八年级上册数学沪科版复习提纲

合集下载

沪科版八年级数学上册期末复习-三角形

沪科版八年级数学上册期末复习-三角形

沪科版八年级数学上册期末复习 2一、三角形1、三角形的分类:(1)按边分类:( 2)按角分类:不等边三角形直角三角形三角形三角形锐角三角形等腰三角形(等边三角形是特例)斜三角形钝角三角形2、三角形三边的关系:三角形中任何两边的和大于第三边;任何两边的差小于第三边 .3、三角形内角和定理、外角及其推论:(1)三角形内角和定理:三角形三个内角的和等于 180° .(2)推论 1:直角三角形的两个锐角互余 .(3)三角形的外角:由三角形的一边与另一边的延长线组成的角,叫做三角形的外角 . 三角形的外角与它相邻的内角互补 .(4)推论 2:三角形的一个外角等于与它不相邻的两个内角的和.(5)推论 3:三角形的一个外角大于与它不相邻的任何一个内角.4、三角形中的重要线段(1)在三角形中,一个角的平分线与这个角对边相交,顶点与交点之间的线段叫做三角形的角平分线 .(2)在三角形中,连接一个顶点与它对边中点的线段叫做三角形的中线 .(3)从三角形的一个顶点到它对边所在直线的垂线段叫做三角形的高 .注意:①一个三角形有三条中线、三条角平分线、三条高,并且它们都是线段;②三角形的三条中线、三条角平分线都在三角形内部,且交于一点;而三角形的高未必在三角形内部 .5、命题(1)凡是可以判断出真(正确)、假(错误)的语句叫做命题 .(2)命题分为真命题和假命题 .( 3)命题的组成:每个命题都由条件和结论两部分组成 .(4)几何推理中,把那些从长期实践中总结出来,不需要再作证明的真命题叫做公理 .如:经过两点,有且只有一条直线;两点之间,线段最短;两直线平行,同位角相等;同位角相等,两直线平行;平行公理:过直线外一点,有且只有一条直线与已知直线平行;经过直线外或直线上一点,有且只有一条直线与已知直线垂直 . (5)正确性已经过推理得到证实,并被选定作为判断其他命题真假的依据,这样的真命题叫做定理 .如:对顶角相等;内错角相等,两直线平行;在平面内,垂直于同一条直线的两直线互相平行.二、全等三角形1、能够完全重合的两个图形,叫做全等形;能够完全重合的两个三角形,叫做全等三角形2、全等三角形的性质:全等三角形的对应边相等,对应角相等;对应边上的中线、对应边上的高、对应的角平分线分别相等;全等三角形的周长相等,面积相等 .注:用全等符号“≌” 表示两个全等三角形时,通常把表示对应顶点的字母写在对应位置上∴△ ABC ≌△ DEF三、轴对称图形1、 轴对称图形 :如果一个图形沿一条直线折叠, 图形叫做 轴对称图形 . 这条直线叫做 对称轴 .2、 轴对称 :如果一个图形沿着一条直线折叠,它能够与另一个图形重合,那么称这两个图 形成 轴对称 . 这条直线叫做 对称轴 . 折叠后重合的点叫做 对称点 .3、全等三角形的 判定(1)“边角边”定理 : 两边和它对应相等的两个三角形全等 .(SAS ) 在△ ABC 和△ DEF 中, 2)“角边角”定理 : 两角和它们的夹边对应相等的两个三角形全等 . (ASA ) 在△ ABC 和△ DEF 中,BE ∵ BC EFCF3)“角角边”定理 : 两个角和其中一个角的对边∴△ ABC ≌△ DEF 对应相等的两个三角形全等 . ( AAS ) 在△ ABC 和△ DEF 中,另外, 边边边”定理 :三边 对应相等的两个三角形全等 BE AB DE∴△ ABC ≌△ DEF. (SSS ) 在△ ABC 和△ DEF 中,AB DE ∵BC EF AC DF∴△ ABC ≌△ DEF判定两个直角三角形全等还有另一种方法 . :斜边和一条直角边 对应相等的两个直角三角形全等 .(HL ) 在 Rt △ABC 和 Rt △DEF 中,AB DEAC DF∴ Rt △ ABC ≌Rt △DEF直线两旁的部分能够完全重合,那么这个 AB DE ∵ BEBC EF3、轴对称性质与判定:(1)如果两个图形关于某直线对称,那么对称轴垂直平分任意一对对应点的所连线段(2)如果两个图形各对对应点的所连线段被同一条直线垂直平分,那么这两个图形关于这条直线对称 .4、轴对称和轴对称图形的区别与联系四、线段的垂直平分线1、经过线段的中点,并且垂直于这条线段的直线叫做这条线段的垂直平分线,又叫做线段的中垂线 .2、线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端距离相等 .3、线段垂直平分线的判定定理:与线段两端距离相等的点在这条线段的垂直平分线上 .4、三角形三边垂直平分线的性质:三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等 .五、等腰三角形1、定义:有两边相等的三角形叫做等腰三角形 .2、性质:(1)等腰三角形两个底角相等 .简称“ 等边对等角”.(2)等腰三角形顶角的平分线垂直平分底边 .(等腰三角形的顶角平分线、底边上的中线和底边上的高三线合一)3、判定定理:如果一个三角形有两个角相等,那么这两个角所对的边相等. 简称“ 等角对等边”.六、等边三角形1、定义:三边都相等的三角形叫做 等边三角形 .2、性质 :等边三角形的三边相等;三个角都相等,每一个内角等于 60°3、判定 :(1)定义法:三边都相等的三角形是等边三角形 .(2)推论 1:三个角都相等的三角形是等边三角形 .(3)推论 2:有一个角是 60°的等腰三角形是等边三角形 .七、直角三角形含 30°角的直角三角形性质: 在直角三角形中, 如果一个锐角等于 30 ° ,那么 它所对的 直角边等于斜边的一半 .八、角平分线1、性质 定理:角平分线上任意一点到角的两边的 距离相等 .2、 判定 定理:在一个角的内部,到角的两边 距离相等 的点在这个角的平分线上 .3、 三角形三条角平分线的性质 :三角形三条内角平分线相交于一点,这点到三角形三边的 距离 相等.【考点习题】 一、选择题1、三角形的三边分别为 3,1 2a , 8,则 a 的取值范围是( ) A . 6 a 3 B . a 5 或 a 2 C . 2a5 D . 5 a 2 2、如图所示, 在△ ABC 中, 已知点 D 、E 、 F 分别为边 BC 、 AD 、 CE 的中点,且S ABC = 4cm,则 S 阴影 等于 ( )221 21 2A . 2cB . 1 2C. cm D .cm243、如图, a ∥ b ,∠ 1=65° ,∠2 =140° ,则∠ 3=( )A 、B 、C 110°D 、(第 2 题) (第 3题)4、若△ ABC 的三个内角满足关系式∠ B +∠ C=3∠A ,则这个三角形( )A .一定有一个内角为 45°B .一定有一个内角为 60°C .一定是直角三角形D .一定是钝角三角形5、下列命题中正确的是( )A .三角形可分为斜三角形、直角三角形和锐角三角形B .等腰三角形任一个内角都有可能是钝角或直角C .三角形外角一定是钝角D .△ ABC 中,如果∠ A>∠ B>∠C ,那么∠ A>60°,∠ C<60°6、如图,点 D 在 AB 上,点 E 在 AC 上,且∠ B=∠C ,那么补充一个条件后, 仍无法判断△ ABE ≌△ ACD 的是( )A. AD=AEB.∠AEB=∠ADC C. BE=CD7④∠ OFD=∠OFE 。

