高中物理电磁波电磁场知识点整理

合集下载

电磁场与电磁波期末复习知识点归纳

电磁场与电磁波期末复习知识点归纳

哈密顿算子:矢量微分算子( Hamilton、nabla、del )
ex
x
ey
y
ez
z
★ 标量场的梯度
gradu u u xˆ u yˆ u zˆ ( xˆ yˆ zˆ)u x y z x y z
★ 矢量场的散度计算公式:
divA= • A Ax Ay Az x y z
1
2=∞ nˆ • D1 s
nˆ E1 0 nˆ B1 0
nˆ H1 Js
2、理想介质表面上 的边界条件
1=0
2=0
nˆ • (D1 D2) 0 nˆ (E1 E2 ) 0
nˆ B1 B2 0
nˆ H1 H2 0
第三章 静态电磁场及其边值问题的解
静电场中: E 0
圆柱坐标和球坐标的公式了解:
Bx By Bz
圆柱坐标系中的体积微元: dV=(d)(d)(dz)= d d dz
分析的问题具有圆柱对称性时可表示为:dV=2ddz
球坐标系中的体积微元: dV=(rsind)(rd)(dr)
分析的问题具有球对称性 时可表示为:
=r2sindrdd dV=4r2dr
★ 标量场的等值面方程 u x, y, z 常数C
程的解都是唯一的。这就是边值问题的唯一性定理
◇ 唯一性定理的意义:是间接求解边值问题的理论依据。
● 镜像法求解电位问题的理论依据是“唯一性定理”。
点电荷对无限大接地导体平面的镜像
z
r1
P
q h
r r2 介质
x
h
介质
q
点电荷对接地导体球面的镜像。
P
r
a
r2
o θ q
d
’d

电磁波与电磁场知识点

电磁波与电磁场知识点

电磁波与电磁场知识点
一、电磁振荡的产生:
1、振荡电流:大小与方向都作周期性变化的电流。

振荡电路(LC回路):产生振荡电流的电路,LC回路中产生正弦交变电。

电容C中容纳电荷最多时,电路中电流最小,磁场能全部转化为电场能,此时充电完毕;电容C中容纳电荷最少时,电路中电流最大,电场能全部转化为磁场能,此时放电完毕。

(放电时,电流方向从电容“+”流向“—”;充电时,电流方向从电容“—”流向“+”。

)
充放电时,电路中的电流与电容内的电荷量成互余关系。

磁场与电场都发生周期性变化,二者也成互余关系。

2、阻尼振荡:振荡电流的振幅逐渐减小。

只改变振幅,不改变周期和频率。

无阻尼振荡:振荡电流的振幅永远不变。

3、周期(T):电磁振荡完成一次周期性变化所需时间。

频率(f):一秒钟内完成的周期性变化的次数。

LC回路的周期与频率由回路本身的特性来决定,与外界因素无关:
二、电磁场:变化的电场与磁场相互联系,形成的不可分的统一体。

1、英国麦克斯韦建立完整的电磁场理论。

2、具体内容:变化的磁场产生电场,变化的电场产生磁场;均匀变化的磁场产生稳定电场,均匀变化的电场产生稳定磁场;振荡的电场产生振荡的磁场,振荡的磁场产生振荡的电场。

电磁感应、电磁场电磁波的知识点总结全

电磁感应、电磁场电磁波的知识点总结全

可编辑修改精选全文完整版高二物理电磁感应、电磁场电磁波的知识点总结2012.6一、产生感应电流的条件:1.磁通量发生变化(产生感应电动势的条件)2.闭合回路*引起磁通量变化的常见情况:(1)线圈中磁感应强度发生变化(2)线圈在磁场中面积发生变化(如:闭合回路中的部分导体做切割磁感线运动)(3)线圈在磁场中转动二、感应电流的方向判定:1.楞次定律:(适用磁通量发生变化)感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

关于“阻碍”的理解:(1)“阻碍”是“阻碍原磁通量的变化”,而不是阻碍原磁场;(2)“阻碍”不是“阻止”,尽管“阻碍原磁通量的变化”,但闭合回路中的磁通量仍然在变化;(3)“阻碍”是“阻碍变化”,当原磁通量增加时,感应电流的磁场方向与原磁场方向相反——阻碍原磁通量的增加;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同——阻碍原磁通量的减少。

