高考物理电磁场知识点总结
大学物理 恒定电流稳恒磁场知识点总结

大学物理 恒定电流稳恒磁场知识点总结1. 电流强度和电流密度 电流强度:单位时间内通过导体截面的电荷量 (电流强度是标量,可正可负);电流密度:电流密度是矢量,其方向决定于该点的场强E 的方向(正电荷流动的方向),其大小等于通过该点并垂直于电流的单位截面的电流强度dQ I dt =, dIj e dS= , S I j dS =⎰⎰ 2. 电流的连续性方程和恒定电流条件 电流的连续性方程:流出闭合曲面的电流等于单位时间闭合曲面内电量增量的负值(其实质是电荷守恒定律)dqj dS dt=-⎰⎰ , ( j tρ∂∇=-∂ ); 恒定电流条件: 0j dS =⎰⎰ , ( 0j ∇= ) 3. 欧姆定律及其微分形式: UI R=, j E σ=, ,焦耳定律及其微分形式: 2Q A I Rt == 2p E σ= 4. 电动势的定义:单位正电荷沿闭合电路运行一周非静电力所作的功AK dl q ε+-==⎰ , K dl ε=⎰5. 磁感应强度:是描述磁场的物理量,是矢量,其大小为0sin FB q v θ=,式中F 是运动电荷0q 所受洛伦兹力,其方向由 0F q v B =⨯决定 磁感应线:为了形象地表示磁场在空间的分布,引入一族曲线,曲线的切向表示磁场的方向,密度是磁感应强度的大小;磁通量:sB dS φ=⎰⎰ (可形象地看成是穿过曲面磁感应线的条数)6.毕奥一萨伐尔定律: 034Idl r dB r μπ⨯=34L Idl rB r μπ⨯=⎰7.磁场的高斯定理和安培环路定理磁场的高斯定理: 0SB dS =⎰⎰、 ( 0B ∇= ) (表明磁场是无源场)安培环路定理:0i LiB dl I μ=∑⎰、LSB dl j dS =⎰⎰⎰ 、(0B j μ∇⨯=)(安培环路定理表明磁场是有旋场)8.安培定律: dF Idl B =⨯ 、L F Idl B =⨯⎰磁场对载流线圈的作用: M m B =⨯ (m 是载流线圈的磁矩m IS =)9.洛伦兹力:运动电荷所受磁场的作用力称为洛伦兹力f qv B =⨯带电粒子在匀强磁场中的运动:运动电荷在匀强磁场中作螺旋运动,运动半径为mv R qB⊥=、周期为 2m T qB π= 、螺距为 2mv h v T qB π==霍尔效应 : 12HIBV V K h-= 式中H K 称为霍尔系数,可正可负,为正时表明正电荷导电,为负时表明负电荷导电 1H K nq=10.磁化强度 磁场强度 磁化电流 磁介质中的安培环路定理mM τ∑=∆ 、 LL M dl I =∑⎰,内、n i M e =⨯, 0BH M μ=- 、m M H χ= 、 00m r B H H μχμμμ==(1+)H=、 0i LiH dl I =∑⎰、LSH dl j dS =⎰⎰⎰。
高考物理电磁学知识点之静电场知识点总复习附解析(4)

高考物理电磁学知识点之静电场知识点总复习附解析(4)一、选择题1.点电荷A 和B ,分别带正电和负电,电量分别为4Q 和Q ,如图所示,在AB 连线上,电场强度为零的地方在( )A .B 左侧B .A 右侧C .A 和B 之间D .A 的右侧及B 的左侧2.静电场方向平行于x 轴,将一电荷量为q -的带电粒子在x d =处由静止释放,粒子只在电场力作用下沿x 轴运动,其电势能E P 随x 的变化关系如图所示.若规定x 轴正方向为电场强度E 、加速度a 的正方向,四幅示意图分别表示电势ϕ 随x 的分布、场强E 随x 的分布、粒子的加速度a 随x 的变化关系和粒子的动能E k 随x 的变化关系,其中正确的是A .B .C .D .3.如图所示,实线表示某电场中的四个等势面,它们的电势分别为123,,ϕϕϕ和4ϕ,相邻等势面间的电势差相等.一带负电的粒子(重力不计)在该电场中运动的轨迹如虚线所示,a 、b 、c 、d 是其运动轨迹与等势面的四个交点,则可以判断( )A .4ϕ等势面上各点场强处处相同B .四个等势面的电势关系是1234ϕϕϕϕ<<<C .粒子从a 运动到d 的过程中静电力直做负功D .粒子在a 、b 、c 、d 四点的速度大小关系是a b c d v v v v <<=4.如图所示,将带正电的粒子从电场中的A 点无初速地释放,不计重力的作用,则下列说法中正确的是( )A .带电粒子一定做加速直线运动B .带电粒子的电势能一定逐渐增大C .带电粒子的动能一定越来越小D .带电粒子的加速度一定越来越大5.如图所示是示波管的原理示意图,XX′和YY′上不加电压时,在荧光屏的正中央出现一亮斑,现将XX′和YY′分别连接如图甲乙所示电压,从荧光屏正前方观察,你应该看到的是图中哪一个图形?A .B .C .D .6.如图所示,一绝缘光滑半圆环轨道放在竖直向下的匀强电场中,电场强度大小为E 。
物理高考知识点必修四

物理高考知识点必修四物理作为自然科学的一门学科,研究物质的本质、运动和相互作用规律。
在高考物理考试中,学生需掌握一定的物理知识点,其中包括必修四的内容。
本文将为您介绍必修四中的一些重要知识点。