沪科版数学八年级上册1全等三角形判定复习课件

沪科版数学八年级上册1全等三角形判定复习课件
求证:CD=AB+BD A
B
D
C
课堂练习
5.如图:在四边形ABCD中,点E在边CD上,连接AE、BE并延长AE交BC
的延长线于点F,给出下列5个关系式::①AD∥BC,②,DE=EC③
∠1=∠2,④∠3=∠4,⑤AD+BC=AB。将其中三个关系式作为已知,
另外两个作为结论,构成正确的命题。请用序号写出两个正确的命
• 变式1:以上条件不变,将△ABC绕点C顺时
针旋转10度,以上的结论还成立吗?
A
E
B D
C
例3变式2
• 例4.已知,△ABC和△ECD都是等边三角形,且 点B,C,D在一条直线上求证:BE=AD
• 变式:以上条件不变,将△ABC绕点C顺时针旋
转60度,以上的结论还成立吗?
E
A
D C
例3变式3
• 例5.已知,△ABC和△ECD都是等边三
角形,当△ABC绕点C顺时针旋转ɑ时,
连接BE,DA;结论BE=AD还成立吗?
若成立请加以证明。
E
A
E
A
B
B
D
C
D C
例3变式4
引申:例6.已知,△ABC和△ECD都是等边三角形,且点
B交,于CN,,D试在判一定条△直C线M上N,的AC形与状BE相交于M,CE与EAD相
解:△CMN是等边三角形
A
M
课堂练习
3.已知点A,E,F,C在同一条直线上,且AE=CF,过
E F两点分别作DE⊥AC,BF⊥AC,且AB=CD,(
1)求证:BD平分 EF(2)若将△DEC的边EC沿AC方
向移动,变化为2时,其余条件不变,上述结论是否成立
,说明理由

初二数学沪科版上册知识点梳理

初二数学沪科版上册知识点梳理

初⼆数学沪科版上册知识点梳理学习需要制定详细的计划,计划本⾝对⼤家有较强的约束和督促作⽤,计划对学习既有指导作⽤,⼜有推动作⽤。

制定好的学习计划,是提⾼⼯作效率的重要⼿段。

下⾯是⼩编给⼤家整理的⼀些初⼆数学的知识点,希望对⼤家有所帮助。

初⼆数学知识点位置与坐标1、确定位置在平⾯内,确定⼀个物体的位置⼀般需要两个数据。

2、平⾯直⾓坐标系①含义:在平⾯内,两条互相垂直且有公共原点的数轴组成平⾯直⾓坐标系。

②通常地,两条数轴分别置于⽔平位置与竖直位置,取向右与向上的⽅向分别为两条数轴的正⽅向。

⽔平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,⼆者统称为坐标轴,它们的公共原点o被称为直⾓坐标系的原点。

