电磁场理论知识点总结
电磁场复习纲要

《电磁场理论》知识点第一章 矢量分析一、基本概念、规律矢量微分算子在不同坐标系中的表达,标量场的梯度、矢量场的散度和旋度在不同坐标系中的计算公式,常用的矢量恒等式(见附录一1.和2.)、矢量积分定理(高斯散度定理、斯托克斯旋度定理及亥姆霍兹定理)。
二、基本技能练习1、已知位置矢量z y x e z e y ex r ˆˆˆ++=ρ,r 是它的模。
在直角坐标系中证明 (1)r r r ρ=∇ (2)3=•∇r ρ (3)∇×0=r ρ (4)∇×(0)=∇r (5)03=•∇r rρ2、已知矢量z y e xy e x eA z y x 2ˆˆˆ++=ϖ,求出其散度和旋度。
3、在直角坐标系证明0A ∇⋅∇⨯=r4、已知矢量y x e eA ˆ2ˆ+=ϖ,z x e eB ˆ3ˆ-=ϖ,分别求出矢量A ϖ和B ϖ的大小及B A ϖϖ⋅ 5、证明位置矢量x y z r e x e y e z =++r r r r的散度,并由此说明矢量场的散度与坐标的选择无关。
6、矢量函数z y x e x e y ex A ˆˆˆ2++-=ϖ,试求 (1)A ϖ⋅∇(2)若在xy 平面上有一边长为2的正方形,且正方形的中心在坐标原点,试求该矢量A ϖ穿过此正方形的通量。
第二章 静电场一、基本常数真空中介电常数0ε二、基本概念、规律静电场、库仑定律、电场强度、电位及其微分方程、电荷密度、电偶极子模型、高斯定理、环路定理、极化强度矢量、电位移矢量、场方程(真空中和电介质中)、介质性能方程,边界条件,场能及场能密度。
三、基本技能练习1、设非均匀介质中的自由电荷密度为ρ,试证明其中的束缚电荷密度为)(00εεερεεερ-∇•---=D b ρ。
2、证明极化介质中,极化电荷体密度b ρ与自由电荷体密度ρ的关系为:ρεεερ0--=b 。
3、一半径为a 内部均匀分布着体密度为0ρ的电荷的球体。
求任意点的电场强度及电位。
电磁场与电磁波知识点总结 知乎

电磁场与电磁波知识点总结知乎
电磁场和电磁波是物理学中的重要基础知识,涉及到电学、磁学、波动光学等多个领域。
下面是对电磁场和电磁波的一些重要知识点总结:
1. 电场和磁场:电场是指空间中由电荷引起的电力作用,磁场是指空间中由电流引起的磁力作用。
电场和磁场都是矢量场,可以用矢量图形表示。
2. 麦克斯韦方程组:麦克斯韦方程组是描述电磁场行为的基本方程,包括四个方程:高斯定理、高斯磁定理、法拉第电磁感应定律和安培环路定理。
3. 电磁波:电磁波是由电场和磁场相互作用引起的一种波动现象,包括无线电波、可见光、紫外线、X射线等。
电磁波具有波长、频率等特征,可以用波动方程表示。
4. 偏振:偏振是指电磁波中电场矢量的振动方向。
根据电场矢量的振动方向,电磁波可以分为线偏振、圆偏振和不偏振等。
5. 折射和反射:当电磁波从一种介质传播到另一种介质时,会发生折射现象,即波的传播方向改变。
同时,当电磁波遇到介质的边界时,会发生反射现象,即波发生反向传播。
折射和反射现象可以用斯涅尔定律和菲涅尔公式计算。
6. 衍射和干涉:电磁波在经过小孔或射缝等障碍物时,会发生衍射现象,即波扩散后形成干涉条纹。
同时,当两束电磁波相遇时,会发生干涉现象,即波的振幅会增强或减弱。
衍射和干涉现象可以用
菲涅尔衍射和双缝干涉等理论进行描述。
以上是电磁场和电磁波的一些重要知识点总结。
熟练掌握这些知识,对于理解电学、磁学、波动光学等学科都具有重要意义。
物理学中的电磁场理论知识点

物理学中的电磁场理论知识点电磁场理论是物理学中重要的一部分,它描述了电荷体系所产生的电磁场以及电磁场与电荷之间的相互作用。
本文将介绍电磁场的概念、电场和磁场的性质以及麦克斯韦方程组等电磁场的基本知识点。
一、电磁场的概念电磁场是指由电荷或电流体系所产生的电场和磁场的总和。
电场是由电荷引起的一种力场,可使带电粒子受力;磁场则是由电流引起的一种力场,可对磁性物质施加力。
二、电场的性质1. 电场的强度:电场强度定义为单位正电荷所受的电场力,通常用E 表示,其大小与电荷量和距离有关。
2. 电场线:电场线是用来表示电场分布的曲线,其方向与电场强度方向相同。
电场线的密度反映了电场强度的大小。
3. 高斯定律:高斯定律描述了电场与电荷之间的关系,它指出电场通过闭合曲面的通量与闭合曲面内的总电荷成正比。
三、磁场的性质1. 磁感应强度:磁感应强度是磁场的基本物理量,用 B 表示,其大小与电荷量和距离无关。
它描述了磁场对磁性物质产生的作用力。
2. 磁场线:磁场线是用来表示磁场分布的曲线,其方向与磁感应强度的方向相同。
磁场线呈环状,从北极经南极形成闭合曲线。
3. 法拉第电磁感应定律:法拉第电磁感应定律描述了磁场变化引起感应电动势的现象。
它说明了磁场变化对电荷运动的影响。
