调信号与载波信号进行相乘运算,然后用低通滤波器将原来信号分解出来。
现在以知一个基带信号为错误!未找到引用源。
在发射端被调制成频带信号错误!未找到引用源。
在接收端信号被调解为错误!未找到引用源。
通过低通滤波器思考怎样恢复出基带信号错误!未找到引用源。
,并描绘出上述各信号的时域波形和频域波形,其中,采样点数N取1000.4、用modulate进行信号幅度,频率,相位的调制(1)信号的幅度调制现在已知一个频率为1Hz的基带信号,用频率为10Hz的载频信号进行幅度调制。
(处理采样信号时采样点数N取100)思考处理信号时采样点如何取比较合适?(2)信号的频率调制现在已知一个频率为1Hz的基带信号,用频率为10Hz的载频信号进行幅度调制。
(处理采样信号时采样点数N取100)用matlab实现调制的仿真结果。
(3)现在已知一个频率为1Hz的基带信号,用频率为10Hz的载频信号进行幅度调制。
(处理采样信号时采样点数N取100)源程序t=linspace(0,100,100);%线性等分向量ft=3*sin(6*t);%原始信号fs=100;%采样点数f=[-500:499]/1000*fs;%采样频率yk=fft(ft,1000);%求频谱yw=2*pi/1000*abs(fftshift(yk));%傅里叶变换Sm=ft.*cos(60*t);%调制信号yk1=fft(Sm,1000);%求频谱yw1=2*pi/1000*abs(fftshift(yk1));%傅里叶变换%%%%%====================%%%%%figure(1)subplot(2,1,1);plot(t,ft);title('原始时域信号');text(58,2,'g(t)=3sin(6t)')grid;subplot(2,1,2);plot(f,yw);title('原始频域信号');grid;figure(2)subplot(2,1,1);plot(t,Sm);title('调制时域信号');text(60,2,'f(t)=3sin(6t)cos(60t)')grid;subplot(2,1,2);plot(f,yw1);title('调制频域信号')%%%%%====================%%%%%Fs=1000;%采样点数t=linspace(0,100,100);%线性等分向量ft=3*sin(6*t);%原始信号sm=ft.*cos(60*t);%调制信号m0=sm.*cos(60*t);%解调信号N=Fs;%采样点数Yk=fft(m0,2048);%离散频谱变换的点数Yw=2*pi/N*abs(fftshift(Yk));%傅里叶变换Fw=[-1024:1023]/2048*100;b=ones(1,10)/10;ft1=2*filtfilt(b,1,m0);%低通滤波器Yk1=fft(ft1,2048);Yw1=2*pi/N*abs(fftshift(Yk1));%频谱figure(3)subplot(2,1,1);plot(m0);title('解调时域信号');text(60,2,'g0(t)=3sin(6t)cos(60t)cos(60t)') grid;subplot(2,1,2);plot(Fw,Yw);title('解调频域信号');grid;figure(4)subplot(2,1,1);plot(ft1);title('滤波时域信号');grid;subplot(2,1,2);plot(Fw,Yw1);title('滤波频域信号')fs=100;t=linspace(-0.5,1.5,100);fc=10;ft=sin(2*pi*t);%调幅信号y1=modulate(ft,fc,fs,'amdsb-sc');%调频信号y2=modulate(ft,fc,fs,'fm');%调频信号y3=modulate(ft,fc,fs,'pm');%调相信号figure(5)subplot(4,1,1);plot(ft)title('原始信号');grid onsubplot(4,1,2);plot(y1)title('调幅信号');grid onsubplot(4,1,3);plot(y2)title('调频信号');grid onsubplot(4,1,4); plot(y3)title('调相信号'); grid on。