③建⽴了平⾯直⾓坐标系,平⾯内的点就可以⽤⼀组有序实数对来表⽰。

④在平⾯直⾓坐标系中,两条坐标轴将坐标平⾯分成了四部分,右上⽅的部分叫第⼀象限,其他三部分按逆时针⽅向叫做第⼆象限,第三象限,第四象限,坐标轴上的点不在任何⼀个象限。

⑤在直⾓坐标系中,对于平⾯上任意⼀点,都有的⼀个有序实数对(即点的坐标)与它对应;反过来,对于任意⼀个有序实数对,都有平⾯上的⼀点与它对应。

3、轴对称与坐标变化关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。

⼋年级上册数学复习资料【⼀次函数】20.1⼀次函数的概念1.⼀般地,解析式形如ykxb(kb是常数,k0)的函数叫做⼀次函数;⼀次函数的定义域是⼀切实数2.⼀般地,我们把函数yc(c为常数)叫做常值函数20.2⼀次函数的图像1.列表、描点、连线2.⼀条直线与y轴的交点的纵坐标叫做这条直线在y轴上的截距,简称直线的截距3.⼀般地,直线ykxb(kb是常数,k0)与y轴的交点坐标是(0,b),直线的截距是b4.⼀次函数ykxb(b≠0)的图像可以由正⽐例函数ykx的图像平移得到当b>0时,向上平移b个单位,当b<0时,向下平移b的绝对值个单位5.⼀元⼀次不等式与⼀次函数之间的关系(看图)20.3⼀次函数的性质1.⼀次函数ykxb(kb是常数,k?0)具有以下性质:当k>0时,函数值y随⾃变量x的值增⼤⽽增⼤当k<0时,函数值y随⾃变量x的值增⼤⽽减⼩①如图所⽰,当k>0,b>0时,直线经过第⼀、⼆、三象限(直线不经过第四象限);②如图所⽰,当k>0,b﹥O时,直线经过第⼀、三、四象限(直线不经过第⼆象限);③如图所⽰,当k﹤O,b>0时,直线经过第⼀、⼆、四象限(直线不经过第三象限);④如图所⽰,当k﹤O,b﹤O时,直线经过第⼆、三、四象限(直线不经过第⼀象限).20.4⼀次函数的应⽤1.利⽤⼀次函数及图像解决实际问题初⼆数学复习⽅法按部就班数学是环环相扣的⼀门学科,哪⼀个环节脱节都会影响整个学习的进程。

初二数学沪科版上册知识点梳理

初二数学沪科版上册知识点梳理

初二数学沪科版上册学问点梳理学习需要制定具体的打算,打算本身对大家有较强的约束和督促作用,打算对学习既有指导作用,又有推动作用。

制定好的〔学习打算〕,是提高工作效率的重要手段。

下面是我给大家整理的一些初二数学的学问点,期望对大家有所关怀。

初二数学学问点位置与坐标1、确定位置在平面内,确定一个物体的位置一般需要两个数据。

2、平面直角坐标系①含义:在平面内,两条相互垂直且有公共原点的数轴组成平面直角坐标系。

②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。

水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点。

③建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示。

④在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆时针方向叫做其次象限,第三象限,第四象限,坐标轴上的点不在任何一个象限。

⑤在直角坐标系中,对于平面上任意一点,都有的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上的一点与它对应。

3、轴对称与坐标转变关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。

〔八班级〕上册数学复习资料【一次函数】20.1一次函数的概念1.一般地,解析式形如ykxb(kb是常数,k0)的函数叫做一次函数;一次函数的定义域是一切实数2.一般地,我们把函数yc(c为常数)叫做常值函数20.2一次函数的图像1.列表、描点、连线2.一条直线与y轴的交点的纵坐标叫做这条直线在y轴上的截距,简称直线的截距3.一般地,直线ykxb(kb是常数,k0)与y轴的交点坐标是(0,b),直线的截距是b4.一次函数ykxb(b≠0)的图像可以由正比例函数ykx的图像平移得到当b0时,向上平移b个单位,当b0时,向下平移b的确定值个单位5.一元一次不等式与一次函数之间的关系(看图)20.3一次函数的性质1.一次函数ykxb(kb是常数,k?0)具有以下性质:当k0时,函数值y随自变量x的值增大而增大当k0时,函数值y随自变量x的值增大而减小①如下图,当k0,b0时,直线经过第一、二、三象限(直线不经过第四象限);②如下图,当k0,b﹥O时,直线经过第一、三、四象限(直线不经过其次象限);③如下图,当k﹤O,b0时,直线经过第一、二、四象限(直线不经过第三象限);④如下图,当k﹤O,b﹤O时,直线经过其次、三、四象限(直线不经过第一象限).20.4一次函数的应用1.利用一次函数及图像解决实际问题初二数学〔复习〔方法〕〕按部就班数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。