四、麦克斯韦方程组麦克斯韦方程组是描述电磁场的基本方程,它由麦克斯韦总结了电场和磁场的性质而得出。
麦克斯韦方程组包括四个方程,分别是:1. 麦克斯韦第一方程(高斯定律):它描述了电场通过闭合曲面的通量与闭合曲面内的总电荷成正比。
2. 麦克斯韦第二方程(法拉第电磁感应定律):它描述了磁场变化引起感应电动势的现象,即电场沿闭合回路的环路积分与磁场变化的速率成正比。
3. 麦克斯韦第三方程(安培环路定律):它描述了环绕闭合回路的磁场强度与通过闭合回路的总电流之间的关系。
4. 麦克斯韦第四方程(法拉第电磁感应定律的推广):它说明了变化的电场可以产生磁场,反之亦然。
电场和磁场之间存在着相互转化的关系。
(完整版)高中物理电磁学知识点

二、电磁学(一)电场 1、库仑力:221r q q kF = (适用条件:真空中点电荷) k = 9.0×109 N ·m 2/ c 2 静电力恒量电场力:F = E q (F 与电场强度的方向可以相同,也可以相反) 2、电场强度: 电场强度是表示电场强弱的物理量。
定义式: qFE =单位: N / C 点电荷电场场强 rQ k E = 匀强电场场强 dU E =3、电势,电势能:qEA 电=ϕ,A q E ϕ=电 顺着电场线方向,电势越来越低。
4、电势差U ,又称电压 qWU =U AB = φA -φB 5、电场力做功和电势差的关系: W AB = q U AB 6、粒子通过加速电场: 221mv qU =7、粒子通过偏转电场的偏转量:2022022212121V L md qU V L m qE at y === 粒子通过偏转电场的偏转角 20mdv qULv v tg xy ==θ 8、电容器的电容:c Q U=电容器的带电量: Q=cU 平行板电容器的电容: kdS c πε4= 电压不变 电量不变(二)直流电路 1、电流强度的定义:I = 微观式:I=nevs (n 是单位体积电子个数,)2、电阻定律:电阻率ρ:只与导体材料性质和温度有关,与导体横截面积和长度无关。
单位:Ω·m 3、串联电路总电阻: R=R 1+R 2+R 3电压分配2121R R U U =,U R R R U 2111+=功率分配 2121R R P P =,P R R R P 2111+=4、并联电路总电阻: 3211111R R R R++= (并联的总电阻比任何一个分电阻小)两个电阻并联 2121R R R R R +=并联电路电流分配 1221I R I R =,I 1=I R R R 212+ 并联电路功率分配 1221R R P P =,P R R R P 2121+=5、欧姆定律:(1)部分电路欧姆定律: 变形:U=IR(2)闭合电路欧姆定律:I =rR E+ Ir U E += E r 路端电压:U = E -I r= IR输出功率:= IE -I r =(R = r 输出功率最大) R电源热功率:电源效率:=EU= R R+r 6、电功和电功率: 电功:W=IUt焦耳定律(电热)Q=电功率 P=IU纯电阻电路:W=IUt=P=IU非纯电阻电路:W=IUt >P=IU >Sl R ρ=(三)磁场1、磁场的强弱用磁感应强度B 来表示: IlFB =(条件:B ⊥L )单位:T 2、电流周围的磁场的磁感应强度的方向由安培(右手)定则决定。
电磁场理论知识点总结

电磁场理论知识点总结电磁场与电磁波总结第1章场论初步⼀、⽮量代数A ?B =AB cos θA B ?=AB e AB sin θA ?(B ?C ) = B ?(C ?A ) = C ?(A ?B ) A ? (B ?C ) = B (A ?C ) – C ?(A ?B ) ⼆、三种正交坐标系 1. 直⾓坐标系⽮量线元 x y z =++l e e e d x y z⽮量⾯元 =++S e e e x y z d dxdy dzdx dxdy 体积元 d V = dx dy dz单位⽮量的关系 ?=e e e x y z ?=e e e y z x ?=e e e z x y 2. 圆柱形坐标系⽮量线元 =++l e e e z d d d dz ρ?ρρ?l ⽮量⾯元 =+e e z dS d dz d d ρρ?ρρ? 体积元 dV = ρ d ρ d ? d z 单位⽮量的关系 ?=?? =e e e e e =e e e e zz z ρ??ρρ?3. 球坐标系⽮量线元 d l = e r d r + e θ r d θ + e ? r sin θ d ? ⽮量⾯元 d S = e r r 2sin θ d θ d ? 体积元 dv = r 2sin θ d r d θ d ? 单位⽮量的关系 ?=??=e e e e e =e e e e r r r θ?θ??θcos sin 0sin cos 0 001x r y z z A A A A A A ??