第一章电磁现象的基本概念和电磁场1.1 电荷和电场- 电荷的基本性质和分类- 原子的电结构和电中性- 电场的概念和性质- 电场的叠加原理和电场强度计算1.2 静电场- 静电场中的静电力和电场能- 高斯定理和其应用- 电势能和电势差- 电容和电容元件第二章电流和电阻2.1 电流和电路- 电流的概念和电流密度- 串联和并联电路的特点和计算- 欧姆定律和其应用- 电功和功率2.2 电阻和电阻元件- 电阻的概念和分类- 电阻的串、并联和混联计算- 稳态和稳定性- 温度和电阻的关系第三章电磁感应和电磁波3.1 磁场和电磁感应- 磁场的基本性质和分类- 安培力和洛伦兹力- 楞次定律和法拉第电磁感应定律- 电动势和自感现象3.2 电磁场和电磁波- 电磁波的基本性质和分类- 光的速度和电磁波的传播- 光的折射和反射- 光的干涉和衍射第四章光学4.1 几何光学- 光的直线传播和光线追迹法则- 凸透镜和凹透镜的成像规律- 人眼的构造和调节- 视觉现象和视差4.2 光的波动性- 光的波粒二象性- 杨氏双缝干涉和杨氏单缝衍射- 光的偏振和涡旋光第五章原子核的结构和放射性5.1 原子核的结构- 质子、中子和电子- 原子核的结构和核力- 同位素和同位素标记法- 核衰变和核反应5.2 放射性和辐射防护- 放射性的概念和分类- 放射性衰变和放射性测定- 辐射防护和辐射应用- 核能的利用与问题以上是物理高考必修四的主要知识点概述。
掌握这些知识点,对于高考取得好成绩至关重要。
希望本文为您的学习提供了帮助和指导!。
物理高考选修4知识点总结

物理高考选修4知识点总结物理是一门具有广泛应用和极高学科价值的科学,高考物理的选修4部分涵盖了许多重要且高深的知识点。
本文将综合总结选修4部分的知识点,帮助同学们更好地备考和理解。
1. 电磁感应和电磁场电磁感应是电和磁的相互转化过程,在实际应用中有广泛的应用。
对于电磁感应的理解首先要掌握法拉第电磁感应定律,它描述了磁场变化产生的感应电动势与导线回路中的电流的关系,即楞次定律。
电磁感应的应用包括发电机、变压器和电磁炉等。
电磁场是指电场和磁场的组合,能够产生相互作用和传递能量。
我们要理解电磁场的强度和方向,使用最多的是电场强度和磁感应强度。
电场强度是指在电场中单位正电荷受到的力的大小,而磁感应强度则是描述磁场中单位电流所受的力的大小。
需要特别注意的是,电磁场的图线在选修4中是重要考点之一,要掌握好相关图线的绘制和分析。
2. 电子与光学选修4的电子部分包括了电子的性质和运动规律。
一般来说,我们需要了解电子的基本特性,如电子的静电场内动力学和磁感效应。
电子的运动规律主要涉及电子在恒定电场中的运动和电子在磁场中的运动。
此外,我们还需要了解电子的波粒二象性和电子的波函数等相关概念。
光学是物理学领域中研究光现象的学科。
在选修4中,主要包括了光的传播和干涉、衍射等基本理论。
在光的传播和干涉方面,需要了解光的直线传播和光的速度、光的介质折射定律以及光的狭缝和双缝干涉等。
而在光的衍射方面,我们需要掌握它的基本原理和条件,了解光的单缝和双缝衍射以及光的衍射光栅等相关知识。
3. 原子核与放射性原子核与放射性是选修4中的另一个重要部分。
原子核的研究是指对原子核性质和结构等方面的研究。
我们需要掌握原子核的基本性质,包括原子核的组成、质量数、原子序数等,以及核力和放射性衰变等相关理论。
放射性是指某些核素具有自发放射的现象,放射性衰变是指放射性核素发生自发性的核反应而转变为其他核素的过程。
在选修4中,我们要了解放射性的基本概念和性质,包括放射性的种类、衰变规律和半衰期等。
高考物理总复习 第九单元 磁场 课时1 磁场的描述及磁场对电流的作用(含解析)

课时1 磁场的描述及磁场对电流的作用1.磁场、磁感应强度(1)磁场①基本性质:对放入其中的磁体或运动电荷(电流)有力的作用,磁体、电流之间都是通过磁场发生相互作用的。
②方向:小磁针的N极所受磁场力的方向。
(2)磁感应强度①物理意义:表示磁场强弱和方向的物理量。
②定义式:B=。
单位:特斯拉,简称特,符号是T。
③方向:小磁针N极的受力方向。
2.磁感线(1)定义:在磁场中画一些曲线,使曲线上任意点的切线方向都跟这点的磁感应强度方向一致,这样的曲线叫作磁感线。
(2)磁感线的特点①磁感线上某点的切线方向就是该点的磁场方向。
②磁感线的疏密定性地表示磁场的强弱,在磁感线较密的地方磁场较强;在磁感线较疏的地方磁场较弱。
③磁感线是闭合曲线,没有起点和终点。
在磁体外部,从N极指向S极;在磁体内部,由S极指向N极。
④磁场的磁感线不中断、不相交、不相切。
⑤磁感线是假想的曲线,客观上不存在。
1.(2019山东烟台二中质量调研)关于磁感应强度B,下列说法正确的是()。
A.根据磁感应强度的定义式B=可知,磁感应强度B与F成正比,与IL成反比B.一小段通电导线放在磁感应强度为零处,它所受的磁场力一定为零C.一小段通电导线在某处不受磁场力的作用,则该处的磁感应强度一定为零D.磁场中某处磁感应强度的方向,与通电导线在该处所受磁场力的方向相同答案B2.(2019河南商丘市第一高级中学模拟)磁场中某区域的磁感线如图所示,则()。