数字信号的调制与解调

第二章数字信号地调制与解调主要讲述地内容:信息传递方式一般分为基带传输与频带传输两种。
基带传输是指无需进行基带频谱搬移就能以基带信号形式传输地方式。
频带传输若将基带信号地频谱搬移到某个载波频带内进行传输地方式。
预备知识2.0微波与卫星通信中地调制, 解调技术地特点与种类2.1时分复用与数字信号地调制与解调2.3相干解调地载波跟踪技术2.4频分复用与模拟信号地调制2.22.0 预备知识2.0.1为什么要调制?1.无线电通信使用空间辐射方式,把信号从发射端传送到接收端。
根据电磁波理论,发射天线尺寸为被发射信号波长地十分之一或更大些,信号才能有效地被发射出去(λ=c/f)。
假如要发射一个300Hz地音频信号(其波长为106m),则就必须要用100km长地天线,这是无法实现地。
2.另外,大气层对基带信号迅速衰减,对较高频率范围地信号则能传播很远地距离,因此,要通过大气层远距离传送基带信号,就需要极高频率地载波信号来携带被传送地基带信号,这就是调制。
2.0.2调制定理1.调制地概念所谓调制是指用基带信号对载波(通常为余弦或正弦)波形地某些参数(如幅度,相位与频率)进行控制,使这些参数随基带信号地变化而变化。
通常是将调制信号调制到中频(70MHz或140MHz),然后在频谱搬移到射频(此时不调制)。
2.调制地分类根据调制信号地性质,调制又可分为模拟信号调制与数字信号调制。
模拟信号调制:所调制地基带信号为模拟信号时地调制就是模拟信号调制。
数字信号调制:所调制地基带信号为数字信号时地调制就是数字信号调制。
模拟调制与数字调制地基本区别就在于其基带信号地形式不同。
但是都采用余弦波作为载波信号,由于余弦信号有幅度,相位与频率三种基本参量,因此可以构成调幅,调相与调频三种基本调制方式3.调制定理在通信系统中,常常会遇到基带信号f(t)与余弦信号相乘地情况。
信号地频谱由一个频率位置搬移到另一个频率位置上。
概念:上边带:位于ωc之上地部分下边带:位于ωc之下地部分4.解调原理解调也叫检波,其作用就是从接收到地已调波中无失真地恢复出调制信号。
通信系统的信号调制与解调技术

通信系统的信号调制与解调技术概述:- 通信系统是现代社会中不可或缺的重要组成部分,它将信息通过信号的调制与解调来实现传输和接收。
- 信号调制是将原始信号转换为适合传输的模拟信号或数字信号的过程,而解调则是将接收到的信号转换回原始信号的过程。
一、调制技术:1. 调制的基本概念:- 在通信过程中,为了能够有效地传输信号并提高抗干扰能力,需要将原始信号转换为适合传输的信号形式。
- 调制是指通过改变原始信号的某些特性,将其转换为另一种形式的信号。
2. 调制的分类:- 模拟调制:- 频率调制(FM):根据原始信号的幅度变化来调制载波频率。
- 相位调制(PM):根据原始信号的幅度变化来调制载波相位。
- 幅度调制(AM):根据原始信号的幅度变化来调制载波幅度。
- 数字调制:- 脉冲振幅调制(PAM):将数字信号转换为一系列脉冲的幅度。
- 正交振幅调制(QAM):将数字信号转换为正交的两路模拟信号。
- 频移键控(FSK):将数字信号通过改变频率来调制载波。
- 相移键控(PSK):将数字信号通过改变相位来调制载波。
3. 调制的过程:- 信号调制的过程一般分为两步:载波生成和调制。
a. 载波生成:- 载波是指能够传输信号的电磁波。
- 载波可以由频率稳定的振荡器产生,频率由待调制信号的带宽决定。
b. 调制:- 将待传输的信号与产生的载波进行合理的叠加或调整,以达到信号传输的目的。
- 通过改变载波的幅度、频率或相位来实现信号的调制。
二、解调技术:1. 解调的基本概念:- 解调是指将调制信号还原为原始信号的过程,是调制的逆过程。
2. 解调的分类:- 线性解调:- 包络检测:通过检测调幅信号的包络来还原原始信号。