=-sin cos sin sin cos cos cos cos sin sin sin cos 0x r y z A A A A A A=--θ?θ?θ?θθ?θ?θ??sin 0cos cos 0sin 010r r z A A A A A A=-θ??θθθθ三、⽮量场的散度和旋度1. 通量与散度=??A S Sd Φ 0lim→?=??=??A S A A Sv d div v2. 环流量与旋度=??A l ?ld Γ maxnrot =lim→A l A e ?lS d S3. 计算公式=++A y x zA A A x y z11()=++A zA A A z ?ρρρρρ? 22111()(sin )sin sin =++A r A r A A r r r r ?θθθθθ?x y z ?=e e e A x y z x y z A A A=?e e e A z z z A A A ρ?ρρρ?ρ sin sin=?e e e A r r zr r r A r A r A ρθθθ?θ 4. ⽮量场的⾼斯定理与斯托克斯定理=A S A SVd dV ?=A l A S ?l四、标量场的梯度 1. ⽅向导数与梯度00()()lim→-?=??l P u M u M u llcos cos cos =++P uu u ulx y zαβγ cos ??=?e l u u θ grad = =+e e e +e n x y zu u u uu n x y z2. 计算公式=++???e e e xy zu u uu x y z1=++???e e e z u u u u z ρρρ? 11sin =++???e e e r u u u u r r r zθ?θθ五、⽆散场与⽆旋场1. ⽆散场 ()0=A =??F A2. ⽆旋场 ()0=u =?F u六、拉普拉斯运算算⼦ 1. 直⾓坐标系222222222222222222222222222222=++?=?+?+??=++?=++?=++A e e e x x y y z zy y y x x x z z z x y zu u u u A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212=++ =?--+?-++? ? ??????A e e e z z u u uu zA A A A A A A ?ρρρρρρρρρ?ρρ?ρρ?3. 球坐标系22222222111sin sin sin =++ ? ??????????u u uu r r r r r r θθθ?θ? ???+-??+?+???--??+?+???----=θθθ?θ?θθθθ?θθθθθθθ?θθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 2 22222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果⽮量场F 在⽆限区域中处处是单值的,且其导数连续有界,则当⽮量场的散度、旋度和边界条件(即⽮量场在有限区域V ’边界上的分布)给定后,该⽮量场F 唯⼀确定为()()()=-?+??F r r A r φ其中 1()()4''??'='-?F r r r r V dV φπ1()()4''??'='-?F r A r r r V dV π第2章电磁学基本规律⼀、麦克斯韦⽅程组 1. 静电场基本规律真空中⽅程: 0d ?=SE S ?qεd 0?=?lE l ? 0=E ρε 0??=E 场位关系:3''()(')'4'-=-?r r E r r r r V q dV ρπε =-?E φ 01()()d 4π''='-?r r |r r |V V ρφε介质中⽅程: d ?=?D S ?S qd 0?=?lE l ? ??=D ρ 0??=E极化:0=+D E P ε e 00(1)=+==D E E E r χεεεε极化电荷:==?P e PS n n P ρ =-??P P ρ 2. 恒定电场基本规律电荷守恒定律:0+=?J tρ传导电流: =J E σ与运流电流:ρ=J v恒定电场⽅程: d 0?=?J S ?Sd 0l=E l 0=J 0E =3. 恒定磁场基本规律真空中⽅程:0 d ?=?B l ?lI µd 0?=?SB S ? 0=B J µ 0=B场位关系:03()( )()d 4π ''?-'='-?J r r r B r r r VV µ =??B A 0 ()()d 4π'''='-?J r A r r r V V µ 介质中⽅程:d ?=?H l ?l Id 0?=?SB S ? ??=H J 0??