A.同一通电导线放在a处受力一定比放在b处受力大B.同一通电导线放在a处受力一定比放在b处受力小C.a、b两处的磁感应强度大小不等,B a<B bD.a、b两处的磁感应强度大小不等,B a>B b答案C3.几种常见磁场的特征(1)常见磁体磁场分布规律常见磁体磁场分布图磁场分布规律条形磁铁①磁体外部磁感线由N极到S极;②磁体内部磁感线由S极到N极;③越靠近磁体两端磁感线越密,磁感应强度越大蹄形磁铁①磁体外部磁感线由N极到S极;②磁体内部磁感线由S极到N极;③越靠近磁体两端磁感线越密,磁感应强度越大;④在平行两极所夹区域近似为匀强磁场地球①地磁场的N极在地理南极附近,S极在地理北极附近;②地磁场B的水平分量(B x)总是从地球南极指向地球北极,而竖直分量B y在南半球垂直地面向上,在北半球垂直地面向下;③在赤道平面上,距离表面高度相等的各点,磁感应强度相等,且方向水平向北(2)电流周围的磁场直线电流的磁场环形电流的磁场通电螺线管的磁场特点无磁极、非匀强,且距导线越远处磁场越弱环形电流的两侧是N极和S极,且离圆环中心越远,磁场越弱与条形磁铁的磁场相似,管内为匀强磁场且磁场最强,管外为非匀强磁场安培定则立体图横截面图3.(2018安徽安庆第二中学月考)一束电子流沿水平面自西向东运动,在电子流的正上方有一点P,由于电子运动产生的磁场在P点的方向为()。
必修三物理会考知识点总结

必修三物理会考知识点总结一、电磁场电磁场是物理学中的一个重要概念,它是电场和磁场的统一体。
电磁场的基本特征是:电场和磁场是相互作用的,当电场发生变化时,必然会引起磁场的变化,反之亦然。
在学习必修三物理中,我们将学习到电荷在电场和磁场中的受力情况、电荷在交变电场和交变磁场中的受力情况、电磁感应和交变电磁场以及电磁波等内容。
1. 电场和电势学生首先需要了解电场的基本概念,电场是由电荷产生的空间中的一种物理场。
在电场中,电荷会受到电场力的作用。
电压是电场力在单位电荷上的做功,是一个标量。
2. 高斯定律高斯定律是物理学中的一个重要定律,它描述了电场的流出或者流入等效于电荷在该闭合曲面上的总量。
学生需要了解高斯定律在不同情况下的应用。
例如,球对称情况下的电场,无限长导体柱道中的电场等。
3. 电容器电容器是一种用来储存电能的器件,它由两个金属板和介质组成。
学生需要了解电容器的基本概念、电容的计算方法、电容器的串联和并联以及电容器在电路中的应用。
4. 磁场和磁感应磁场是由电荷运动产生的一种物理场,学生需要了解磁场的基本特征、磁感应强度的计算方法以及磁场对运动带电粒子的影响。
5. 洛伦兹力和磁场中的电荷运动在磁场中,电荷会受到洛伦兹力的作用,学生需要了解洛伦兹力的计算方法以及电荷在磁场中的轨迹。
6. 电磁感应和法拉第电磁感应定律电磁感应是指在磁场中,当导体相对磁场运动或磁场相对导体运动时,会产生感应电动势。
法拉第电磁感应定律描述了感应电动势的大小与变化率之间的关系。
7. 交变电磁场和电磁波交变电磁场是指电场和磁场在时间上随着正弦或余弦规律变化。
电磁波是一种由交变电磁场传播的波动。
学生需要了解电磁波的基本特征、电磁波的传播性质以及电磁波的产生和应用。
二、光学光学是物理学中的一个重要分支,它研究光的产生、传播和相互作用规律。
在必修三物理中,我们将学习到光的几何光学、波动光学、光的干涉和衍射等内容。
1. 光的直线传播和反射学生需要了解光的直线传播和反射规律,包括光的入射角、反射角和法线的关系以及光的反射规律。
磁场知识点(集合17篇)
磁场知识点(集合17篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!磁场知识点(集合17篇)磁场知识点(1)[感应电动势的大小计算公式](1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}(2)E=BLV垂(切割磁感线运动){L:有效长度(m)}(3)Em=nBSω(交流发电机的感应电动势){Em:感应电动势峰值}(4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)}磁通量Φ=BS{Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m(2)}感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L 有铁芯比无铁芯时要大),ΔI:变化电流,t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点;(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH。
高考物理带电粒子在磁场中的运动知识点汇总
高考物理带电粒子在磁场中的运动知识点汇总一、带电粒子在磁场中的运动压轴题1.如图所示,MN为绝缘板,CD为板上两个小孔,AO为CD的中垂线,在MN的下方有匀强磁场,方向垂直纸面向外(图中未画出),质量为m电荷量为q的粒子(不计重力)以某一速度从A点平行于MN的方向进入静电分析器,静电分析器内有均匀辐向分布的电场(电场方向指向O点),已知图中虚线圆弧的半径为R,其所在处场强大小为E,若离子恰好沿图中虚线做圆周运动后从小孔C垂直于MN进入下方磁场.()1求粒子运动的速度大小;()2粒子在磁场中运动,与MN板碰撞,碰后以原速率反弹,且碰撞时无电荷的转移,之后恰好从小孔D进入MN上方的一个三角形匀强磁场,从A点射出磁场,则三角形磁场区域最小面积为多少?MN上下两区域磁场的磁感应强度大小之比为多少?()3粒子从A点出发后,第一次回到A点所经过的总时间为多少?