沪科版八年级上数学平面直角坐标系小结与复习

沪科版八年级上数学平面直角坐标系小结与复习

平面直角坐标系小结与复习一、教学内容:复习平面直角坐标系和图形在坐标系中的平移这两个内容。

二、教学目标理解和掌握坐标系有关概念,体会图形的变换,学会运用平移变换规律进行作图描点,培养合作交流、数形结合的思想,体会坐标系的实际应用价值。

三、教学重点:点的表示及描点方法、点的特征、平移的应用。

四、教学难点:平移前后的坐标变化及点的坐标特征、应用五、教学关键: 数形结合思想深刻地体会六、教学方法: 自主探索,主动参与七、教学准备:制作幻灯片、准备相关资料八、课型:专题复习课九、教学过程(一)本节课主要对本章进行专题讲解和随堂训练,并在这过程中穿插各知识点的复习强化。

专题一:利用点的坐标特点解题(1)利用坐标符号特征(2)利用对称点的特征(3)象限夹角平分线上点的坐标特点例题(多媒体显示):已知A(a-1,5)和B(2,b-1)关于x轴对称,求a+b的值拓展练习:一变:改为“关于y轴对称”;二变:改为“关于原点对称”三变:“直线AB平行x轴,求b”四变:“A点在第二象限,求a范围”五变:“B点在第一、三象限夹角平分线上,求b”(学生独立完成,上黑板演示或口答)专题二:确定物体的位置(1)用平面内的坐标确定物体的位置;(2)用角度和距离确定物体的位置。

例题(多媒体显示)教材第9页习题11.1第四题拓展练习:一变:“书城在人民广场的什么位置”(方向和距离)二变:“若用(2,1)表示人民广场位置,则其余建筑位置如何确定”专题三:动手操作题教材第13页例题(多媒体显示)拓展练习:一变:“将三角形ABC沿y轴正向平移2个单位,再向下平移3个单位”二变:画出三角形ABC关于y轴对称的图形(复习平移规律,拓展学生视野与思维,培养动手能力)专题四:数形结合接台解题例题(多媒体显示):在坐标系中,点到x轴距离为2,到y轴距离为1,求点坐标。

变化题:点(m-1,m+1)到x轴距离为2,求m值.(考察数形结合和分类讨论思想,指导学生学会分析、解决问题)专题五:中考链接题改编题:基础训练自测题填空题最后一题。

沪科版八年级上册数学知识汇总(最新最全)

沪科版八年级上册数学知识汇总(最新最全)