=B磁化:0=-BH M µ m 00(1)=+B H =H =H r χµµµµ 磁化电流:m =??J M ms n =?J M e4. 电磁感应定律d d ?=-SE l B S ?lddt =-BE t5. 全电流定律和位移电流全电流定律:d ()d ??=+D H l J S ?lSt =+DH J t位移电流: d =DJ d dt6. Maxwell Equationsd ()d d d d d 0=+?=-??==D H J S B E S D S B Sl S l S SV S l t l t V d ρ 0=+???=-?==?D H J B E D B t t ρ ()() ()()0=+???=-?==?E H E H E E H t t εσµερµ ⼆、电与磁的对偶性e m e m e m e e m m e e m mm e 00=-??==+??=--?=?=?????=?=??B D E H D B H J E J D B D B t t &t t ρρ m e e m ??=--?=+==B E J D H J D B tt ρρ三、边界条件 1. ⼀般形式12121212()0()()()0-=-=-=-=e E E e H H J e D D e B B n n S n Sn ρ2. 理想导体界⾯和理想介质界⾯111100?=??===e E e H J e D e B n n Sn S n ρ 12121212()0()0()0()0-=-=-=-=e E E e H H e D D e B B n n n n 第3章静态场分析⼀、静电场分析1. 位函数⽅程与边界条件位函数⽅程: 220?=-电位的边界条件:121212=??-=-?s nn φφφφεερ 111=??=-?s const nφφερ(媒质2为导体) 2. 电容定义:=qC φ两导体间的电容:=C q /U任意双导体系统电容求解⽅法:2211===D SE S E lE l蜒SS d d q C U d d ε3. 静电场的能量N 个导体: 112==∑ne i i i W q φ连续分布: 12=?e V W dV φρ电场能量密度:12D E ω=?e⼆、恒定电场分析1. 位函数微分⽅程与边界条件位函数微分⽅程:20?=φ边界条件:121212=??=?nn φφφφεε 12()0?-=e J J n 1212[]0?-=J J e n σσ 2. 欧姆定律与焦⽿定律欧姆定律的微分形式: =J E σ焦⽿定律的微分形式: =??E J V3. 任意电阻的计算2211d d 1??====E l E l J SE SSSUR G Id d σ(L R =σS )4. 静电⽐拟法:C —— G ,ε —— σ2211===D SE S E lE l蜒SS d d q C U d d ε 2211d d d ??===J S E SE lE lS S d I G Uσ三、恒定磁场分析1. 位函数微分⽅程与边界条件⽮量位:2?=-A J µ 12121211A A e A A J n s µµ()=?-=标量位:20m φ?= 211221??==??m m m m n nφφφφµµ 2. 电感定义:d d ??===??B S A l ?SlL IIIψ=+i L L L3. 恒定磁场的能量 N 个线圈:112==∑Nm j j j W I ψ连续分布:m 1d 2A J =??V W V 磁场能量密度:m 12H B ω=? 第4章静电场边值问题的解⼀、边值问题的类型●狄利克利问题:给定整个场域边界上的位函数值()=f s φ●纽曼问题:给定待求位函数在边界上的法向导数值()?=?f s nφ●混合问题:给定边界上的位函数及其向导数的线性组合:2112()()?==?f s f s nφφ●⾃然边界:lim r r φ→∞=有限值⼆、唯⼀性定理静电场的惟⼀性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表⾯电荷分布)下,空间静电场被唯⼀确定。
大学物理电磁学知识点总结

大学物理电磁学总结一、三大定律库仑定律:在真空中,两个静止的点电荷q1 和q2 之间的静电相互作用力与这两个点电荷所带电荷量的乘积成正比,与它们之间距离的平方成反比,作用力的方向沿着两个点电荷的连线,同号电荷相斥,异号电荷相吸。
uuu r q q ur F21 = k 1 2 2 er rur u r 高斯定理:a) 静电场:Φ e = E d S = ∫s∑qiiε0(真空中)b) 稳恒磁场:Φ m =u u r r Bd S = 0 ∫s环路定理:a) 静电场的环路定理:b) 安培环路定理:二、对比总结电与磁∫Lur r L E dl = 0 ∫ ur r B dl = 0 ∑ I i (真空中)L电磁学静电场稳恒磁场稳恒磁场电场强度:E磁感应强度:B 定义:B =ur ur F 定义:E = (N/C) q0基本计算方法:1、点电荷电场强度:E =ur r u r dF (d F = Idl × B )(T) Idl sin θ方向:沿该点处静止小磁针的N 极指向。