2.右手定则:(适用导体切割磁感应线)伸开右手,让拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直从手心进入,拇指指向导体运动的方向,其余四指指的就是感应电流的方向。

其中四指指向还可以理解为:感应电动势高电势处。

*应用楞次定律判断感应电流方向的具体步骤①明确闭合回路中原磁场方向(穿过线圈中原磁场的磁感线的方向)。

②把握闭合回路中原磁通量的变化(φ原是增加还是减少)。

③依据楞次定律,确定回路中感应电流磁场的方向(B感取什么方向才能阻碍φ原的变化)。

④利用安培定则,确定感应电流的方向(B感和I感之间的关系)。

*楞次定律的拓展1.当闭合回路中磁通量变化而引起感应电流时,感应电流的效果总是阻碍原磁通量的变化。

(增反减同)2.当线圈和磁场发生相对运动而引起感应电流时,感应电流的效果总是阻碍二者之间的相对运动(来斥去吸)。

3.当线圈中自身电流发生变化而引起感应电流时,感应电流的效果总是阻碍原电流的变化(自感现象)。

三、感应电动势的大小:1. 法拉第电磁感应定律:在电磁感应现象中,电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

(完整版)高中物理电磁学知识点

(完整版)高中物理电磁学知识点

二、电磁学(一)电场 1、库仑力:221r q q kF = (适用条件:真空中点电荷) k = 9.0×109 N ·m 2/ c 2 静电力恒量电场力:F = E q (F 与电场强度的方向可以相同,也可以相反) 2、电场强度: 电场强度是表示电场强弱的物理量。

定义式: qFE =单位: N / C 点电荷电场场强 rQ k E = 匀强电场场强 dU E =3、电势,电势能:qEA 电=ϕ,A q E ϕ=电 顺着电场线方向,电势越来越低。

4、电势差U ,又称电压 qWU =U AB = φA -φB 5、电场力做功和电势差的关系: W AB = q U AB 6、粒子通过加速电场: 221mv qU =7、粒子通过偏转电场的偏转量:2022022212121V L md qU V L m qE at y === 粒子通过偏转电场的偏转角 20mdv qULv v tg xy ==θ 8、电容器的电容:c Q U=电容器的带电量: Q=cU 平行板电容器的电容: kdS c πε4= 电压不变 电量不变(二)直流电路 1、电流强度的定义:I = 微观式:I=nevs (n 是单位体积电子个数,)2、电阻定律:电阻率ρ:只与导体材料性质和温度有关,与导体横截面积和长度无关。

单位:Ω·m 3、串联电路总电阻: R=R 1+R 2+R 3电压分配2121R R U U =,U R R R U 2111+=功率分配 2121R R P P =,P R R R P 2111+=4、并联电路总电阻: 3211111R R R R++= (并联的总电阻比任何一个分电阻小)两个电阻并联 2121R R R R R +=并联电路电流分配 1221I R I R =,I 1=I R R R 212+ 并联电路功率分配 1221R R P P =,P R R R P 2121+=5、欧姆定律:(1)部分电路欧姆定律: 变形:U=IR(2)闭合电路欧姆定律:I =rR E+ Ir U E += E r 路端电压:U = E -I r= IR输出功率:= IE -I r =(R = r 输出功率最大) R电源热功率:电源效率:=EU= R R+r 6、电功和电功率: 电功:W=IUt焦耳定律(电热)Q=电功率 P=IU纯电阻电路:W=IUt=P=IU非纯电阻电路:W=IUt >P=IU >Sl R ρ=(三)磁场1、磁场的强弱用磁感应强度B 来表示: IlFB =(条件:B ⊥L )单位:T 2、电流周围的磁场的磁感应强度的方向由安培(右手)定则决定。

