统计推断中的参数估计方法

合集下载

数理统计: 参数估计方法

数理统计: 参数估计方法
23
引例
设总体 X 服从参数为 的指数分布, 未知,
X1 , X 2 , , X n 是来自X的样本, x1 , x2 , , xn 是
相应的样本值,求 的矩估计量和矩估计值.
解 因为 E( X ) 所以 用样本矩替换总体矩, 得 的矩估计量
ˆ

1 n
n i 1
Xi

X
(
x)

1

e

x

,
x0
0,
其他.
但参数 未知。已知参数的取值范围,记为 。
给出样本的一组观察值,如何推断总体的分布?
【思路】给出 的估计,则得到对总体分布的推断。
【方法】根据一定的原则,从 中找到一个值(点) 作为的 估计。
点估计
2
点估计定义
设总体 X 的分布函数 F ( x; ) 的形式为已知,
的估计量.
4
二、估计量的评选标准 1. 无偏性
定义 若 X1, X 2 ,, X n 为总体 X 的一个样本,
是包含在总体 X 的分布中的待估参数, 若估计量ˆ ˆ( X1 , X 2 ,, X n )的数学期望 E(ˆ) 存在, 且对于任意 有
E(ˆ) 则称ˆ 是 的无偏估计量,否则称为有偏的.
(2) lim S 2 2 a.s. (强大数定律) n
即样本方差是总体方差2的强相合估计, 也是相合估计.
12
C. 样本标准差
其观察值:
S
S2
1 n1
n i 1
Xi

X
2
;
s
1 n1
n i 1
( xi

估计方法最小二乘法与极大似然估计

估计方法最小二乘法与极大似然估计

估计方法最小二乘法与极大似然估计估计方法是统计学中常用的一种工具,用于从样本数据中推断总体参数的值。

最小二乘法和极大似然估计是两种常见的估计方法,在不同的情境下被广泛应用。

本文将对这两种方法进行介绍,并比较它们的优缺点。

一、最小二乘法最小二乘法是一种常用的参数估计方法,它的核心思想是使观测数据与理论模型的预测值之间的残差平方和最小化。

通过最小化残差平方和,最小二乘法能够找到最优的参数估计值。

最小二乘法可用于线性回归、非线性回归以及参数估计等多个领域。

在线性回归问题中,最小二乘法可以用于拟合一个线性模型,使该模型与观测数据之间的残差平方和最小化。

具体地,假设我们有n个观测值(x,y),其中x为自变量,y为因变量。

线性回归的目标是找到最优的模型参数β0和β1,使得残差平方和最小化。

最小二乘法通过最小化残差平方和的方法来求解β0和β1的值。

除了线性回归问题,最小二乘法还可以用于非线性回归问题,其中模型可以是一些非线性函数。

通过将非线性模型转化为线性模型进行拟合,在最小二乘法的框架下,可以得到非线性模型的最优参数估计。

最小二乘法的优点在于易于理解和计算,具有较小的方差。

然而,最小二乘法也有一些缺点,比如对异常值非常敏感,并且对数据分布的假设要求较高。

二、极大似然估计极大似然估计是另一种常用的参数估计方法,它的核心思想是选择参数值,使得观测数据出现的概率最大化。

极大似然估计常用于统计模型的参数估计,可以用于概率分布参数的估计,以及对未知分布函数形式的参数估计。

假设我们有一组独立同分布的随机观测值x1, x2, ..., xn,我们希望通过这些观测值来对总体分布的参数进行估计。

极大似然估计的目标是选择最优的参数值,使得观测到这些数据的概率最大化。

以正态分布为例,假设我们观测到了一组随机变量x1, x2, ..., xn,我们希望通过这些观测值来估计正态分布的均值μ和方差σ^2。

使用极大似然估计,我们可以写出似然函数,然后通过最大化似然函数来求解最优的参数估计值。

第五章 参数估计

第五章 参数估计
(总体方差未知时,以样本方差代替)
1
X 2 t n1 n2 2
2
2 Sp
n1
n2
X
1
X 2 z
2
2 S12 S 2 n1 n2
2 Sp
2 2 n1 1S1 n2 1S 2
n1 n2 2
20
例题:

分别在城市1和城市2中随机抽取n1=400, n2=500的职工进行调查,经计算两城市职工的 平均月收入及标准差分别为X1=1650元,
22
思考题:

一个研究机构做了一项调查,以确定稳定的吸 烟者每周在香烟上的消费额。他们抽取49位固 定的吸烟者,发现均值为20元,标准差5元。
1.总体均值的点估计是多少?
2.总体均值μ的95%置信区间是什么?
23
思考题解答:
1.总体均值的点估计是20元。
2.总体均值μ的95%置信区间: 随机变量X表示每周香烟消费额,由题意可知,X=20, S=5,1-α=0.95,α=0.05;n=49 属于大样本,σ 未知以S估计。总体均值μ的95%置信区间为
P z Z z 1 2 2
P L U 1
X P z z 1 2 2 n
Step3:将上面等式进行等价变换即可。
P L U 1
第五章 参数估计
第五章 参数估计

利用样本数据对总体特征进行推断,通常在以下 两种情况下进行:

当总体分布类型已知(如:正态),根据样本数据对 总体分布的未知参数进行估计或检验。参数估 计或参数检验。(如:μ或σ为何?) 当总体分布类型未知或知道很少,根据样本数据 对总体的未知分布的形状或特征进行推断。非参 数检验。(如:是否正态分布?是否随机?)

参数估计的介绍

参数估计的介绍

参数估计的介绍一、总体参数估计概述统计推断(Statistical inference)就是根据样本的实际数据,对总体的数量特征作出具有一定可靠程度的估计和判断。

统计推断的基本内容有参数估计和假设检验两方面。

概括地说,研究一个随机变量,推断它具有什么样的数量特征,按什么样的模式来变动,这属于估计理论的内容,而推测这些随机变量的数量特征和变动模式是否符合我们事先所作的假设,这属于检验理论的内容。

参数估计和假设检验的共同点是它们都对总体无知或不很了解,都是利用部分观察值所提供的信息,对总体的数量特征作出估计和判断,但两者所要解决问题的着重点的所有方法有所不同。

本节先研究总体参数估计的问题。

总体参数估计是以样本统计量(即样本数字特征)作为未知总体参数(即总体数字特征)的估计量,并通过对样本单位的实际观察取得样本数据,计算样本统计量的取值作为被估计参数的估计值。

不论社会经济活动还是科学试验,人们作出某种决策之前总是要对许多情况进行估计。

例如商品推销人员要估计新式时装可能为消费者所学好的程度,自选商场经理要估计附近居民的购买能力,民意调查机构要估计竞选者的得票率,医药生产部门要推广某种药品的新配方,必须估计新药疗效的提高程度等等。

这些估计通常是在信息不完全、结果不确定的情况下作出。

参数估计为我们提供一套在满足一定精确度要求下根据部分信息来估计总体参数的真值,并作出同这个估计相适应的误差说明的科学方法。

科学的抽样估计方法要具备三个基本条件。

首先是要有合适的统计量作为估计量。

我们知道统计量是样本随机变量的函数,根据样本随机变量可以构造许多统计量,但不是所有的统计量都能够充当良好的估计量。

例如,从一个样本可以计算平均数、中位数、众数等等,现在要用来估计总体平均数,究竟以哪个样本统计量作为估计量更合适,如果采用样本平均数作为估计量,这就需要回答样本平均数和总体平均数存在什么样的内在联系,以样本平均数作为良好估计量的标准是什么等等。

参数估计

参数估计

6. 参数估计6.1. 参数估计概述统计学包括四个方面的问题,其中之一就是统计推断。

所谓统计推断就是指,如果有一个总体,其分布和统计量都不知道,如一批生产出来的产品的质量。

这样就需要对其进行推断,如一批灯泡的平均使用寿命是多少,是否为合格品等。

统计推断就是解决这些问题。

统计推断分为两个方面,一方面是参数估计,另一方面是假设检验。

6.1.1.参数估计所谓参数估计就是通过对样本的研究,来确定总体的统计量。

其中又可分为点估计和区间估计两类。

点估计就是估计出总体的某一统计量的确切值,如总体的均值、方差等。

通常可以通过样本的相应值来进行估计。

如:样本的平均值∑=i X nx 1是总体平均值的估计量; 样本的方差为∑=--=ni i x x n s 122)(11是总体方差的估计量; 点估计的优点在于它能明确地给出所估计的参数。

但是一般说来,估计的数值与实际值之间是肯定会有误差存在的。

在实际工作中常常需要对这种误差进行衡量,也就是说还需要确定这个估计值的精度,或误差范围和可信程度。

因此就产生了区间估计的问题。

区间估计是通过样本来估计总体参数可能位于的区间。

例如说一批产品的平均使用寿命为1000小时,这仅仅是一个点估计,还需要说明大多数产品(95%)的使用寿命的上限和下限值,比如说位于800~1200小时之间,这就是一个区间估计值。