基本计算方法:urq ur er 4πε 0 r 2 1r ur u Idl × e r 0 r 1、毕奥-萨伐尔定律:d B = 2 4π r2、连续分布的电流元的磁场强度:2、电场强度叠加原理:ur n ur 1 E = ∑ Ei = 4πε 0 i =1r qi uu eri ∑ r2 i =1 inr ur u r u r 0 Idl × er B = ∫dB = ∫ 4π r 23、安培环路定理(后面介绍)4、通过磁通量解得(后面介绍)3、连续分布电荷的电场强度:ur ρ dV ur E=∫ e v 4πε r 2 r 0 ur σ dS ur ur λ dl ur E=∫ er , E = ∫ e s 4πε r 2 l 4πε r 2 r 0 04、高斯定理(后面介绍)5、通过电势解得(后面介绍)几种常见的带电体的电场强度公式:几种常见的磁感应强度公式:1、无限长直载流导线外:B = 2、圆电流圆心处:B = 3、圆电流轴线上:B =ur 1、点电荷:E =q ur er 4πε 0 r 2 10 I2R0 I 2π r2、均匀带电圆环轴线上一点:ur E=r qx i 2 2 32 4πε 0 ( R + x )R 2 IN 2 ( x 2 + R 2 )3 21 0α 23、均匀带电无限大平面:E =σ 2ε 0(N 为线圈匝数)4、无限大均匀载流平面:B =4、均匀带电球壳:E = 0( r < R )(α 是流过单位宽度的电流)ur E=q ur er (r > R ) 4πε 0 r 25、无限长密绕直螺线管内部:B = 0 nI (n 是单位长度上的线圈匝数)6、一段载流圆弧线在圆心处:B = (是弧度角,以弧度为单位)7、圆盘圆心处:B =r ur qr (r < R) 5、均匀带电球体:E = 4πε 0 R 3 ur E= q 4πε 0 r ur er (r > R ) 20 I 4π R0σω R2(σ 是圆盘电荷面密度,ω 圆盘转动的角速度)6、无限长直导线:E =λ 2πε 0 x λ 0(r > R ) 2πε 0 r7、无限长直圆柱体:E =E=λr (r < R) 4πε 0 R 2电场强度通量:N·m2·c-1)(磁通量:wb)(sΦ e = ∫ d Φ e = ∫ E cos θ dS = ∫s sur u r E d S通量u u r r Φ m = ∫ d Φ m = ∫ Bd S = ∫ B cos θ dS s s s若为闭合曲面:Φ e =∫sur u r E d S若为闭合曲面:u u r r Φ m = Bd S = B cos θ dS ∫ ∫s s均匀电场通过闭合曲面的通量为零。
高中物理电磁学知识点总结

高中物理电磁学知识点总结一、电场1、库仑定律真空中两个静止点电荷之间的相互作用力,与它们电荷量的乘积成正比,与它们距离的二次方成反比,作用力的方向在它们的连线上。
公式为:$F = k\frac{q_1q_2}{r^2}$,其中$k$为静电力常量,$k = 90×10^9 N·m^2/C^2$ 。
2、电场强度用来描述电场强弱和方向的物理量。
定义式为$E =\frac{F}{q}$,单位是$N/C$。
点电荷形成的电场强度公式为$E =k\frac{Q}{r^2}$。
3、电场线为了形象地描述电场而引入的假想曲线。
电场线从正电荷出发,终止于负电荷或无穷远;电场线的疏密表示电场强度的大小,电场线上某点的切线方向表示该点的电场强度方向。
4、电势能电荷在电场中具有的势能。
电场力做正功,电势能减小;电场力做负功,电势能增加。
5、电势描述电场能的性质的物理量。
某点的电势等于单位正电荷在该点具有的电势能。
定义式为$\varphi =\frac{E_p}{q}$,单位是伏特(V)。
6、等势面电场中电势相等的点构成的面。
等势面与电场线垂直。
7、匀强电场电场强度大小和方向都相同的电场。
其电场线是平行且等间距的直线。
二、电路1、电流电荷的定向移动形成电流。
定义式为$I =\frac{Q}{t}$,单位是安培(A)。
2、电阻导体对电流的阻碍作用。
定义式为$R =\frac{U}{I}$,单位是欧姆(Ω)。
电阻定律为$R =\rho\frac{l}{S}$,其中$\rho$是电阻率,$l$是导体长度,$S$是导体横截面积。
3、欧姆定律导体中的电流跟导体两端的电压成正比,跟导体的电阻成反比。
公式为$I =\frac{U}{R}$。
4、电功电流做功的过程就是电能转化为其他形式能的过程。
公式为$W =UIt$ 。