电磁场与电磁波知识点整理

电磁场与电磁波知识点整理

电磁场与电磁波知识点整理一、电磁场的基本概念电磁场是由电场和磁场相互作用而形成的一种物理场。

电场是由电荷产生的,而磁场则是由电流或者变化的电场产生的。

电荷是产生电场的源。

正电荷会产生向外辐射的电场,负电荷则产生向内汇聚的电场。

电场强度 E 用来描述电场的强弱和方向,其单位是伏特每米(V/m)。

电流是产生磁场的源。

电流产生的磁场方向可以通过右手螺旋定则来确定。

磁场强度 H 用来描述磁场的强弱和方向,其单位是安培每米(A/m)。

法拉第电磁感应定律表明,变化的磁场会产生电场。

麦克斯韦进一步提出,变化的电场也会产生磁场。

这两个定律共同揭示了电磁场的相互联系和相互转化。

二、电磁波的产生电磁波是电磁场的一种运动形态。

当电荷加速运动或者电流发生变化时,就会产生电磁波。

例如,在一个开放的电路中,电荷在电容器和电感之间来回振荡,就会产生电磁波。

这种振荡电路是产生电磁波的一种简单方式。

电磁波的频率和波长之间存在着一定的关系,即光速 c =λf,其中c 是光速(约为 3×10^8 m/s),λ 是波长,f 是频率。

不同频率的电磁波具有不同的特性和应用。

例如,无线电波频率较低,用于通信和广播;而X 射线频率较高,用于医学成像和材料检测。

三、电磁波的传播电磁波在真空中可以无需介质传播,在介质中传播时,其速度会发生变化。

电磁波在传播过程中遵循反射、折射和衍射等规律。

当电磁波遇到障碍物时,会发生反射。

如果电磁波从一种介质进入另一种介质,会发生折射,折射的程度取决于两种介质的电磁特性。

衍射则是指电磁波绕过障碍物传播的现象。

当障碍物的尺寸与电磁波的波长相当或较小时,衍射现象较为明显。

电磁波的极化是指电场矢量的方向在传播过程中的变化。

常见的极化方式有线极化、圆极化和椭圆极化。

四、电磁波的特性1、电磁波是横波,电场和磁场的振动方向都与电磁波的传播方向垂直。

2、电磁波具有能量,其能量密度与电场强度和磁场强度的平方成正比。

3、电磁波的传播速度是恒定的,在真空中为光速。

人教版高二物理必修第三册第九章电磁场及其应用全章知识点梳理

人教版高二物理必修第三册第九章电磁场及其应用全章知识点梳理

人教版高二物理必修第三册第九章电磁场及其应用全章知识点梳理1. 电磁场的概念和性质- 电磁场是由电荷静电场和电流产生的磁场相互作用形成的。

- 电磁场有电场强度、电场线、磁感应强度、磁感线等性质。

2. 静电场的描述和计算- 静电场的描述需要用到电势、电位能、电场强度等概念。

- 静电场的计算可以利用库仑定律、电场强度叠加原理等方法。

3. 静电场中电势的性质和计算方法- 静电场中的电势随距离的变化遵循电势线的分布。

- 计算静电场中的电势可以利用电势差和电势公式进行。

4. 静电场中的带电粒子的运动规律- 静电场中带电粒子会受到电场力的作用而产生运动。

- 带电粒子在静电场中的运动规律可以描述为受力分析和加速度公式。

5. 磁场的概念和性质- 磁场是由电流产生的磁感应强度和磁感线组成的。

- 磁场有磁感应强度、磁场线、磁感应力等性质。

6. 磁场中带电粒子的运动规律- 磁场中带电粒子会受到磁场力的作用而产生运动。

- 带电粒子在磁场中的运动规律可以描述为洛伦兹力和离心力。

7. 电磁感应现象和法拉第电磁感应定律- 电磁感应是指磁场变化或电流变化产生感应电动势的现象。

- 法拉第电磁感应定律描述了感应电动势与磁通量变化的关系。

8. 自感和互感- 自感是导体中电流自身的感应现象。

- 互感是导体中电流与相邻导体之间的感应现象。

9. 变压器的原理和应用- 变压器利用电磁感应原理实现输入输出电压的变化。

- 变压器广泛应用于电力传输和家用电器。

10. 电磁波的性质和产生- 电磁波是由变化的电场和磁场相互作用产生的。

- 电磁波有频率、波长、速度等性质。

11. 光的干涉和衍射现象- 光的干涉是指两个或多个光波相遇产生的共振和抵消现象。

- 光的衍射是指光通过物体边缘或孔隙产生的偏折现象。