八年级上册数学知识汇总(HK)第十一章平面直角坐标系1、定义:在平面内由两条互相垂直且共原点的数轴组成,水平的数轴叫做x轴或横轴,取右为正,竖直的数轴叫做y轴或纵轴,取上为正. y(1)x轴上坐标(x,0); (-,+) (+,+)(2)y轴上坐标(0,y); O x(3)原点坐标(0,0). (-,-) (+,-)2、对称问题: x轴P1 (a,-b)P(a,b)关于 y轴的对称点P2 (-a,b)原点3 (-a,-b)口诀:关于谁对称,谁不变,另一个互反.3.距离问题:(1) P(a,b)到x轴的距离是︱b︱;(2) P(a,b)到y轴的距离是︱a︱;(3) P(a,b)到原点的距离是√a2+b2;(4)A、B中点公式:A(x1,y1)、B(x2,y2) P( x1+x22,y1+y22);(5)A(x1,y1)、B(x2,y2)距离公式:AB=√(x1-x2)2+(y1-y2)2(6)象限角平分线:P(a,a)在一三象限角平分线上,P(a,-a)在二四象限角平分线上.4.平行(或垂直)问题:A(x1,y1)、B(x2,y2)(1)AB∥x轴(或⊥y轴) 1=y2且x1≠x2同时AB=︱x1-x2︱;(2)AB∥y轴(或⊥x轴) 1=x2且y1≠y2同时AB=︱y1-y2︱.第十一章一次函数1.函数的表示方法:列表、图象(列表、描点、平滑线)、解析法.2.函数的定义:设在一个变化过程中有两个变量x,y.如果对于x在它允许取值范围内的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是因变量,y是x的函数.(1)x,y为代表,其它字母均可;(2)每一个x有唯一的y与之对应,但一个y可能有多个x与之对应;y y ···x , x1x n(3)函数图象的判定:若移动y轴时,与图象始终有唯一的交点,则图象为函数图象.3.函数自变量(x)的取值范围:(1)整式型,x∈R;(2)分式型(或负指数),分母不为零(非字母);(3)二次根式型,被开方数≥0(非字母);(4)复合型,列不等式求解集;(5)实际问题型,符合客观解.4.常见函数的图象:(1)一次函数y=kx+b:直线;(2)二次函数y=a x2+bx+c:抛物线;5.一次函数的定义:形如y=kx+b(k≠0)的函数,当b=0时,y=kx叫做正比例函数.(1)k、b的几何意义:斜率k决定直线倾斜方向与程度;截距b:直线与y轴交点的y坐标;(2)正比例函数图象与性质:y yx xk>0 k<0性质:①图象经过(0,0)与(1,k);②当k>0时,经过一、三象限,直线增而增(或减而减),当k<0时,经过二、四象限,直线增而减(或减而增);③︱k︱越大,直线越陡(靠近y轴);(3)一次函数图象与性质:y y y yx x x x①②③④①k>0,b>0 二三②k>0,b<0 一三四③k<0,b>0 二四④k<0,b<0 二三四(4)一次函数的移动:上下移动直接改变b,左右移动要数学结合(或用点截式截解析式);6.待定系数法:一设二代三求四写,具体如下:(1)两点式;(2)点斜式;(3)点截式;(4)斜截式;(5)求k公式:k=△y△x =y1-y2x1-x2=y2-y1x2-x1(6)2.5坐标策略(斜率法).7.分段函数:先求每个x取值范围的分函数,后合并.(1)一般步骤:求分函数合成画图(或求自变量)给x求y 给y求x;(2)拐点的作用:作图时,承上启下;代指时,对应范围求值.8.优化方案:(1)先求y1与y2;(2)在利用数形结合或作差法选择方案.8.一次函数与一元一次方程、一元一次不等式的关系(数形结合)锁定形而求形的范围:x轴上方:kx+b>0;x轴相交:kx+b=0;x轴下方:kx+b<0.9.一次函数与二元一次方程(组)的关系(1)二元一次方程的解可转化为有序实数对,取两点可得对应直线.l1: y1=k1x+b1①k1≠k2有唯一交点(k1·k2=-1)(2)k与b的作用:②k1﹦k2, b1﹦b2重合l2: y2=k2x+b2③k1﹦k2, b1≠b2平行第十三章三角形的边角关系、命题与证明1.三角形的定义、元素、表示、分类(边角都是两类)、性质等.2.边的性质:两角之和大于第三边,两角之差小于第三边.(1)三角形的存在:a小+a中>a大;(2)给定a,b求第三边x的范围:∣a-b∣<x<∣a+b∣(3)等腰三角形:2腰>底3.等腰三角形(以底或以角)易产生双解,几何体不给图也易产生双解.4.角的性质:三角形的内角和为180°,外角和为360°(性质定理).(1)RT△的两锐角互余(性质定理);(2)两锐角互余的三角形是RT△(判定定理);(3)三角形的一个外角等于与它不相邻的两个内角(性质定理);5.直角三角形的判定方法:(1)求出最大角为90°;(2)两角之和等于第三个角(可以是比例);(3)两角之差等于第三个角(可以是比例);6.三角形特殊线段三角形特殊线段项目结论类别图形条数交点作用特殊角角平分线三内内部(内心I) 角平分线三段论1.二分角(1)ɑ內内=90°+∠A2(1)ɑ內外=∠A2(1)ɑ外外=90°-∠A2中线三内内部(重心G)1.中线三段论2.等面积3.等积变换高线锐角三角形三内内部(垂心H)1.直角(90°)2.高3.等积变换直角三角形两边一内直角顶点 2.高平角ɑ高平=∣∠B-∠C∣2钝角三角形两外一内外部(靠钝)3.高高角ɑ高高=180°-∠A7.命题的定义:(1)分类:公理(基本事实)、定理、推理、(习题的结论);(2)元素:条件(p)与结论(q);(3)互逆.第十四章全等三角形1.定义:能够重合的两个三角形;2.记作:△ABC≌△A1B1C1;3.对应元素:对应顶点、对应角、对应边;4.性质:(1)对应角相等,(2)对应边相等,(3)对应周长、面积相等,(4)对应角平分线、中线、高线相等;5.判定定理:① AAA 假反例:一大一小的等边三角形;② ASA 真公理尺规作图(1)一般三角形的判定③ AAS 真定理由②推理④ SAS 真公理尺规作图 A(A 1)⑤ ASS 假反例: B(B 1)⑥ SSS 真公理尺规作图 C 1 C(2)直角三角形的判定(4+1):HL(尺规作图).6.三角形全等的证明思路(求角与边,可能联想证明;求高时可能使用等积变换公式):①找夹角:S A S三 (1)已知两边对应相等②找一边:SS S角③找直角:HL形 (2)已知一边一角对应相等①找一角:A A S或AS A全②找一边:SA S等 (3)已知两角对应相等①找夹边:A S A②找一边:AA S7.证明的格式(易:一次证明;较难:两次证明):(1)准备:根据策略找足条件···(2)正文:在△ABC与△A1B1C1中···(3)结论与应用:△ABC≌△A1B1C1···第十五章轴对称图形与等腰三角形1.轴对称与轴对称图形的异同点:(1)构成:两个图象关于对称轴(2+1)是对称的(adj), 轴对称图形(1)是n;(2)图象:A l A1 AB C 1 B1 B C△ABC与△A1B1C1关于直线l是对称的等腰三角形ABC是一个轴对称图形(常见的有角、线段、长方形等)2.线段的垂直平分线(中垂线)的定义:(1)画法(尺规作图,理由:先SSS后SAS);(2)性质定理:线段垂直平分线的点到线段两端的距离相等(理由:先SSS后SAS);(3)判定定理:到线段两端距离相等的点在线段的垂直平分线上(理由:先SSS后SAS).3.等腰三角形:有条边相等的三角形(即AB=AC 等腰三角形ABC).(1)性质:①两底角相等;②两腰相等;③轴对称图形;④顶角三线合一;(2)判定:①有两边相等的三角形是等腰三角形;②有两边相等的三角形是等腰三角形;4.等边三角形:三边都相等的三角形(即AB=BC=CA ABC).(1)性质:①三边相等;②三角相等;③轴对称图形(有3条对称轴);(2)判定:①三边相等;②三角相等;③有一个角为60°的等腰三角形;(3)(直角三角形的一个)定理:在直角三角形中,30°所对的直角边等于斜边的一半;5.角的平分线:(1)画法(尺规作图,理由:SSS);(2)性质性质:角平分线上的点到角的两边距离相等(理由:AAS);(3)判定定理:角的内部到角两边距离相等的点在角的平分线上(理由:HL).6.过已知点作已知直线的垂线(尺规作图):(1)点在线外;(2)点在线上.。

