统计学课后答案(第3版)第7章假设验习题答案
梁前德《统计学》(第二版)学习指导与习题训练答案:07第七章 假设检验与方差分析 习题答案

旗开得胜1第七章 假设检验与方差分析 习题答案一、名词解释用规范性的语言解释统计学中的名词。
1. 假设检验:对总体分布或参数做出某种假设,然后再依据抽取的样本信息,对假设是否正确做出统计判断,即是否拒绝这种假设。
2. 原假设:又叫零假设或无效假设,是待检验的假设,表示为 H 0,总是含有等号。
3. 备择假设:是零假设的对立,表示为 H 1,总是含有不等号。
4. 单侧检验:备择假设符号为大于或小于时的假设检验。
5. 显著性水平:原假设为真时,拒绝原假设的概率。
6. 方差分析:是检验多个总体均值是否相等的一种统计分析方法。
二、填空题根据下面提示的内容,将适宜的名词、词组或短语填入相应的空格之中。
1. u ,nx σμ0-,标准正态; ),(),(2/2/+∞--∞nz nz σσααY2. 参数检验,非参数检验3. 弃真,存伪4. 方差旗开得胜25. 卡方, F6. 方差分析7. t ,u8. nsx 0μ-,不拒绝9. 单侧,双侧10.新产品的废品率为5% ,0.01 11.相关,总变异,组间变异,组内变异12.总变差平方和=组间变差平方和+组内变差平方和 13.连续,离散 14.总体均值 15.因子,水平 16.组间,组内 17.r-1,n-r18. 正态,独立,方差齐三、单项选择从各题给出的四个备选答案中,选择一个最佳答案,填入相应的括号中。
1.B 2.B 3. B 4.A 5.C 6.B 7.C 8.A 9.D 10.A 11.D 12.C四、多项选择从各题给出的四个备选答案中,选择一个或多个正确的答案,填入相应的括号中。
1.AC 2.A 3.B 4.BD 5. AD五、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。
1. 在任何情况下,假设检验中的两类错误都不可能同时降低。
( ×)样本量一定时2. 对于两样本的均值检验问题,若方差均未知,则方差分析和t检验均可使用,且两者检验结果一致。
管理统计学课后习题答案

管理统计学课后习题答案第一章:统计学基础1. 描述统计与推断统计的区别是什么?- 描述统计关注的是对数据集的描述和总结,如均值、中位数、众数、方差等;而推断统计则使用样本数据来推断总体特征,包括参数估计和假设检验。
2. 什么是正态分布?- 正态分布是一种连续概率分布,其形状呈钟形曲线,具有对称性,其数学表达式为 \( N(\mu, \sigma^2) \),其中 \( \mu \) 为均值,\( \sigma^2 \) 为方差。
第二章:数据收集与处理1. 抽样误差和非抽样误差的区别是什么?- 抽样误差是由于样本不能完全代表总体而产生的误差;非抽样误差则来源于数据收集和处理过程中的其他问题,如测量误差、数据录入错误等。
2. 描述数据清洗的步骤。
- 数据清洗通常包括:识别和处理缺失值、异常值检测与处理、数据标准化和归一化、数据整合等步骤。
第三章:描述性统计分析1. 计算给定数据集的均值和标准差。
- 均值是数据集中所有数值的总和除以数据点的数量。
标准差是衡量数据点偏离均值的程度,计算公式为 \( \sigma =\sqrt{\frac{1}{N}\sum_{i=1}^{N}(x_i - \mu)^2} \)。
2. 解释箱型图(Boxplot)的作用。
- 箱型图是一种图形表示方法,用于展示数据的分布情况,包括中位数、四分位数、异常值等,有助于快速识别数据的集中趋势和离散程度。
第四章:概率分布1. 什么是二项分布?- 二项分布是一种离散概率分布,用于描述在固定次数 \( n \) 的独立实验中,每次实验成功的概率为 \( p \) 时,成功次数的概率分布。
2. 正态分布的数学性质有哪些?- 正态分布具有许多重要性质,如对称性、均值等于中位数、68-95-99.7规则等。
第五章:参数估计1. 解释点估计和区间估计的区别。
- 点估计是用样本统计量来估计总体参数的单个值;区间估计是在一定置信水平下,给出总体参数可能落在的区间范围。
人大版统计学 习题加答案第四章 假设检验