因此,在进行区间估计时,除了要给出一个区间值外,还需要同时指明可以信赖的程度,即在进行区间估计时,需要确定的是αθθθ-=<<1)ˆˆ(21p ,其中α为事先给定的一个很小的正数,如0.10, 0.05, 0.01或0.001等,称之为显著水平;1-α称为参数θ的置信概率,或置信水平。

θ1和θ2为所估计的参数θ的区间范围的上下限。

其含为我们有100(1-α)%的把握相信所估计的参数θ位于θ1和θ2的区间范围内。

6.1.2.估计量的评价标准对于所给出的估计来说,有些是好的,有些则不是。

(07)第7章 参数估计

(07)第7章  参数估计
统计学
STATISTICS
第 7 章 参数估计
7.1 参数估计的一般问题 7.2 一个总体参数的区间估计 7.3 必要的样本容量的确定
7-1
统计学
STATISTICS
学习目标
1. 2. 3. 4.
估计量与估计值的概念 点估计与区间估计的区别 一个总体参数的区间估计方法 必要的样本容量的确定方法
7-2
统计学
STATISTICS
置信水平
1. 将构造置信区间的步骤重复很多次,置 信区间包含总体参数真值的次数所占的 比重称为置信水平,也叫做置信度 2. 表示为 (1 -

为总体参数未在区间内的比重
相应的 为0.01,0.05,0.10
3. 常用的置信水平值有 99%, 95%, 90%
2. 则,将所有样本均值标准化为t统计量:
t x n ~ t (n 1)
3. 最终,总体均值 在1-置信水平下的置信 区间为: s
x t
2
s
7 - 24
n
统计学
STATISTICS
t 分布
t 分布是类似正态分布的一种对称分布,它通常要比 正态分布平坦和分散。一个特定的t分布依赖于称之 为自由度的参数。随着自由度的增大,分布也逐渐 趋于正态分布
2
n
或 p z
p(1 - p)
2
( 未知时)
n
统计学
STATISTICS
总体比重的区间估计
(例题分析)
解:已知 n=100,p=65% , 1- = 95%, z/2=1.96
p z p (1 p )
2
【例】某城市想 要估计下岗职工 中女性所占的比 重,随机地抽取 了 100 名 下 岗 职 工,其中65人为 女性职工。试以 95%的置信水平 估计该城市下岗 职工中女性比重 的置信区间

参数估计

•设总体X的概率密度函数为f(x;θ),其 中θ为待估参数。对于从总体中取得的样 本观测值,其联合密度函数为Π f(xi;θ ),这是参数的函数,我们称之为θ的似 然函数
•L( θ)=Π f(xi;θ) •MLE就是要求使得似然函数达到极大的θ 作为该参数的估计量,记为ˆ ,并称 ˆ 为参数θ的极大似然估计
统计应用
二战中的经济情报
统计应用
4-2 参数估计
1 参数估计的一般问题 2 一个总体参数的区间估计 3 不同抽样技术的估计(略) 4 样本容量的确定
学习目标
1. 估计量与估计值的概念 2. 点估计与区间估计的区别 3. 评价估计量优良性的标准 4. 一个总体参数的区间估计方法 5. 样本容量的确定方法
总体均值的区间估计
(例题分析)
• 【例4.3】某企业生产某种产品的工人有 1000人,某日采用重复抽样从中随机抽取 100人,调查他们的当日产量为35件,产量 的样本标准差为4.5件,试以95.45%的置信 度估计平均产量的抽样极限误差和置信区 间。
总体均值的区间估计
(例题分析)
【 例 】一家食品生产企业以生产袋装食品为主,为对产量质 量进行监测,企业质检部门经常要进行抽检,以分析每袋重 量是否符合要求。现从某天生产的一批食品中随机抽取了25 袋,测得每袋重量(单位:g)如下表所示。已知产品重量的 分布服从正态分布,且总体标准差为10g。试估计该批产品 平均重量的置信区
统计方法
描述统计
推断统计
参数估计
假设检验
统计推断的过程
总体