【答案】(1EqRm(2)212R;11n+;(3)2πmREq【解析】【分析】【详解】(1)由题可知,粒子进入静电分析器做圆周运动,则有:2mvEqR=解得:EqR vm =(2)粒子从D到A匀速圆周运动,轨迹如图所示:由图示三角形区域面积最小值为:22R S = 在磁场中洛伦兹力提供向心力,则有:2mv Bqv R= 得:mv R Bq=设MN 下方的磁感应强度为B 1,上方的磁感应强度为B 2,如图所示:若只碰撞一次,则有:112R mv R B q== 22mvR R B q==故2112B B = 若碰撞n 次,则有:111R mv R n B q==+ 22mvR R B q==故2111B B n =+ (3)粒子在电场中运动时间:1242R mRt v Eqππ== 在MN 下方的磁场中运动时间:211122n m mRt R R v EqR Eqπππ+=⨯⨯== 在MN 上方的磁场中运动时间:232142R mRt v Eq ππ=⨯=总时间:1232mRt t t t Eqπ=++=2.某控制带电粒子运动的仪器原理如图所示,区域PP′M′M 内有竖直向下的匀强电场,电场场强E =1.0×103V/m ,宽度d =0.05m ,长度L =0.40m ;区域MM′N′N 内有垂直纸面向里的匀强磁场,磁感应强度B =2.5×10-2T ,宽度D =0.05m ,比荷qm=1.0×108C/kg 的带正电的粒子以水平初速度v 0从P 点射入电场.边界MM′不影响粒子的运动,不计粒子重力.(1) 若v 0=8.0×105m/s ,求粒子从区域PP′N′N 射出的位置;(2) 若粒子第一次进入磁场后就从M′N′间垂直边界射出,求v 0的大小; (3) 若粒子从M′点射出,求v 0满足的条件.【答案】(1)0.0125m (2) 3.6×105m/s. (3) 第一种情况:v 0=54.00.8()10/21nm s n -⨯+ (其中n =0、1、2、3、4)第二种情况:v 0=53.20.8()10/21nm s n -⨯+ (其中n =0、1、2、3).【解析】 【详解】(1) 粒子以水平初速度从P 点射入电场后,在电场中做类平抛运动,假设粒子能够进入磁场,则竖直方向21··2Eq d t m= 得2mdt qE=代入数据解得t =1.0×10-6s水平位移x =v 0t 代入数据解得x =0.80m因为x 大于L ,所以粒子不能进入磁场,而是从P′M′间射出, 则运动时间t 0=Lv =0.5×10-6s , 竖直位移201··2Eq y t m==0.0125m 所以粒子从P′点下方0.0125m 处射出.(2) 由第一问可以求得粒子在电场中做类平抛运动的水平位移x =v 0 2mdqE粒子进入磁场时,垂直边界的速度 v 1=qE m ·t =2qEd m设粒子与磁场边界之间的夹角为α,则粒子进入磁场时的速度为v =1v sin α在磁场中由qvB =m 2v R得R =mv qB 粒子第一次进入磁场后,垂直边界M′N′射出磁场,必须满足x +Rsinα=L 把x =v 2md qE R =mv qB 、v =1v sin α、12qEdv m =代入解得 v 0=L·2EqmdE B v 0=3.6×105m/s.(3) 由第二问解答的图可知粒子离MM′的最远距离Δy =R -Rcosα=R(1-cosα) 把R =mv qB 、v =1v sin α、12qEd v m=12(1cos )12tan sin 2mEd mEd y B q B q ααα-∆==可以看出当α=90°时,Δy 有最大值,(α=90°即粒子从P 点射入电场的速度为零,直接在电场中加速后以v 1的速度垂直MM′进入磁场运动半个圆周回到电场)1max 212mv m qEd mEdy qB qB m B q∆===Δy max =0.04m ,Δy max 小于磁场宽度D ,所以不管粒子的水平射入速度是多少,粒子都不会从边界NN′射出磁场.若粒子速度较小,周期性运动的轨迹如下图所示:粒子要从M′点射出边界有两种情况, 第一种情况: L =n(2v 0t +2Rsinα)+v 0t 把2md t qE =R =mv qB 、v 1=vsinα、12qEdv m=代入解得 0221221L qE n E v n md n B=⋅++v 0= 4.00.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3、4)第二种情况:L =n(2v 0t +2Rsinα)+v 0t +2Rsinα把2md t qE =、R =mv qB 、v 1=vsinα、12qEd v m=02(1)21221L qE n E v n md n B+=⋅++v 0= 3.20.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3).3.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L ,L<y<2L 的区域内,有沿y 轴正方向的匀强电场.现有一质量为四电荷量为q 的带负电粒子从坐标(L ,3L/2)处以初速度0v 沿x 轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E ;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小B ;(3)求第(2)问中粒子从进入磁场到坐标(-L ,0)点所用的时间.【答案】(1)2mv E qL =(2)04nmv B qL =n=1、2、3......