5、电功率单位时间内电流所做的功。
公式为$P = UI$ 。
6、焦耳定律电流通过导体产生的热量跟电流的二次方成正比,跟导体的电阻成正比,跟通电时间成正比。
电磁场理论知识点总结

电磁场理论知识点总结1.麦克斯韦方程组:麦克斯韦方程组是电磁场理论的核心方程,它由四个方程组成,分别是高斯定律、法拉第电磁感应定律、安培环路定律和法拉第电磁感应定律的积分形式。
这些方程描述了电场和磁场随空间和时间的变化规律。
2.电场和磁场的相互作用:根据麦克斯韦方程组,电场和磁场相互作用,通过电场的变化会产生磁场,而通过磁场的变化会产生电场。
这种相互作用是电磁波传播的基础。
3.电磁波的传播:根据麦克斯韦方程组的解,电磁波以光速在真空中传播,它是由电场和磁场相互耦合而成的波动现象。
电磁波的传播速度不同于物质中的电磁波传播速度,它是真空中的最大可能速度。
4.电磁感应现象:根据法拉第电磁感应定律,当一个导体中的磁场发生变化时,会在导体中产生感应电流。
这个现象被广泛应用于发电机、变压器等电磁设备中。
5.静电场和静磁场:当电荷和电流都不随时间变化时,产生的电场和磁场称为静电场和静磁场。
在静电场中,电场符合高斯定律;在静磁场中,磁场符合安培环路定律。
静电场和静磁场的研究对于理解电磁场的基本性质和应用具有重要意义。
6.电磁辐射和辐射场:根据麦克斯韦方程组的解,加速的电荷会辐射出电磁波。
这种辐射就是电磁辐射,它是电磁波传播的一种形式。
辐射场是指由电磁辐射产生的电场和磁场。
7.电磁波的频率和波长:电磁波的频率和波长是描述电磁波特性的两个重要参数。
频率指的是电磁波单位时间内振动的次数,单位是赫兹;波长指的是电磁波的一个完整振动周期所对应的空间距离,单位是米。
8.电磁场的能量和动量:根据电磁场的能量密度和动量密度的定义,可以推导出电磁场的能量和动量公式。
电磁场携带能量和动量,可以与物质相互作用,这是实现无线通信、光学传输等现代科技的基础。
9.电磁场的边界条件:电磁场在介质边界上的反射和折射现象可以通过电磁场的边界条件来描述。
边界条件包括麦克斯韦方程组的边界条件和介质的边界条件,它们确定了电磁场在边界上的行为和传播规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁场理论知识点总结(总16页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除电磁场与电磁波总结第1章 场论初步一、矢量代数A •B =AB cosA B ⨯=AB e AB sinA •(BC ) = B •(C A ) = C •(A B ) A (B C ) = B (A •C ) – C •(A •B ) 二、三种正交坐标系 1. 直角坐标系矢量线元 x y z =++l e e e d x y z矢量面元 =++S e e e x y z d dxdy dzdx dxdy 体积元 d V = dx dy dz单位矢量的关系 ⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y 2. 圆柱形坐标系矢量线元 =++l e e e z d d d dz ρϕρρϕl 矢量面元 =+e e z dS d dz d d ρρϕρρϕ 体积元 dV = d d d z单位矢量的关系 ⨯=⨯⨯=e e e e e =e e e e zz z ρϕϕρρϕ3. 球坐标系矢量线元 d l = e r d r + e r d e r sin d矢量面元 d S = e r r 2sin d d 体积元 dv = r 2sin d r d d单位矢量的关系 ⨯=⨯⨯=e e e e e =e e e e r rr θϕθϕϕθcos sin 0sin cos 0 001x r y z z A A A A A A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ϕϕϕϕϕsin cos sin sin cos cos cos cos sin sin sin cos 0x r y z A A A A A A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦θϕθϕθϕθθϕθϕθϕϕsin 0cos cos 0sin 010r r z A A A A A A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦θϕϕθθθθ三、矢量场的散度和旋度1. 通量与散度=⋅⎰A S S d Φ 0lim∆→⋅=∇⋅=∆⎰A S A A Sv d div v2. 环流量与旋度=⋅⎰A l ld Γ maxn 0rot =lim∆→⋅∆⎰A lA e lS d S3. 