沪科八年级数学上册总复习PPT教案


纵坐标在后
-2
A 12 3x
B
-3
B( 3,-2 )?
由坐标找点的方法:先找到表示横坐标与纵坐标的点,然后过
这两点分别作x轴与y轴的垂线,垂线的交点就是该坐标对应的点。
第4页/共195页
三:各象限点坐标的符号
y
3
第二象限 2 第一象限
1
-4 -3 -2 -1 O 1 2 3
x
-1
第三象限 -2 第四象限
例3 已知点A(6,2),B(2,-4)。
求△AOB的面积(O为坐标原点)
y 4
D2
A
-4 -2
O 2 4 6x
-2
C -4 B
第16页/共195页
B(-11,6)
y
A(-2,8)
C(-14,0) E
D 0D X
.4.如图,四边形ABCD各个顶点的坐标分别为 (– 2,8),(– 11,6),(– 14,0),(0,0)。
1. 点( x, y )到 x 轴的距离是 y
2. 点( x, y )到 y 轴的距离是 x
第11页/共195页
1.已知A、B关于x轴对称,A点的坐标为(3,2),则
B的坐标为 (3,-2)

2.若点A(m,-2),B(1,n)关于y轴对称,m= -1 ,n= -2 .
3.已知点A(3a-1,1+a)在第一象限的平分线上,试 求A关于原点的对称点的坐标。
该船位于点A(5,-4),同时发现在点B(5,2)和点
C(-1,-4)处各有一艘救护船,如果救护船行使的速
度相同,问救护中心应派哪条船前去救护可以在最短时
间内靠近遇难船只?
y
4
3

沪科版八上数学第11章 小结与复习


4.坐标轴上点的坐标特点:横轴上的点纵坐标为 0 ,纵轴上的点横坐标为 0 .横轴上的点的
坐标为 (x,0) ,纵轴上的点的坐标为 (0,y) .
5.点到坐标轴的距离: 点P(a,b)到x轴的距离是 |b| ;即纵坐标的绝对值; 点P(a,b)到y轴的距离是 |a| ;即横坐标的绝对值.
6.图形在平面直角坐标系中进行平移: 左、右平移纵 不变,横坐标变化规律是 右加左减 . 上、下平移横 不变,纵坐标变化规律是 上加下减 .
第11章 平面直角坐标系 小结与复习
学习目标 理解和掌握坐标系有关概念,体会图形的变换规律, 学会运用平移变换规律进行描点作图.
【学习重点】
点的表示及描点方法、点的特征、平移的应用.
【学习难点】
平移前后的坐标变化规律及点的坐标特征、应用.
情景导入 生成问题
知识结构我能建:
有序实数对
平 面
概括
坐标系画法

平面内的点的坐标


标 系
表示地理位置 坐标应用
平移
知识梳理我能行: 1.平面直角坐标系的意义:在平面内有公共 原点 且 互相 垂直 的 两 条数轴组成平面直角坐标系;水 平的数轴为 x 轴,铅直的数轴为 y 轴,它们的公 共原点O为直角坐标系的 原点 .坐标平面上的点与
有序实数对 一一对应.
2.象限:两坐标轴把平面分成 四个象限 ,坐标轴上 的点不 在任何一个象限 .
画出平移后得到的△A2B2C2;
A
(3)计算△A1B1C1的面积.
B
y
A1 B1
解:S△A1B1C1 =3×3-12×1×2-12×2×3-12×1×3 =3.5.
C
A2 O
C1

统编沪科版八年级数学上册优质课件 本章复习


知识点五:坐标系的应用
用坐标表示地理位置
y
4
•A
D• 2
-4 -2 O
2•E 4 x
-2
•F
•B
C • -4
知识点六:用坐标表示图形的平移
y
用→代表平移,有
8
A(-2,6)→(4,6)
7
→A1(4,4)
A6
B
5
B(-4,4)→(2,4)
4 3
A1
→B1(2,2)
2 B1 1C
C(1,1)→(7,1) -4 -3 -2 -1O 1 2 3 4 5 6
(-,-)
-3 -4
第四象限 (+,-)
点的位置 第一象限 第二象限 第三象限 第四象限 在x 在正半轴上 轴上 在负半轴上 在y 在正半轴上 轴上 在负半轴上
原点
横坐标符号 + - - + + - 0 0 0
纵坐标符号 + + - - 0 0 + - 0
知识三:特殊位置点的坐标
(1)象限角平分线上的点的坐标
y
P(x,y)
第一三象限角 平分线上
第二四象限角 平分线上
横,纵坐标 x=y
x = -y
3
B• 2
1
-3 -2 -1-O1 -2 -3
•A
123 x
(2)平行于坐标轴的点的坐标
y
3
•2 • •
1
••
平行于x轴的直线上 的各点的纵坐标相同, 横坐标不同.
-3 -2 -1-O1 -2 -3

123
x 平行于y轴的直线上 的各点的横坐标相同, 纵坐标不同.
(1)一个房子
(2)所得的图 形向右平移了1 个单位.