- 频率鉴别:通过检测调频或调相信号的频率变化来还原原始信号。
- 包络鉴别:通过检测调幅信号的包络和频率变化来还原原始信号。
- 非线性解调:- 直接检测:直接从调制信号中提取原始信号。
3. 解调的过程:- 解调的过程与调制相反,一般分为两步:接收和解调。
无线通信网络中的信号调制与解调技术
无线通信网络中的信号调制与解调技术随着科技的不断进步和发展,无线通信网络已经成为我们生活中不可或缺的一部分。
而在无线通信网络中,信号调制与解调技术则是实现信息传输的核心。
本文将探讨无线通信网络中的信号调制与解调技术的原理和应用。
一、信号调制技术信号调制是将数字信号转换为模拟信号的过程,主要包括调幅(AM)、调频(FM)和调相(PM)三种调制方式。
调幅是将数字信号的振幅变化应用到载波信号上,使得载波信号的振幅随着数字信号的变化而变化。
调幅技术在无线电广播和电视传输中得到广泛应用,它具有传输距离远、抗干扰能力强的优点。
调频是将数字信号的频率变化应用到载波信号上,使得载波信号的频率随着数字信号的变化而变化。
调频技术在无线电通信中应用广泛,如调频广播、无线电对讲机等,它具有传输质量高、抗噪声能力强的特点。
调相是将数字信号的相位变化应用到载波信号上,使得载波信号的相位随着数字信号的变化而变化。
调相技术在无线通信中应用广泛,如调制解调器、无线局域网等。
调相技术具有传输效率高、抗多径衰落能力强的优势。
二、信号解调技术信号解调是将调制信号还原为原始信号的过程,主要包括包络检测、频率解调和相位解调三种解调方式。
包络检测是通过检测调制信号的振幅变化来还原原始信号。
包络检测技术在调幅信号的解调中应用广泛,如无线电广播接收机等。
它的原理简单,但抗干扰能力较差。
频率解调是通过检测调制信号的频率变化来还原原始信号。
频率解调技术在调频信号的解调中得到广泛应用,如调频广播接收机、无线电对讲机等。
它具有抗噪声能力强、传输质量高的特点。
相位解调是通过检测调制信号的相位变化来还原原始信号。
相位解调技术在调相信号的解调中应用广泛,如调制解调器、无线局域网等。
相位解调技术具有传输效率高、抗多径衰落能力强的优势。
三、信号调制与解调技术的应用信号调制与解调技术在现代无线通信网络中得到广泛应用,如移动通信、卫星通信、无线局域网等。
在移动通信中,调幅技术主要应用于2G网络,如GSM网络;调频技术主要应用于3G网络,如CDMA网络;而调相技术主要应用于4G网络,如LTE网络。
数字信号的调制与解调
1.2 多进制和数字基带信号的数学表达式
1、二进制和多进制数
无线通信中引入多元波来表达多进制数的目的是提高数字信
号传输的速率。下面通过二进制和四进制数字传输的比较来
说明多进制数为何能够提高传输速率。
(a)是用二进制数进行传输
1.2 多进制和数字基带信号的数学表达式
1、二进制和多进制数
无线通信中引入多元波来表达多进制数的目的是提高数字信 号传输的速率。下面通过二进制和四进制数字传输的比较来 说明多进制数为何能够提高传输速率。
(a)是用二进制数进行传输 二进制数“101101”的波 形图
(b)是用四进制数传输四进 制数“011011100010(用 二进制表示四进制数)的波 形图
1.2 多进制和数字基带信号的数学表达式
1、二进制和多进制数 用电压波形来表示多进制数,一个码位就必须具有多个不同 的状态,下面以4进制数的表示为例进行讨论。
每个码位分为4个离散的电平状态,电平0,1,2和3,分别 代表4进制数的0,1,2和3,用二进制数表示4进制数,即为 00,01,10和11。作了这样的规定以后,相应的波就可以用 来表示多进制数。
1.2 多进制和数字基带信号的数学表达式 (2)双极性波
信号双极性波形时,设二进制数为{a0a1a2……an……},这时 基带信号可以用函数S1(t)表示
S1( t ) an g( t nTb ) ( an 1 )g( t nTb )
n
设二进制数为{101001},表明a0=1,a1=0,a2=1,a3=0, a4=0,a4=1,代入上式可得
二进制数“101101”的波