计算公式∂∂∂∇=++∂∂∂⋅A y x zA A A x y z11()∂∂∂∇=++∂∂∂⋅A zA A A z ϕρρρρρϕ 22111()(sin )sin sin ∂∂∂∇=++∂∂∂⋅A r A r A A r r r r ϕθθθθθϕx y z ∂∂∂∇⨯=∂∂∂e e e A x y z x y z A A A ∂∂∂∇⨯=∂∂∂e e e A z z z A A A ρϕρϕρρϕρ sin sin ∂∂∂∇⨯=∂∂∂e e e A r r zr r r A r A r A ρϕθθθϕθ 4. 矢量场的高斯定理与斯托克斯定理⋅=∇⋅⎰⎰A S A SV d dV⋅=∇⨯⋅⎰⎰A l A S lSd d四、标量场的梯度 1. 方向导数与梯度00()()lim∆→-∂=∂∆l P u M u M u llcos cos cos ∂∂∂∂=++∂∂∂∂P uu u ulx y zαβγ cos ∇⋅=∇e l u u θ grad ∂∂∂∂==+∂∂∂∂e e e +e n x y zu u u uu n x y z2. 计算公式∂∂∂∇=++∂∂∂e e e xy zu u u u x y z1∂∂∂∇=++∂∂∂e e e z u u u u z ρϕρρϕ 11sin ∂∂∂∇=++∂∂∂e e e r u u uu r r r zθϕθθ 五、无散场与无旋场1. 无散场 ()0∇⋅∇⨯=A =∇⨯F A2. 无旋场 ()0∇⨯∇=u =∇F u 六、拉普拉斯运算算子1. 直角坐标系22222222222222222222222222222222∂∂∂∇=++∇=∇+∇+∇∂∂∂∂∂∂∂∂∂∂∂∂∇=++∇=++∇=++∂∂∂∂∂∂∂∂∂A e e e x x y y z zy y y x x x z z z x y zu u u u A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212⎛⎫∂∂∂∂∇=++ ⎪∂∂∂∂⎝⎭∂∂⎛⎫⎛⎫∇=∇--+∇-++∇ ⎪ ⎪∂∂⎝⎭⎝⎭A e e e z z u u uu z A A A A A A A ϕρρρρϕϕϕρρρρρϕρρϕρρϕ3. 球坐标系22222222111sin sin sin ⎛⎫∂∂∂∂∂⎛⎫∇=++ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭u u uu r r r r r r θθθϕθϕ⎪⎪⎭⎫⎝⎛∂∂+-∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂--∂∂+∇+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂---∇=∇ϕθθθϕθϕθθθθϕθθθθϕϕϕϕθθθϕθθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 222222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果矢量场F 在无限区域中处处是单值的,且其导数连续有界,则当矢量场的散度、旋度和边界条件(即矢量场在有限区域V ’边界上的分布)给定后,该矢量场F 唯一确定为()()()=-∇+∇⨯F r r A r φ其中 1()()4''∇⋅'='-⎰F r r r r V dV φπ 1()()4''∇⨯'='-⎰F r A r r r V dV π第2章 电磁学基本规律一、麦克斯韦方程组 1. 静电场基本规律真空中方程:d ⋅=⎰SE S qεd 0⋅=⎰lE l 0∇⋅=E ρε 0∇⨯=E 场位关系:3''()(')'4'-=-⎰r r E r r r r V q dV ρπε =-∇E φ 01()()d 4π''='-⎰r r |r r |V V ρφε介质中方程:d ⋅=⎰D S Sqd 0⋅=⎰lE l ∇⋅=D ρ 0∇⨯=E极化:0=+D E P ε e 00(1)=+==D E E E r χεεεε 极化电荷:==⋅P e PS n n P ρ =-∇⋅P P ρ2. 恒定电场基本规律电荷守恒定律:0∂∇⋅+=∂J tρ传导电流: =J E σ 与运流电流:ρ=J v恒定电场方程:d 0⋅=⎰J S Sd 0l⋅=⎰E l 0∇⋅=J 0∇⨯E =3. 恒定磁场基本规律真空中方程:0 d ⋅=⎰B l lI μ d 0⋅=⎰SB S 0∇⨯=B J μ 0∇⋅=B场位关系:03()( )()d 4π ''⨯-'='-⎰J r r r B r r r VV μ =∇⨯B A 0 ()()d 4π'''='-⎰J r A r r r V V μ 介质中方程:d ⋅=⎰H l lId 0⋅=⎰SB S ∇⨯=H J 0∇⋅=B磁化:0=-BH M μ m 00(1)=+B H =H =H r χμμμμ 磁化电流:m =∇⨯J M ms n =⨯J M e4. 