(3)02L t v π=【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有: 0L v t =,2122L at =,qE ma = 联立解得: 2mv E qL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyv v θ==l 速度大小002sin v v v θ== 设x 为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L ,0 )点,应满足L=2nx ,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x 时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R ,圆弧对应的圆心角为2π.则有2R ,此时满足L=2nx 联立可得:22R n=由牛顿第二定律,洛伦兹力提供向心力,则有:2v qvB m R=得:04nmv B qL=,n=1、2、3.... 轨迹如图乙设圆弧的半径为R ,圆弧对应的圆心角为2π.则有222x R ,此时满足()221L n x =+联立可得:()2212R n =+由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB m R =得:()02221n mv B qL+=,n=1、2、3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qB v ππππ++=⨯==4.如图甲所示,在直角坐标系0≤x ≤L 区域内有沿y 轴正方向的匀强电场,右侧有一个以点(3L ,0)为圆心、半径为L 的圆形区域,圆形区域与x 轴的交点分别为M 、N .现有一质量为m 、带电量为e 的电子,从y 轴上的A 点以速度v 0沿x 轴正方向射入电场,飞出电场后从M 点进入圆形区域,此时速度方向与x 轴正方向的夹角为30°.不考虑电子所受的重力.(1)求电子进入圆形区域时的速度大小和匀强电场场强E 的大小;(2)若在圆形区域内加一个垂直纸面向里的匀强磁场,使电子穿出圆形区域时速度方向垂直于x 轴.求所加磁场磁感应强度B 的大小和电子刚穿出圆形区域时的位置坐标; (3)若在电子刚进入圆形区域时,在圆形区域内加上图乙所示变化的磁场(以垂直于纸面向外为磁场正方向),最后电子从N 点处飞出,速度方向与进入磁场时的速度方向相同.请写出磁感应强度B 0的大小、磁场变化周期T 各应满足的关系表达式.【答案】(1) (2) (3) (n=1,2,3…)(n=1,2,3…) 【解析】(1)电子在电场中作类平抛运动,射出电场时,速度分解图如图1中所示.由速度关系可得:解得:由速度关系得:v y =v 0tanθ=v 0在竖直方向:而水平方向:解得:(2)根据题意作图如图1所示,电子做匀速圆周运动的半径R=L根据牛顿第二定律:解得:根据几何关系得电子穿出圆形区域时位置坐标为(,-)(3)电子在在磁场中最简单的情景如图2所示.在磁场变化的前三分之一个周期内,电子的偏转角为60°,设电子运动的轨道半径为r,运动的T0,粒子在x轴方向上的位移恰好等于r1;在磁场变化的后三分之二个周期内,因磁感应强度减半,电子运动周期T′=2T0,故粒子的偏转角度仍为60°,电子运动的轨道半径变为2r,粒子在x轴方向上的位移恰好等于2r.综合上述分析,则电子能到达N点且速度符合要求的空间条件是:3rn=2L(n=1,2,3…)而:解得:(n=1,2,3…)应满足的时间条件为: (T0+T′)=T而:解得(n=1,2,3…)点睛:本题的靓点在于第三问,综合题目要求及带电粒子运动的半径和周期关系,则符合要求的粒子轨迹必定是粒子先在正B0中偏转60°,而后又在− B0中再次偏转60°,经过n次这样的循环后恰恰从N点穿出.先从半径关系求出磁感应强度的大小,再从周期关系求出交变磁场周期的大小.5.在如图所示的xoy坐标系中,一对间距为d的平行薄金属板竖直固定于绝缘底座上,底座置于光滑水平桌面的中间,极板右边与y轴重合,桌面与x轴重合,o点与桌面右边相距为74d,一根长度也为d的光滑绝缘细杆水平穿过右极板上的小孔后固定在左极板上,杆离桌面高为1.5d,装置的总质量为3m.两板外存在垂直纸面向外、磁感应强度为B的匀强磁场和匀强电场(图中未画出),假设极板内、外的电磁场互不影响且不考虑边缘效应.有一个质量为m、电量为+q的小环(可视为质点)套在杆的左端,给极板充电,使板内有沿x正方向的稳恒电场时,释放小环,让其由静止向右滑动,离开小孔后便做匀速圆周运动,重力加速度取g.求:(1)环离开小孔时的坐标值;(2)板外的场强E2的大小和方向;(3)讨论板内场强E1的取值范围,确定环打在桌面上的范围.【答案】(1)环离开小孔时的坐标值是-14 d;(2)板外的场强E2的大小为mgq,方向沿y轴正方向;(3)场强E1的取值范围为22368qB d qB dm m~,环打在桌面上的范围为1744d d~.【解析】【详解】(1)设在环离开小孔之前,环和底座各自移动的位移为x1、x2.