沪科版八年级数学上册总复习PPT课件

m=5.5
3、一次函数y=(m+7)x -(n-4) 经过原点的条件2是021 _ 。m≠-7,n=4 14
4.已知正比例函数y=kx(k≠0)的 函数值随X的增大而增大,则一次函 数y=kx-k的图象大致是( )
B
y
y
y
y
Ox
A .
O x
Ox
Ox
B.
C.
2021
D.
15
5、直线y1=ax+b与直线y2=bx-a在同一 坐标系内的大致图象是 ( B )
1
-4 -3 -2 -1 O 1 2 3
x
-1
第三象限 -2 第四象限
-3
坐标轴上的点不属于任何象限
2021
4
三:坐标轴上点的坐标符号
1.点P(m+2,m-1)在x轴上,则点P的坐标是 ( 3, 0 ) . 2.点P(m+2,m-1)在y轴上,则点P的坐标是 ( 0, -3 ) . 3. 点P(x,y)满足 xy=0, 则点P在 x 轴上 或 y 轴上 .
2021
32
考点三:三角 形的三线 例4:下列说法错误的是( B)
A:三角形的三条中线都在三角形内。 B:直角三角形的高线只有一条。 C:三角形的三条角平分线都在三角形内。 D:钝角三角形内只有一条高线。
例5:在三条边都不相等的三角形中,同一条边上的中 线,高和这边所对角的角平分线,最短的是(B )
分析与解: ∠O=180°-(∠OBC+∠OCB)
=180°-(180°-(∠1+∠2+∠A)
A
=∠1+∠2+∠A=135°.
B
2021
O 1
图1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学沪科版复习提纲 数学是三大主科之一,同时也是必考科目。你知道怎么才能考好数学吗?做好复习提纲吧,下面小编给大家分享一些八年级上册数学沪科版复习提纲,希望能够帮助大家,欢迎阅读! 八年级上册数学沪科版复习提纲 第一章 一元一次不等式和一元一次不等式组 一、一般地,用符号(或),(或)连接的式子叫做不等式. 能使不等式成立的未知数的值,叫做不等式的解. 不等式的解不,把所有满足不等式的解集合在一起,构成不等式的解集. 求不等式解集的过程叫解不等式. 由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组 不等式组的解集 :一元一次不等式组各个不等式的解集的公共部分. 等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式. 基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式. 二、不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变. (注:移项要变号,但不等号不变.)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.不等式的基本性质1、 若ab, 则a+cb+c;2、若ab, c0 则acbc若c0, 则ac不等式的其他性质:反射性:若ab,则bb,且bc,则ac 三、解不等式的步骤:1、去分母; 2、去括号; 3、移项合并同类项; 4、系数化为1. 四、解不等式组的步骤:1、解出不等式的解集2、在同一数轴表示不等式的解集. 五、列一元一次不等式组解实际问题的一般步骤:(1) 审题;(2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答. 六、常考题型: 1、 求4x-6 7x-12的非负数解. 2、已知3(x-a)=x-a+1r的解适合2(x-5) 8a,求a 的范围. 3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间. 第二章 分解因式 一、公式:1、 ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a22ab+b2=(ab)2 二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式. 1、把几个整式的积化成一个多项式的形式,是乘法运算.2、把一个多项式化成几个整式的积的形式,是因式分解.3、ma+mb+mc m(a+b+c)4、因式分解与整式乘法是相反方向的变形. 三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式. 找公因式的一般步骤:(1)若各项系数是整系数,取系数的公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式. 四、分解因式的一般步骤为:(1)若有-先提取-,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止. 五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式. 分解因式的方法:1、提公因式法.2、运用公式法. 第三章 分式 注:1对于任意一个分式,分母都不能为零. 2分式与整式不同的是:分式的分母中含有字母,整式的分母中不含字母. 3分式的值为零含两层意思:分母不等于零;分子等于零.( 中B0时,分式有意义;分式 中,当B=0分式无意义;当A=0且B0时,分式的值为零.) 常考知识点:1、分式的意义,分式的化简.2、分式的加减乘除运算.3、分式方程的解法及其利用分式方程解应用题. 第四章 相似图形 一、 定义 表示两个比相等的式子叫比例.如果a与b的比值和c与d的比值相等,那么 或a∶b=c∶d,这时组成比例的四个数a,b,c,d叫做比例的项,两端的两项叫做外项,中间的两项叫做内项.即a、d为外项,c、b为内项. 如果选用同一个长度单位量得两条线段AB、CD的长度分别是m、n,那么就说这两条线段的比(ratio)AB∶CD=m∶n,或写成 = ,其中,线段AB、CD分别叫做这两个线段比的前项和后项.如果把 表示成比值k,则 =k或AB=kCD. 