12. 光的偏振现象- 光的偏振是指光波振动方向通过偏振器限制后变得单一方向的现象。

- 光的偏振有线偏振和圆偏振两种形式。

13. 光的多普勒效应- 光的多普勒效应是指光源或观察者相对运动时光的频率发生变化的现象。

电磁波知识点讲解总结_

电磁波知识点讲解总结_

电磁波知识点讲解总结_1.电磁场:变化的磁场产生电场,变化的电场产生磁场,变化的电场和变化的磁场总是相互联系的,形成一个不可分离的统一体,这就是电磁场.2.对电磁波的理解(1)电磁波的传播不需要介质,可在真空中传播,在真空中不同频率的电磁波传播速度是相同的(都等于光速).(2)不同频率的电磁波,在同一介质中传播,其速度是不同的,频率越高,波速越小.(3)v= f,f是电磁波的频率.【针对训练】下列关于电磁波的说法正确的是( )A.电磁波必须依赖介质传播B.电磁波可以发生衍射现象C.电磁波不会发生偏振现象D.电磁波无法携带信息传播三、电磁波谱的分析应用(1)频率和波长不同的电磁波,表现出不同的特性.其中波长较长的无线电波和红外线等,易发生干涉、衍射现象;波长较短的紫外线、X射线、射线等,穿透能力较强.(2)电磁波谱中,相邻两波段的电磁波的波长并没有很明显的界线,如紫外线和X射线、X射线和射线都有重叠,但它们产生的机理不同.【典型例题】(1)麦克斯韦电磁理论的内容是:_____________________.(2)电磁波在传播过程中,每处的电场方向和磁场方向总是________的,并和该处电磁波的传播方向________,这就说明电磁波是________波.(3)目前雷达发射的电磁波频率多在200 MHz至1 000 MHz的范围内.请回答下列关于雷达和电磁波的有关问题.①雷达发射电磁波的波长范围是多少?②能否根据雷达发出的电磁波确定雷达和目标间的距离?【随堂训练】1.电磁波的频率范围很广,不同频率的电磁波具有不同的特性,请从电磁波谱中任选两种,分别写出它们的名称和一种用途.(1)名称____________,用途_________________________________________________.(2)名称____________,用途_________________________________________________.2.(1)近年来军事行动中,士兵都配带红外夜视仪在夜间也能清楚地看清目标,这是为什么?(2)根据热辐射理论,物体发出的最大波长 m与物体的绝对温度T的关系满足T m=2.90 10-3m K,若猫头鹰的猎物蛇,在夜间体温为27℃,则它发出光的最大波长为________ m,属于________波段.。

电磁场与电磁波知识点总结

电磁场与电磁波知识点总结

电磁场与电磁波知识点总结电磁场知识点总结篇一电磁场知识点总结电磁场与电磁波在高考物理中属于非主干知识点,多以选择题的形式出现,题目难度较低,属于必得分题目,重点考察考生对基本概念的理解和掌握情况。

下面为大家简单总结一下高中阶段需要大家掌握的电磁场与电磁波相关知识点。

电磁场知识点总结一、电磁场麦克斯韦的电磁场理论:变化的电场产生磁场,变化的磁场产生电场。

理解:* 均匀变化的电场产生恒定磁场,非均匀变化的电场产生变化的磁场,振荡电场产生同频率振荡磁场* 均匀变化的磁场产生恒定电场,非均匀变化的磁场产生变化的电场,振荡磁场产生同频率振荡电场* 电与磁是一个统一的整体,统称为电磁场(麦克斯韦最杰出的贡献在于将物理学中电与磁两个相对独立的部分,有机的统一为一个整体,并成功预言了电磁波的存在)二、电磁波1、概念:电磁场由近及远的传播就形成了电磁波。

(赫兹用实验证实了电磁波的存在,并测出电磁波的波速)2、性质:* 电磁波的传播不需要介质,在真空中也可以传播* 电磁波是横波* 电磁波在真空中的传播速度为光速* 电磁波的波长=波速*周期3、电磁振荡LC振荡电路:由电感线圈与电容组成,在振荡过程中,q、I、E、B 均随时间周期性变化振荡周期:T = 2πsqrt[LC]4、电磁波的发射* 条件:足够高的振荡频率;电磁场必须分散到尽可能大的'空间* 调制:把要传送的低频信号加到高频电磁波上,使高频电磁波随信号而改变。