由于板内小环与极板间的作用力是它们的内力,系统动量守恒,取向右为正方向,根据动量守恒定律,有:mx1-3mx2=0 ①而x1+x2=d ②①②解得:x1=34d③x2=1 4 d环离开小孔时的坐标值为:x m=34d-d=-14d(2)环离开小孔后便做匀速圆周运动,须qE2=mg解得:2mgEq=,方向沿y轴正方向(3)环打在桌面上的范围可画得如图所示,临界点为P、Q,则若环绕小圆运动,则R=0.75d ④根据洛仑兹力提供向心力,有:2v qvB mR=⑤环在极板内做匀加速运动,设离开小孔时的速度为v,根据动能定理,有:qE1x1=12mv2⑥联立③④⑤⑥解得:2 138qB d Em=若环绕大圆运动,则R2=(R-1.5d)2+(2d)2 解得:R=0.48d ⑦联立③⑤⑥⑦解得:2 16qB d Em≈故场强E1的取值范围为22368qB d qB dm m~,环打在桌面上的范围为1744d d-~.6.如图,第一象限内存在沿y轴负方向的匀强电场,电场强度大小为E,第二、三、四象限存在方向垂直xOy平面向外的匀强磁场,其中第二象限的磁感应强度大小为B,第三、四象限磁感应强度大小相等,一带正电的粒子,从P(-d,0)点沿与x轴正方向成α=60°角平行xOy平面入射,经第二象限后恰好由y轴上的Q点(图中未画出)垂直y轴进入第一象限,之后经第四、三象限重新回到P点,回到P点时速度方向与入射方时相同,不计粒子重力,求:(1)粒子从P 点入射时的速度v 0; (2)第三、四象限磁感应强度的大小B /; 【答案】(1)3EB(2)2.4B 【解析】试题分析:(1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r ,由几何知识得: 23603d d dr sin sin α===︒ 根据200mv qv B r =得0233qBdv m=粒子在第一象限中做类平抛运动,则有21602qE r cos t m -︒=(); 00y v qEt tan v mv α==联立解得03Ev B=(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x 和y ,根据粒子在第三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x 轴正方向的夹角等于α.则有:x=v 0t , 2y v y t =得03222y v y tan x v α===由几何知识可得 y=r-rcosα= 1323r d = 则得23x d =所以粒子在第三、四象限圆周运动的半径为1253239d d R d sin α⎛⎫+ ⎪⎝⎭==粒子进入第三、四象限运动的速度004323v qBdv v cos mα===根据2'v qvB m R=得:B′=2.4B考点:带电粒子在电场及磁场中的运动7.如图所示,真空中有一个半径r=0.5m 的圆柱形匀强磁场区域,磁场的磁感应强度大小B=2×10-3T ,方向垂直于纸面向外,x 轴与圆形磁场相切于坐标系原点O ,在x=0.5m 和x=1.5m 之间的区域内有一个方向沿y 轴正方向的匀强电场区域,电场强E=1.5×103N/C ,在x=1.5m 处竖有一个与x 轴垂直的足够长的荧光屏,一粒子源在O 点沿纸平面向各个方向发射速率相同、比荷9110qm=⨯C/kg 的带正电的粒子,若沿y 轴正方向射入磁场的粒子恰能从磁场最右侧的A 点沿x 轴正方向垂直进入电场,不计粒子的重力及粒子间的相互作用和其他阻力.求:(1)粒子源发射的粒子进入磁场时的速度大小;(2)沿y 轴正方向射入磁场的粒子从射出到打到荧光屏上的时间(计算结果保留两位有效数字);(3)从O 点处射出的粒子打在荧光屏上的纵坐标区域范围.【答案】(1)61.010/v m s =⨯;(2)61.810t s -=⨯;(3)0.75 1.75m y m ≤≤ 【解析】 【分析】(1)粒子在磁场中做匀速圆周运动,由几何关系确定半径,根据2v qvB m R=求解速度;(2)粒子在磁场中运动T/4,根据周期求解在磁场中的运动时间;在电场中做类平抛运动,根据平抛运动的规律求解在电场值的时间;(3)根据牛顿第二定律结合运动公式求解在电场中的侧移量,从而求解从O 点处射出的粒子打在荧光屏上的纵坐标区域范围. 【详解】(1)由题意可知,粒子在磁场中的轨道半径为R=r=0.5m ,由2v qvB mR= 进入电场时qBR v m = 带入数据解得v=1.0×106m/s(2)粒子在磁场中运动的时间61121044R t s v ππ-=⨯=⨯ 粒子从A 点进入电场做类平抛运动,水平方向的速度为v ,所以在电场中运动的时间62 1.010xt s v-==⨯ 总时间6612110 1.8104t t t s s π--⎛⎫=+=+⨯=⨯⎪⎝⎭(3)沿x 轴正方向射入电场的粒子,在电场中的加速度大小121.510/qEa m s m==⨯ 在电场中侧移:2121261111.5100.7522110y at m m ⎛⎫==⨯⨯⨯= ⎪⨯⎝⎭打在屏上的纵坐标为0.75;经磁场偏转后从坐标为(0,1)的点平行于x 轴方向射入电场的粒子打在屏上的纵坐标为1.75;其他粒子也是沿x 轴正方向平行的方向进入电场,进入电场后的轨迹都平行,故带电粒子打在荧光屏上 的纵坐标区域为0.75≤y ≤1.75.8.如图,一半径为R 的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m 、电荷量为q 的粒子沿图中直线在圆上的a 点射入柱形区域,在圆上的b 点离开该区域,离开时速度方向与直线垂直.