形图
(b)是用四进制数传输四进
AM调制与解调
第一章 调制解调的基本原理第一节 调制的基本原理“调制”就是使信号f(t)控制载波的某一个或某些参数(如振幅、频率、相位等),是这些参数按照信号f(t)的规律变化的过程。
载波可以是正弦波或脉冲序列。
以正弦型信号作载波的调制叫做连续波调制。
调制后的载波就载有调制信号所包含的信息,称为已调波。
对于连续波调制,已调信号可以表示为())(cos )()t (t ot t A ϑωϕ+=它有振幅频率和相位三个参数构成。
改变三个参数中的任何一个都可以携带同样的信息。
因此连续波的调制可分为调幅、调相、和调频。
调制在通信过程中起着极其重要的作用:无线电通信是通过空间辐射方式传输信号的,调制过程可以将信号的频谱搬移到容易以电磁波形势辐射的较高范围;此外,调制过程可以将不同的信号通过频谱搬移托付至不同频率的载波上,实现多路复用,不至于互相干扰。
按照被调制信号参数的不同,调制的方式也不同。
如果被控制的参数是高频振荡的幅度,则称这种调制方式为幅度调制,简称调幅;如果被控制的参数是高频振荡的频率或相位,则称这种调制方式为频率调制或相位调制,简称调频或调相(调频与调相又统称调角)。
振幅调制是一种实用很广的连续波调制方式。
幅度调制的特点是载波的频率始终保持不变,它的振幅却是变化的。
其幅度变化曲线与要传递的低频信号是相似的。
它的振幅变化曲线称之为包络线,代表了要传递的信息。
第二节解调的基本原理解调是调制的逆过程,它的作用是从已调波信号中取出原来的调制信号。
调制过程是一个频谱搬移的过程,它将低频信号的频谱搬移到载频位置。
如果要接收端回复信号,就要从已调信号的频谱中,将位于载频的信号频谱再搬回来。
解调分为相干解调和非相干解调。
相干解调是指为了不失真地恢复信号,要求本地载波和接收信号的载波必须保持同频同相。
非相干解调主要指利用包络检波器电路来解调的。
包络检波电路实际上是一个输出端并接一个电容的整流电路。
二极管的单向导电性和电容器的充放电特性和低通滤波器滤去高频分量,得到与包络线形状相同的音频信号,见图1.2.3 。
SSB信号的调制与解调
SSB信号的调制与解调一.题目要求:用matlab 产生一个频率为1Hz,功率为1 的余弦信源,设载波频率ωc=10Hz,,试画出:SSB 调制信号的时域波形;采用相干解调后的SSB 信号波形;SSB 已调信号的功率谱;在接收端带通后加上窄带高斯噪声,单边功率谱密度0 n = 0.1,重新解调。
二.实验原理:1.单边带调制只传送一个边带的调制方式,SSB信号的带宽是与消息信号m(t)相同。
对信号采取先调制搬频,再过低通(高通)滤波器取上(下)边带的方法进行调制。
2. 单边带信号解调方法:相干解调法相干解调后让信号过低通滤波器,取得有用信号()t m 21,其幅度为调制信号一半。
三. 实验结果与分析1. 信号发送端调制信号与载波时域图形:由题意生成一个频率为1Hz ,功率为1 的余弦信源,设载波频率ωc =10Hz ,如图:如图,调制信号为低频信号,载波为高频信号。
tt()()[]()()()t t m t t m t m tt t m t t m 0002sin ˆ212cos 2121cos sin ˆcos ωωωωω++=+2. 假设信道理想,对信号进行调制与解调:如图可知,经相干解调后的单边带信号时域形状不变,仅仅是幅度变为原信号的一半。
3. 调制信号、SSB 信号与解调后信号频谱比较:-2-1012调制信号时域波形-1-0.500.51相干解调后的信号时域波形t-20-15-10-50510152002调制信号功率谱f-20-15-10-5051015202SSB 信号功率谱f-20-15-10-50510152001调制信号功率谱f由信号频谱图可知:(1) S SB 调制是对调制信号进行搬频之后去边带,其频带宽度与原调制信号相同,频带利用率提高。
(2) 对SSB 信号进行相干解调还原出原始信号的频谱与原调制信号相同,但其幅度减半。