四条线段a,b,c,d中,如果a与b的比等于c与d的比,即 ,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段. 黄金分割的定义:在线段AB上,点C把线段AB分成两条线段AC和BC,如果 ,那么称线段AB被点C黄金分割(golden section),点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.其中 0.618. 引理:平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例. 相似多边形: 对应角相等,对应边成比例的两个多边形叫做相似多边形. 相似多边形:各角对应相等、各边对应成比例的两个多边形叫做相似多边形. 相似比:相似多边形对应边的比叫做相似比. 二、比例的基本性质:1、若ad=bc(a,b,c,d都不等于0),那么 .如果(b,d都不为0),那么ad=bc.2、合比性质:如果 ,那么 .3、等比性质:如果 == (b+d++n0),那么 .4、更比性质:若 那么 .5、反比性质:若 那么 三、求两条线段的比时要注意的问题:(1)两条线段的长度必须用同一长度单位表示,如果单位长度不同,应先化成同一单位,再求它们的比;(2)两条线段的比,没有长度单位,它与所采用的长度单位无关;(3)两条线段的长度都是正数,所以两条线段的比值总是正数. 四、相似三角形(多边形)的性质:相似三角形对应角相等,对应边成比例,相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比.相似多边形的周长比等于相似比,面积比等于相似比的平方. 五、全等三角形的判定方法有:ASA,AAS,SAS,SSS,直角三角形除此之外再加HL 六、相似三角形的判定方法,判断方法有:1.三边对应成比例的两个三角形相似;2.两角对应相等的两个三角形相似;3.两边对应成比例且夹角相等;4.定义法: 对应角相等,对应边成比例的两个三角形相似.5、定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 在特殊的三角形中,有的相似,有的不相似.1、两个全等三角形一定相似.2、两个等腰直角三角形一定相似.3、两个等边三角形一定相似.4、两个直角三角形和两个等腰三角形不一定相似. 七、位似图形上任意一对对应点到位似中心的距离之比等于位似比. 如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫位似中心,这时的相似比又称为位似比. 八、常考知识点:1、比例的基本性质,黄金分割比,位似图形的性质.2、相似三角形的性质及判定.相似多边形的性质. 第五章 数据的收集与处理 (1)普查的定义:这种为了一定目的而对考察对象进行的全面调查,称为普查.(2)总体:其中所要考察对象的全体称为总体.(3)个体:组成总体的每个考察对象称为个体(4)抽样调查:(sampling investigation):从总体中抽取部分个体进行调查,这种调查称为抽样调查.(5)样本(sample):其中从总体中抽取的一部分个体叫做总体的一个样本.(6) 当总体中的个体数目较多时,为了节省时间、人力、物力,可采用抽样调查.为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性.还要注意关注样本的大小. (7)我们称每个对象出现的次数为频数.而每个对象出现的次数与总次数的比值为频率. 数据波动的统计量:极差:指一组数据中数据与最小数据的差.方差:是各个数据与平均数之差的平方的平均数.标准差:方差的算术平方根.识记其计算公式.一组数据的极差,方差或标准差越小,这组数据就越稳定.还要知平均数,众数,中位数的定义. 刻画平均水平用:平均数,众数,中位数. 刻画离散程度用:极差,方差,标准差. 常考知识点:1、作频数分布表,作频数分布直方图.2、利用方差比较数据的稳定性.3、平均数,中位数,众数,极差,方差,标准差的求法.3、频率,样本的定义 第六章 证明 一、对事情作出判断的句子,就叫做命题. 即:命题是判断一件事情的句子.一般情况下:疑问句不是命题.图形的作法不是命题. 每个命题都有条件(condition)和结论(conclusion)两部分组成. 条件是已知的事项,结论是由已知事项推断出的事项. 一般地,命题都可以写成如果,那么的形式.其中如果引出的部分是条件,那么引出的部分是结论. 要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论.这种例子称为反例. 二、三角形内角和定理:三角形三个内角的和等于180度.1、证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角.一般需要作辅助线.既可以作平行线,也可以作一个角等于三角形中的一个角.2、三角形的外角与它相邻的内角是互为补角. 三、三角形的外角与它不相邻的内角关系是:(1)三角形的一个外角等于和它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角. 四、证明一个命题是真命题的基本步骤是:(1)根据题意,画出图形.(2)根据条件、结论,结合图形,写出已知、求证.(3)经过分析,找出由已知推出求证的途径,写出证明过程. 在证明时需注意:(1)在一般情况下,分析的过程不要求写出来.(2)证明中的每一步推理都要有根据. 如果两条直线都和第三条直线平行,那么这两条直线也相互平行.30.所对的直角边是斜边的一半.斜边上的高是斜边的一半. 学好数学的方法有哪些 1.学好初中数学课前预习是重点 数学解题思路和能力的培养主要在于课堂上,所以想要学好初中数学一定要重视数学的学习效率和提前预习。只有提前预习才知道自己哪里不会,这样在课堂上才会注意力集中不走神。同时在初中数学的课上,学生也要紧跟老师的解题思路,注意自己的解题思路和老师的有什么不同。尤其是基础知识和最基本的技能学习,课上数学老师讲完后,初中生要在课后及时复习,争取老师讲完每一节的知识后,

相关文档
最新文档