调制分两类:调幅与调频# 调幅:使高频电磁波的振幅随低频信号的改变而改变# 调频:使高频电磁波的频率随低频信号的改变而改变(电磁波发射时为什么需要调制?通常情况下我们需要传输的信号为低频信号,如声音,但低频信号没有足够高的频率,不利于电磁波发射,所以才将低频信号耦合到高频信号中去,便于电磁波发射,所以高频信号又称为“载波”)5、电磁波的接收* 电谐振:当接收电路的固有频率跟收到的电磁波频率相同时,接受电路中振荡电流最强(类似机械振动中的“共振”)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理电磁波电磁场知识点整理
高中物理电磁波电磁场知识点汇总整理
物理学起始于伽利略和牛顿的年代,它已经成为一门有众多分支的基础科学。

物理学是一门实验科学,也是一门崇尚理性、重视逻辑推理的科学。

下面是店铺整理的高中物理电磁波电磁场知识点汇总整理,欢迎大家分享。

1、麦克斯韦的电磁场理论
(1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场。

(2)随时间均匀变化的磁场产生稳定电场。

随时间不均匀变化的磁场产生变化的电场。

随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场。

(3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场。

2、电磁波
(1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波。

(2)电磁波是横波
(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长λ和频率f的乘积,即v=λf,任何频率的电磁波在真空中的传播速度都等于真空中的光速c=3.00×108m/s。

下面为大家介绍的是2012年高考物理知识点总结电磁感应,希望对大家会有所帮助。

1、电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。

(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0。

(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈
平面的磁通量发生变化,线路中就有感应电动势。

产生感应电动势的那部分导体相当于电源。

(2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。

2、磁通量
(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS。

如果面积S与B不垂直,应以B 乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。

任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。

反之,磁通量为负。

所求磁通量为正、反两面穿入的磁感线的代数和。

3、楞次定律
(1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。

楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。

(2)对楞次定律的理解
①谁阻碍谁———感应电流的磁通量阻碍产生感应电流的磁通量。

②阻碍什么———阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。

③如何阻碍———原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。

④阻碍的结果———阻碍并不是阻止,结果是增加的还增加,减少的还减少。

(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:
①阻碍原磁通量的变化;
②阻碍物体间的相对运动;
③阻碍原电流的变化(自感)。

4、法拉第电磁感应定律
电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

表达式E=nΔΦ/Δt
当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ。

当B、L、v三者两两垂直时,感应电动势E=BLv。

(1)两个公式的选用方法E=nΔΦ/Δt计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。

E=BLvsinθ中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。

(2)公式的变形
①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSΔB/Δt。

②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbδs/Δt。

5、自感现象
(1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象。

(2)自感电动势:在自感现象中产生的感应电动势叫自感电动势。

自感电动势的大小取决于线圈自感系数和本身电流变化的快慢,自感电动势方向总是阻碍电流的变化。

6、日光灯工作原理
(1)起动器的作用:利用动触片和静触片的接通与断开起一个自动开关的作用,起动的关键就在于断开的瞬间。

(2)镇流器的'作用:日光灯点燃时,利用自感现象产生瞬时高压;日光灯正常发光时,利用自感现象,对灯管起到降压限流作用。

7、电磁感应中的电路问题
在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电容器,便可使电容器充电;将它们接上电阻等用电器,便可对用电器供电,在回
路中形成电流。

因此,电磁感应问题往往与电路问题联系在一起。

解决与电路相联系的电磁感应问题的基本方法是:
(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向。

(2)画等效电路。

(3)运用全电路欧姆定律,串并联电路性质,电功率等公式联立求解。

8、电磁感应现象中的力学问题
(1)通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本方法是:
①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向。

②求回路中电流强度。

③分析研究导体受力情况(包含安培力,用左手定则确定其方向)。

④列动力学方程或平衡方程求解。

(2)电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达稳定运动状态,抓住a=0时,速度v达最大值的特点。

9、电磁感应中能量转化问题
导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本方法是:
(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向。

(2)画出等效电路,求出回路中电阻消耗电功率表达式。

(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程。

10、电磁感应中图像问题
电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)大小是否恒定。

用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负,以及在坐标中的范围。

另外,要正确解决图像问题,必须能根据图像的意义把图像反映的规律对应到实际过程中去,又能根据实际过程的抽象规律对应到图像中去,最终根据实际过程的物理规律进行判断。

下载全文。

相关文档
最新文档