电磁感应定律d d ⋅=-⋅⎰⎰S E l B S ld dt ∂∇⨯=-∂BE t5. 全电流定律和位移电流全电流定律:d ()d ∂⋅=+⋅∂⎰⎰D H l J S l St ∂∇⨯=+∂DH J t位移电流: d =DJ d dt6. Maxwell Equationsd ()d d d d d 0∂⎧⋅=+⋅⎪∂⎪∂⎪⋅=-⋅⎪∂⎨⎪⋅=⎪⎪⋅=⎪⎩⎰⎰⎰⎰⎰⎰⎰D H J S B E S D S B S l S l SSV Sl t l t V d ρ 0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩D H J B E D B t t ρ ()() ()()0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩E H E H E E H t t εσμερμ 二、电与磁的对偶性em e m em e e m m e e m mm e 00∂∂⎫⎧∇⨯=-∇⨯=⎪⎪∂∂⎪⎪∂∂⎪⎪∇⨯=+∇⨯=--⎬⎨∂∂⎪⎪∇=∇=⎪⎪⎪⎪∇=∇=⎩⎭⋅⋅⋅⋅B D E H DB H J E J D B D B t t &tt ρρ m e e m ∂⎧∇⨯=--⎪∂⎪∂⎪∇⨯=+⇒⎨∂⎪∇=⎪⎪∇=⎩⋅⋅B E J D H J D B tt ρρ三、边界条件1.一般形式12121212()0()()()0⨯-=⨯-=⋅-=⋅-=e E E e H H J e D D e B B n n S n Sn ρ2. 理想导体界面 和 理想介质界面111100⨯=⎧⎪⨯=⎪⎨⋅=⎪⎪⋅=⎩e E e H J e D e B n n S n S n ρ 12121212()0()0()0()0⨯-=⎧⎪⨯-=⎪⎨⋅-=⎪⎪⋅-=⎩e E E e H H e D D e B B n n n n 第3章 静态场分析一、静电场分析1. 位函数方程与边界条件位函数方程: 220∇=-∇=ρφφε电位的边界条件:121212=⎧⎪⎨∂∂-=-⎪∂∂⎩s n n φφφφεερ 111=⎧⎪⎨∂=-⎪∂⎩s const nφφερ(媒质2为导体) 2. 电容定义:=qC φ两导体间的电容:=C q /U任意双导体系统电容求解方法:2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε 3. 静电场的能量N 个导体: 112==∑ne i i i W q φ 连续分布: 12=⎰e V W dV φρ 电场能量密度:12D E ω=⋅e二、恒定电场分析1. 位函数微分方程与边界条件位函数微分方程:20∇=φ边界条件:121212=⎧⎪⎨∂∂=⎪∂∂⎩n n φφφφεε 12()0⋅-=e J J n 1212[]0⨯-=J J e n σσ2. 欧姆定律与焦耳定律欧姆定律的微分形式: =J E σ 焦耳定律的微分形式: =⋅⎰E J VP dV3. 任意电阻的计算2211d d 1⋅⋅====⋅⋅⎰⎰⎰⎰E l E l J SE SSSU R G Id d σ (L R =σS )4. 静电比拟法:C —— G ,—— σ2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε 2211d d d ⋅⋅===⋅⋅⎰⎰⎰⎰J S E SE lE lS S d I G Uσ三、恒定磁场分析1. 位函数微分方程与边界条件矢量位:2∇=-A J μ 12121211⨯⨯⨯A A e A A J n s μμ()=∇-∇=标量位:20m φ∇= 211221∂∂==∂∂m m m m n nφφφφμμ 2. 电感定义:d d ⋅⋅===⎰⎰B S A l SlL I IIψ=+i L L L3. 恒定磁场的能量N 个线圈:112==∑Nm j j j W I ψ 连续分布:m 1d 2A J =⋅⎰V W V 磁场能量密度:m 12H B ω=⋅第4章 静电场边值问题的解一、边值问题的类型狄利克利问题:给定整个场域边界上的位函数值()=f s φ 纽曼问题:给定待求位函数在边界上的法向导数值()∂=∂f s nφ混合问题:给定边界上的位函数及其向导数的线性组合:2112()()∂==∂f s f s nφφ 自然边界:lim r r φ→∞=有限值二、唯一性定理静电场的惟一性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表面电荷分布)下,空间静电场被唯一确定。