从数学公式结合物理角度看,SSB 信号进行相干解调后仅有()t m 21为有用信号,其余频率成分被低通滤波器滤掉了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统
课
程
设
计
设计题目:信号的调制与解调
院系:机械电子工程系
专业班级:09应用电子技术
学生姓名:谢焱松吴杰谭雨恒刘庆
学号:09353017 09353018 09353019 09353020
专业班级:文如泉
起止时间:2010.12.13-2010.12.25
设计任务:
信号的调制与解调
•目的:理解Fourier变换在通信系统中的应用:掌握调制与解调的基本原理。
•要求:实现信号的调制与解调。
•内容:调制信号为一取样信号(自己选,一般取常见的信号),利用MATLAB分析幅度调制(AM)产生的信号频谱,比较信号调制前后的频谱并解调已调信号。
设载波信号的频率为100HZ。
•方法:应用MATLAB平台。
•参考资料:MATLAB相关书籍。
教师点评:
一、课程设计目的
利用MATLAB 集成环境下的Simulink 仿真平台,设计一个2ASK/2DPSK 调制与解调系统。
用示波器观察调制前后的信号波形;用频谱分析模块观察调制前后信号频谱的变化;加上各种噪声源,用误码测试模块测量误码率;最后根据运行结果和波形来分析该系统性能。
二、课程设计要求
(1)熟悉MATLAB 环境下的Simulink 仿真平台,熟悉2ASK/2DPSK 系统的调制解调原理,构建调制解调电路图。
(2)用示波器观察调制前后的信号波形,用频谱分析模块观察调制前后信号的频谱的变化。
并观察解调前后频谱有何变化以加深对该信号调制解调原理的理解。
(3)在调制与解调电路间加上各种噪声源,用误码测试模块测量误码率,并给出仿真波形,改变信噪比并比较解调后波形,分析噪声对系统造成的影响。
(4)在老师的指导下,要求独立完成课程设计的全部内容,并按要求编写课程设计学年论文,能正确阐述和分析设计和实验结果。
三、基本原理
1 ASK 调制与解调
ASK 即幅移键控(振幅键控),是一种相对简单的调制方式。
对于振幅键控这样的线性调制来说,在二进制里,2ASK 是利用基带矩形脉冲去键控一个连续的载波,使载波时断时续的输出,有载波输出时表示发送“1”,反之表示发送“0”。
根据线性调制的原理,一个2ASK 信号可表示为:t w t s t e c cos )()(0=。
式中,w c 为载波角频率,s(t)为单极性NRZ 矩形脉冲序列∑-=n
b n nT t g a t s )()(。
其中,g(t)是持续时
间为T b 、高度为1的矩形脉冲,常称为门函数;a n 为二进制数字 调制:幅移键控相当于模拟信号中的调幅,只不过与载频信号相乘的是二进制数码
而已。
幅移就是把频率、相位作为常量,而把振幅作为变量,信息比特是通过载波的幅度来传递的。
二进制振幅键控它实际是当调制的数字信号为“1”时,传输载波;当调制的数字信号为“0”时,不传输载波。
原理如图1所示。
载波信号一般用正弦信号,调制信号是把数字序列转换成矩形脉冲序列,通断键控将矩形脉冲序列与载波相乘,把频谱搬移到载波频率附近,实现2ASK 。
波形如图2示。
解调:2ASK 信号解调的常用方法主要有两种:包络检波法和相干检测法。
本课程设计采用相干解调法。
相干检测法是利用此载波与收到的已调信号相乘,经低通滤波滤除第二项高频分量后,即可输出s(t)信号,低通滤波器的截止频率与基带数字信号的最高频率相等。
由于
噪声影响及传输特性的不理想,低通滤波器输出波形有失真,经抽样判决、整形后再生数字基带脉冲,原理如图3所示。
2 DPSK 调制与解调
二进制差分相移键控常简称为二相相对调相,记为2DPSK 。
它是用前后码元的相对载波相位值传送数字信息,所谓相对载波相位是只本码元初相与前一码元初相之差。
调制:2DPSK 方式即是利用前后相邻码元的相对载波相位值去表示数字信息的一种方式。
例如,假设相位值用相位偏移△φ表示(△φ定义为本码元初相与前一码元初
图1 ASK 调制原理 cos w c t
S 2ASK (t)
b(t) 图2 输出后2ASK 的波形