圆心O 到直线的距离为.现将磁场换为平等于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a 点射入柱形区域,也在b 点离开该区域.若磁感应强度大小为B ,不计重力,求电场强度的大小.【答案】2145qRB E m=【解析】 【分析】 【详解】解答本题注意带电粒子先在匀强磁场运动,后在匀强电场运动.带电粒子在磁场中做圆周运动.粒子在磁场中做圆周运动.设圆周的半径为r ,由牛顿第二定律和洛仑兹力公式得2v qvB m r=①式中v 为粒子在a 点的速度.过b 点和O 点作直线的垂线,分别与直线交于c 和d 点.由几何关系知,线段ac bc 、和过a 、b 两点的轨迹圆弧的两条半径(未画出)围成一正方形.因此ac bc r ==② 设,cd x =有几何关系得45ac R x =+③ 2235bc R R x =+- 联立②③④式得75r R =再考虑粒子在电场中的运动.设电场强度的大小为E ,粒子在电场中做类平抛运动.设其加速度大小为a ,由牛顿第二定律和带电粒子在电场中的受力公式得qE="m a" ⑥ 粒子在电场方向和直线方向所走的距离均为r ,有运动学公式得212r at =⑦ r=vt ⑧ 式中t 是粒子在电场中运动的时间.联立①⑤⑥⑦⑧式得2145qRB E m=⑨【点睛】带电粒子在磁场中运动的题目解题步骤为:定圆心、画轨迹、求半径,同时还利用圆弧的几何关系来帮助解题.值得注意是圆形磁场的半径与运动轨道的圆弧半径要区别开来.9.磁谱仪是测量α能谱的重要仪器.磁谱仪的工作原理如图所示,放射源s 发出质量为m 、电量为q 的粒子沿垂直磁场方向进入磁感应强度为B 的匀强磁场,被限束光栏Q 限制在2ϕ的小角度内,α粒子经磁场偏转后打到与束光栏平行的感光片P 上.(重力影响不计)(1)若能量在E ~E +ΔE (ΔE >0,且ΔE <<E )范围内的α粒子均垂直于限束光栏的方向进入磁场.试求这些α粒子打在胶片上的范围Δx 1.(2)实际上,限束光栏有一定的宽度,α粒子将在2ϕ角内进入磁场.试求能量均为E的α粒子打到感光胶片上的范围Δx 2 【答案】见解析 【解析】 【详解】(1)设α粒子以速度v 进入磁场,打在胶片上的位置距s 的距离为x 圆周运动2q B mRυυ=α粒子的动能212E m υ=2x R =由以上三式可得22mEx qB= 所以()12222m E E mEx qBqB+∆∆=-化简可得122mEx E qBE∆≈∆; (2)动能为E 的α粒子沿φ±角入射,轨道半径相同,设为R ,粒子做圆周运动2q B mRυυ=α粒子的动能212E m υ=由几何关系得()22224222cos 1cos sin 2mE mE φx R R φφqB qB ∆=-=-=10.如图所示,虚线OL 与y 轴的夹角为θ=60°,在此角范围内有垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .一质量为m 、电荷量为q (q >0)的粒子从左侧平行于x 轴射入磁场,入射点为M .粒子在磁场中运动的轨道半径为R .粒子离开磁场后的运动轨迹与x 轴交于P 点(图中未画出),且OP =R .不计重力.求M 点到O 点的距离和粒子在磁场中运动的时间.【答案】当α=30°时,粒子在磁场中运动的时间为π126T mt qB== 当α=90°时,粒子在磁场中运动的时间为π42T m t qB== 【解析】根据题意,粒子进入磁场后做匀速圆周运动,设运动轨迹交虚线OL 于A 点,圆心在y 轴上的C 点,AC 与y 轴的夹角为α;粒子从A 点射出后,运动轨迹交x 轴的P 点,设AP 与x 轴的夹角为β,如图所示.有(判断出圆心在y 轴上得1分)2v qvB m R=(1分)周期为2πmT qB=(1分) 过A 点作x 、y 轴的垂线,垂足分别为B 、D .由几何知识得sin αAD R =,cot 60OD AD =︒,,OP AD BP =+α=β (2分) 联立得到sin αα13+=(2分) 解得α=30°,或α=90° (各2分) 设M 点到O 点的距离为h ,有sin αAD R =h R OC =-,3cos αOC CD OD R AD =-=联立得到h=R 3cos(α+30°) (1分) 解得h=3R (α=30°) (2分) h=3R (α=90°) (2分) 当α=30°时,粒子在磁场中运动的时间为π126T m t qB ==(2分) 当α=90°时,粒子在磁场中运动的时间为π42T m t qB==(2分) 【考点定位】考查带电粒子在匀强磁场中的运动及其相关知识.。
高考物理重点章节总结
高考物理重点章节总结在高中物理课程中,有一些章节被认为是高考物理的重点。
它们覆盖了物理的核心概念和基本原理,并为学生提供了解决实际问题的基础。
一、力学力学是物理学的基础,其研究物体的运动和相互作用。
高考物理中的力学主要包括以下几个方面:1. 运动学:研究物体的运动规律和运动状态的描述。
其中包括位移、速度、加速度的概念,以及匀速直线运动、匀加速直线运动等的运动规律和公式。
2. 动力学:研究物体运动的原因和力的作用。
其中涉及牛顿三定律、摩擦力和平衡力的概念与应用。
3. 动能与势能:研究物体运动中的能量变化。
其中包括动能和势能的定义、计算方法,以及机械能守恒定律的应用。
4. 万有引力:研究物体间的引力相互作用。