样本统计量

如:样本均值、
比例、方差
1 参数估计的一般问题
1.1 估计量与估计值 1.2 点估计

参数估计量

参数估计量参数估计量是统计学中的一个重要概念,它用于描述样本数据与总体数据之间的关系。

在统计学中,我们通常通过收集一定数量的样本数据来推断总体数据的特征。

而参数估计量就是帮助我们从样本数据中推断总体数据特征的工具。

一、参数估计量的定义参数估计量是指在对总体分布进行描述时,利用样本信息对未知参数进行估计的统计量。

例如,在对某种药物治疗效果进行评价时,我们需要知道该药物治疗成功率的真实值。

但是由于人口数量庞大,我们无法测量每个人的治疗效果。

因此,我们只能通过抽取一部分人群作为样本来推断整个人群的治疗成功率。

这时候,我们需要使用参数估计量来对治疗成功率进行估计。

二、常见的参数估计量1. 样本均值样本均值是指将所有样本数值相加后再除以样本数量所得到的平均值。

它可以用来估计总体均值。

2. 样本方差样本方差是指将每个数值与平均数之差平方后相加再除以样本数量所得到的结果。

它可以用来估计总体方差。

3. 样本比例样本比例是指某个特定属性在样本中出现的频率。

它可以用来估计总体比例。

4. 样本标准差样本标准差是指样本方差的平方根。

它可以用来估计总体标准差。

三、参数估计量的性质1. 无偏性无偏性是指参数估计量的期望值等于真实参数值。

如果一个参数估计量是无偏的,那么在重复抽样时,该估计量的平均值会趋近于真实参数值。

2. 一致性一致性是指随着样本数量增加,参数估计量越来越接近真实参数值。

如果一个参数估计量是一致的,那么在重复抽样时,该估计量会逐渐趋近于真实参数值。

3. 有效性有效性是指一个参数估计量与其他可行的估计量相比,具有更小的方差。

如果一个参数估计量是有效的,那么它对于推断总体特征更加准确和可靠。

四、常见的点估计方法1. 极大似然法极大似然法是一种常见的点估计方法,它通过最大化似然函数来估计参数值。

具体而言,极大似然法会寻找一个参数值,使得该参数值下样本数据出现的概率最大。

2. 最小二乘法最小二乘法是一种常见的线性回归分析方法,它通过最小化误差平方和来估计参数值。

统计学中的参数估计与置信区间

统计学中的参数估计与置信区间统计学是关于收集、分析和解释数据的学科,其中包括了参数估计和置信区间的概念。

参数估计用于通过从样本中进行推断来估计总体参数的值,而置信区间则是对这个估计结果进行测量误差范围的一种方法。

一、参数估计参数估计是统计学中重要的概念,其目的是通过样本数据来估计总体参数的值。

总体参数是指总体分布的特征,例如均值、方差、比例等。

在实际研究中,很难直接获得总体数据,因此我们通常采用抽样方法,从总体中选取样本进行分析。

参数估计有两种方法:点估计和区间估计。

点估计是通过样本数据计算出一个单独的数值来估计总体参数的值,例如计算样本均值作为总体均值的估计值。

点估计简单直观,但无法确定其准确性。

因此,统计学家提出了置信区间的概念。

二、置信区间置信区间是一种用于衡量参数估计的不确定性的方法。

它提供了一个范围,其中包含了对总体参数值的估计。

置信区间由一个下限和一个上限组成,表示参数估计的可信程度。

通常,置信区间的置信水平设定为95%或90%。

置信区间的计算通常基于样本数据的分布特性和统计推断方法。

对于大样本,根据中心极限定理,可以使用正态分布来计算置信区间;对于小样本,根据t分布进行计算。

三、计算步骤下面以计算样本均值的置信区间为例来介绍计算步骤。

1. 收集样本数据,并计算样本均值。

2. 确定置信水平,例如95%。

3. 根据样本数据的特点,选择相应的分布进行计算。

若样本数据服从正态分布,可以使用正态分布进行计算;若样本数据不服从正态分布,可以使用t分布进行计算。

4. 根据所选分布的特点和样本大小,计算置信区间的下限和上限。

5. 解释置信区间的含义,例如可以说“置信区间为(下限,上限)表示我们有95%的信心相信总体均值在这个范围内”。

四、置信区间的应用置信区间的应用非常广泛,对于研究者和决策者来说都非常重要。

首先,置信区间可以用于总体参数估计。

通过置信区间,我们可以得到一个关于总体参数值的范围,而不只是一个点估计。

多元线性回归模型的公式和参数估计方法以及如何进行统计推断和假设检验

多元线性回归模型的公式和参数估计方法以及如何进行统计推断和假设检验多元线性回归模型是一种常用的统计分析方法,它在研究多个自变量与一个因变量之间的关系时具有重要的应用价值。