图3 ASK 信号的相干解调
解调器 2ASK 信号
e 0(t) s (t
z (t y(t) cos w c
LP BP 抽 样
判决器 定时脉冲
相只差),并设:
△φ=π→数字信息1;△φ=0→数字信息0
则数字信息序列与2DPSK信号的码元相位关系可举例表示如如下:
数字信息:0 0 1 1 1 0 0 1 0 1
2DPSK信号相位:0 0 0 π0 πππ0 0 π
或πππ0 π0 0 0 ππ0
画出的2PSK及DPSK信号的波形如图4示。
图4 2PSK 及2DPSK信号的波形
2DPSK的产生基本类似于2PSK,只是调制信号需要经过码型变换,将绝对码变为相对码,其原理图如图5所示。
图5 2DPSK信号的调制原理图
可见,2DPSK信号的功率谱密度和2PSK信号的功率谱密度是完全一样的。
解调:2DPSK信号可以采用相干解调法和差分相干解调法。
文中采用相干解调法,其解调原理是:先对2DPSK信号进行相干解调,恢复出相对码,再通过码反变换器变换为绝对码,从而恢复出发送的二进制数字信息,如图6所示,(a)和(b)分别表示解调器原理图和解调过程各点时间波形。
图6(b) 2DPSK的相干解调波形
3 2ASK/2DPSK调制与解调
2ASK/2DPSK调制与解调:即将2DPSK的调制与解调系统嵌入到2ASK调制于解调系统中。
整个过程为:ASK调制——DPSK调制——DPSK解调——ASK解调
四、系统设计
1 ASK调制与解调
构建ASK调制与解调电路,如图7所示,并用示波器观察调制与解调前后的信号
图 7 ASK 调制与解调电路图
波形,如图8所示。
将基带信号与载波信号相乘,经过带同滤波器,就完成了调制过程;经过信道传输
后,经过带同滤波器,与本地载波相乘,再经过低通滤波器,最后经过抽样判决起转换成数字信号,就完成了解调过程。
图8 ASK调制与解调波形图
第一路波形为基带信号,第二路波形为载波,第三波形路为调制后的信号,第四路波形为已调信号经过带同滤波器和低通滤波器后所得信号,第五路波形为经过抽样判决器过得到的解调波形。
2 DPSK调制与解调
图9 DPSK调制与解调电路图
构建DPSK调制与解调电路,并用示波器观察调制与解调前后的信号波形。
图9是DPSK采用模拟调制的电路图。
调制电路的主要模块是码型变换模块,它主
要是完成绝对码波形转换为相对码波形,在实际的仿真中基带信号要先经过差分编码,
图10 DPSK调制与解调波形
再进行极性双变换,得到的信号与载波一起通过相乘器,就完成了调制过程。
仿真结果如图10所示。
3 ASK/DPSK调制与解调
根据ASK和DPSK调制与解调电路图以及ASK/DPSK调制与解调的原理,构建ASK/DPSK调制与解调电路,如图11所示,调制与解调前后的信号波形如图12。
图11 ASK/DPSK 调制与解调电路
第一路波形为基带信号,第二路信号为载波信号,第三路信号为基带信号与载波相乘所得信号,第四路信号为所得信号经过带通滤波器后的已调波,第五路信号是经过抽
样判决后的数字信号,第六路信号是经过封装部分的DPSK调制与解调后所得的信号,第七路信号是经过带通滤波器后与本地载波相乘后的所得信号,第八路信号是经过低通滤波器后的信号,第九路信号是经过抽样判决器后的解调信号。
图12 ASK/DPSK调制与解调波形
其中subsystem中封装的DPSK调制与解调电路图如图13,波形如图14所示。
图13 封装的DPSK调制与解调电路图
第一路信号是载波,第二路信号是ASK调制信号,第三路信号是经过码变换和单双极性变换后,与载波相乘所得的调制信号,第四路信号第三路信号相同,为了观察噪
声对信号的影响而加入,第五路信号经过带通滤波器后,与本地载波相乘后,再通过低通滤波器后得到的信号,第六路信号是经过抽样判决器后的DPSK解调信号。
图14 封装的DPSK调制与解调波形图
图15 基带信号频谱图16 ASK调制后信号频谱
图17 DPSK调制后信号频谱图18 DPSK解调后信号频谱
将频谱分析模块加入到基带信号处,其频谱如图15所示;将频谱分析模块加入到。