包括引力的概念和计算方法,以及开普勒三定律的应用。
二、热学热学是研究热量、温度和热能转化的科学。
以下是高考物理中的热学重点内容:1. 热量和温度:研究热量的传递与测量。
其中涉及热力学第一定律和第二定律的概念和应用。
2. 热传导、热对流和热辐射:研究热量传递的三种方式。
包括热传导的规律、传热系数的计算,以及热对流和热辐射的特点和应用。
3. 热态方程:研究物体在不同状态下的热平衡和热膨胀。
包括理想气体状态方程和热膨胀系数的概念和计算方法。
4. 热力学循环:研究热量转化为机械能的过程。
其中包括卡诺循环和热机效率的计算。
三、光学光学是研究光的传播和光现象的科学。
以下是高考物理中的光学重点内容:1. 光的传播规律:研究光的直线传播和光的折射现象。
其中包括光的直线传播的定律、光的折射定律和光线的反射与折射。
2. 光的成像:研究光通过透镜或反射镜成像的特点。
其中包括薄透镜成像定律和球面镜成像定律的应用。
3. 光波的特性:研究光的干涉、衍射和偏振现象。
包括干涉和衍射的条件,以及偏振现象的特点和应用。
四、电磁学电磁学是研究电场、磁场和电磁波的相互作用的科学。
以下是高考物理中的电磁学重点内容:1. 电荷和电场:研究电荷的性质和电场的描述。
江苏高中物理知识点总结(重点)超详细
江苏高中物理知识点总结(重点)超详细江苏高中物理知识点总结(重点)超详细作为一名高中生,我们都知道物理学科在高考中的重要性,而江苏省的高考物理难度一直以来都是全国较高的,考试的难度也是一代比一代高。
因此,我们必须对物理知识点有一个深入的理解,下面就来对江苏高中物理知识点进行总结,希望对大家有所帮助。
一、力学1. 运动学(1) 万有引力在万有引力的问题中,需要注意的是两个物体的质量分别为m1和m2,它们之间的距离为r,等式中的G为万有引力常量,具体地G=6.67×10-11N·m2/kg2。
(2) 匀加速直线运动匀加速直线运动的公式一般有v=v0+at、s=s0+v0t+½at2和v2=v02+2a(s-s0)。
在计算中,注意转换速度单位和时间单位。
(3) 二维平面运动二维平面运动包括平抛运动、斜抛运动和圆周运动。
在计算中,需要注意计算物体在x、y方向上的运动。
2. 力学(1) 牛顿运动定律牛顿运动定律包括牛顿第一定律、牛顿第二定律和牛顿第三定律。
需要注意的是,牛顿第二定律的表达式F=ma,力和加速度的方向相同。
(2) 力的合成力的合成有方法和力的合成定理两种思路。
方法是通过余弦定理和正弦定理进行计算,力的合成定理是指力的合成等效于力的几何和。
(3) 动量动量的公式为p=mv,其中m为物体的质量,v为物体的速度。
在保守系统中,动量守恒,即Δp=0。
3. 力场和势能(1) 力场力场的概念是指一个空间区域内,存在着以某一物体为原点的力矢量场。
常见的力场有重力场、电场和磁场等。
(2) 势能势能是指物体由于位置或状态而具有的能量。
其中势能分为重力势能、弹性势能和化学势能等。
二、热学热学是我们生活中必不可少的一部分,下面我们来看看江苏高中物理的重点部分。
1. 热力学基础(1) 温度和热量温度是指物体内能的一种量度,用K(开尔文)和℃(摄氏度)表示。
热量是热能的一种表现形式,用Q表示,单位是焦耳J。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理电磁场知识点总结
电磁场是物理学中重要的概念之一,也是高考物理考试中必考的
内容。
掌握电磁场的知识对于考生来说至关重要。
本文将以电磁场的
基本概念、电场和磁场的关系、电磁波等方面进行总结。
电磁场是由电场和磁场组成的物理场。
电场是指由电荷产生的物
理场,主要描述电荷之间相互作用的力和场。
电荷通过产生电场,使
得周围的其他电荷受到力的作用。
电荷的大小、位置和运动状态都会
影响电场的分布。
电场的单位是伏特/米。
一般来说,电荷越大,距离
越近,电场越强。
电场的方向则由正电荷指向负电荷。
与电场不同,磁场是由电流产生的物理场。
电流通过导线产生磁场,磁场的大小和方向与电流的大小和方向有关。
磁场是一个矢量场,其方向可以通过右手螺旋定则确定。
在磁场中,电流所受的磁力与电
流的方向垂直,且会使电流所在的导线受到力的作用。
电场和磁场之间有一个重要的关系,即电磁感应定律。
根据电磁
感应定律,当磁场的磁通量发生变化时,会在闭合线路上引起感应电
动势。
这个定律是电磁场理论的基础,也是电磁感应和电磁波产生的
基础。
除了电场和磁场,电磁波也是电磁场的重要组成部分。
电磁波是
一种纵横波,具有电场和磁场相互垂直的特点。
根据电磁波的特点,
可以将其分为不同的频段,包括射频、微波、红外线、可见光、紫外线、X射线和γ射线。
电磁波在自然界中广泛存在,包括阳光、电视
信号、无线电信号等。
掌握电磁场的知识对于理解物理世界和解决实际问题至关重要。
在高考物理考试中,电磁场的知识点也占据了重要的比重,考生应该重点关注。
除了对电磁场的基本概念、电场和磁场的关系、电磁波的了解,考生还应该掌握电磁感应定律、电磁波的数学表达和实际应用等方面的知识。
总而言之,电磁场是重要的物理学概念,也是高考物理考试的重点内容之一。
掌握电磁场的基本概念、电场和磁场的关系、电磁波等知识对于考生来说至关重要。
通过理论学习和实践训练,考生可以提高对电磁场的理解和应用能力,为高考物理的顺利通过打下坚实的基础。