本文将介绍多元线性回归模型的公式和参数估计方法,并讨论如何进行统计推断和假设检验。

一、多元线性回归模型的公式多元线性回归模型的一般形式如下:Y = β0 + β1X1 + β2X2 + ... + βkXk + ε其中,Y表示因变量,X1至Xk表示自变量,β0至βk表示模型的参数,ε表示误差项。

在多元线性回归模型中,我们希望通过样本数据对模型的参数进行估计,从而得到一个拟合度较好的回归方程。

常用的参数估计方法有最小二乘法。

二、参数估计方法:最小二乘法最小二乘法是一种常用的参数估计方法,通过最小化观测值与模型预测值之间的残差平方和来估计模型的参数。

参数估计的公式如下:β = (X^T*X)^(-1)*X^T*Y其中,β表示参数矩阵,X表示自变量的矩阵,Y表示因变量的矩阵。

三、统计推断和假设检验在进行多元线性回归分析时,我们经常需要对模型进行统计推断和假设检验,以验证模型的有效性和可靠性。

统计推断是通过对模型参数的估计,来对总体参数进行推断。

常用的统计推断方法包括置信区间和假设检验。

1. 置信区间:置信区间可以用来估计总体参数的范围,它是一个包含总体参数真值的区间。

2. 假设检验:假设检验用于检验总体参数的假设是否成立。

常见的假设检验方法有t检验和F检验。

在多元线性回归模型中,通常我们希望检验各个自变量对因变量的影响是否显著,以及模型整体的拟合程度是否良好。

对于各个自变量的影响,我们可以通过假设检验来判断相应参数的显著性。

通常使用的是t检验,检验自变量对应参数是否显著不等于零。

对于整体模型的拟合程度,可以使用F检验来判断模型的显著性。

F检验可以判断模型中的自变量是否存在显著的线性组合对因变量的影响。

在进行假设检验时,我们需要设定显著性水平,通常是α=0.05。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计推断中的参数估计方法统计推断是统计学的一个重要分支,通过样本数据对总体参数进行估计,并对估计结果的可靠性进行推断。

在统计推断中,选择合适的参数估计方法至关重要。

本文将介绍几种常用的参数估计方法,包括点估计、区间估计和最大似然估计。

一、点估计
点估计是使用样本数据来估计总体参数的一种常用方法。

它的思想是根据样本数据得到一个单独的数值作为总体参数的估计值。

点估计的核心是选择一个合适的统计量作为参数的估计量。

常用的点估计方法有样本均值估计、样本方差估计和极大似然估计等。

例如,在对总体均值进行估计时,可以使用样本均值作为参数的点估计量。

这是因为根据大数定律,当样本足够大时,样本均值会无偏且一致地估计总体均值。

二、区间估计
点估计虽然简单直观,但无法给出估计结果的可靠程度。

为了解决这个问题,统计学引入了区间估计的概念。

区间估计以一个区间作为总体参数的估计范围,并给出该区间包含总体参数的概率。

常用的区间估计方法有置信区间估计和预测区间估计。

置信区间估计用于对总体参数的估计,预测区间估计则用于对新观测值的估计。

以置信区间估计为例,它的计算基于样本统计量的分布特性和样本容量。

三、最大似然估计
最大似然估计是统计推断中一种重要的参数估计方法。

它通过选择
最大化样本数据出现的概率或似然函数来估计参数值。

最大似然估计
的核心思想是选择参数值,使得样本数据出现的概率最大。

最大似然估计有着良好的性质,包括无偏性、一致性和渐近正态性。

它在很多统计模型中被广泛应用,如正态分布、二项分布和泊松分布等。

总结:
统计推断中的参数估计方法包括点估计、区间估计和最大似然估计。

点估计通过使用样本数据得到总体参数的单个数值估计;区间估计提
供了参数估计结果的可靠性区间;最大似然估计通过选择使样本数据
出现概率最大的参数值进行估计。

这些方法在实际应用中具有重要的
意义,帮助我们更好地理解和推断总体参数。

通过合理地选择和应用这些参数估计方法,我们可以从样本数据中
获得对总体的有效估计,并对估计结果的可靠性进行推断。

统计推断
的参数估计方法在各个领域的研究和应用中起到了至关重要的作用。

对于研究者和决策者来说,掌握这些方法对于正确分析和决策具有重
要意义。

相关文档
最新文档