第四章 假设检验填空(5题/章),选择(5题/章),判断(5题/章),计算(3题/章) 一、填空1、在做假设检验时容易犯的两类错误是 和2、如果提出的原假设是总体参数等于某一数值,这种假设检验称为 ,若提出的原假设是总体参数大于或小于某一数值,这种假设检验称为3、假设检验有两类错误,分别是 也叫第一类错误,它是指原假设H0是 的,却由于样本缘故做出了 H0的错误;和 叫第二类错误,它是指原假设H0是 的, 却由于样本缘故做出 H0的错误。
4、在统计假设检验中,控制犯第一类错误的概率不超过某个规定值α,则α称为 。
5、 假设检验的统计思想是小概率事件在一次试验中可以认为基本上是不会发生的,该原理称为 。
6、从一批零件中抽取100个测其直径,测得平均直径为5.2cm ,标准差为1.6cm ,想知道这批零件的直径是否服从标准直径5cm ,在显著性水平α下,否定域为7、有一批电子零件,质量检查员必须判断是否合格,假设此电子零件的使用时间大于或等于1000,则为合格,小于1000小时,则为不合格,那么可以提出的假设为 。
(用H 0,H 1表示)8、一般在样本的容量被确定后,犯第一类错误的概率为α,犯第二类错误的概率为β,若减少α,则β9、某厂家想要调查职工的工作效率,用方差衡量工作效率差异,工厂预计的工作效率为至少制作零件20个/小时,随机抽样30位职工进行调查,得到样本方差为5,试在显著水平为0.05的要求下,问该工厂的职工的工作效率 (有,没有)达到该标准。
KEY: 1、弃真错误,纳伪错误 2、双边检验,单边检验3、拒真错误,真实的,拒绝,取伪错误,不真实的,接受4、显著性水平5、小概率事件6、1.25>21α-z7、H 0:t≥1000 H 1:t <1000 8、增大 9、有二、 选择1、假设检验中,犯了原假设H 0实际是不真实的,却由于样本的缘故而做出的接受H 0的错误,此类错误是( )A 、α类错误B 、第一类错误C 、取伪错误D 、弃真错误 2、一种零件的标准长度5cm ,要检验某天生产的零件是否符合标准要求,建立的原假设和备选假设就为( )A 、0:5H μ=,1:5H μ≠B 、0:5H μ≠,1:5H μ>C 、0:5H μ≤,1:5H μ>D 、0:5H μ≥,1:5H μ< 3、一个95%的置信区间是指( ) A 、总体参数有95%的概率落在这一区间内 B 、总体参数有5%的概率未落在这一区间内C 、在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D 、在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数4、假设检验中,如果增大样本容量,则犯两类错误的概率( ) A 、都增大 B 、都减小 C 、都不变 D 、一个增大一个减小5、一家汽车生产企业在广告中宣称“该公司的汽车可以保证在2年或24000公里内无事故”,但该汽车的一个经销商认为保证“2年”这一项是不必要的,因为汽车车主在2年内行驶的平均里程超过24000公里。
大学统计学第七章练习题及答案

大学统计学第七章练习题及答案第7章参数估计练习题从一个标准差为5的总体中抽出一个样本量为40的样本,样本均值为25。
样本均值的抽样标准差?x 等于多少? 在95%的置信水平下,边际误差是多少?解:⑴已知??5,n?40,x?25 样本均值的抽样标准差?x??n?540?10? 4⑵已知??5,n?40,x?25,?x?10,1???95% 4?Z?2?? 边际误差某快餐店想要估计每位顾客午餐的平均花费金额,在为期3周的时间里选取49名顾客组成了一个简单随机样本。
假定总体标准差为15元,求样本均值的抽样标准误差;在95%的置信水平下,求边际误差;如果样本均值为120元,求总体均值?的95%的置信区间。
解.已知.根据查表得z?/2= 标准误差:E?Z?2?n?*10? 4?X??n?1549? .已知z?/2= 所以边际误差=z?/2*sn?* 1549= 置信区间:x?Z?2sn?120?1549???,? 1 从一个总体中随机抽取n?100的随机样本,得到x?104560,假定总体标准差??85414,构建总体均值?的95%的置信区间。
Z?? 2Z???96*854142n?? x?Z?.?104560?? 2n?x?Z??.?104560?? 2n置信区间:从总体中抽取一个n?100的简单随机样本,得到x?81,s?12。
构建?的90%的置信区间。
构建?的95%的置信区间。
构建?的99%的置信区间。
解;题意知n?100, x?81,s?12. 置信水平为1???90%,则Z?? 2公式x?zs??81??12 2n?100?81?即81???,?, 则?的90%的置信区间为~ 置信水平为1???95%,z?? 2公式得x?z??s2n=81??12100?81? 即81?=,则?的95%的置信区间为~ 置信水平为1???99%,则Z?? 2 2 s12公式x?z??=?81??0962n100?81?3.即81? 则?的99%的置信区间为利用下面的信息,构建总体均值的置信区间。
统计第三版课后题答案

练习题1.描述一组偏态分布资料的变异度,以()指标较好 D 四分位数间距2.用均数和标准差可以全面描述()资料的特征C正态分布3.各观察值均加同一数后D标准差不变4.比较某地1-2岁和5-5.5岁儿童身高的变异度,宜用() D变异系数5偏态分布宜用()描述其分布的集中趋势C中位数6.各观察值同乘以一个不等于0的常数后,()不变E变异系数7()分布的资料,均数等于中位数E正态8 对数正态分布是一种()分布D右偏态9横轴上,标准正态曲线下从0到2.58的面积为() E49.5%10 当各观察值呈倍数变化时,平均数宜用() D 相对数1 均数的标准误反映了() E 样本均数与总体均数的差异2两样本均数比较的t检验,有统计学意义时,P小越明()C 越有理由认为两总体均数相同3甲乙两人分别从同一随机数字表抽得:::则理论上E 由甲乙两样本均::很可能包括0 4在参数未知的正态总体中随机抽样,/X——/()的概率为5% E t0.05/2,vSx5某地1992年随机抽取100名健康女性:::则其95%的参考值范围()B 74+-1.96x46关于以0为中心的t颁布,传述错误的是()E 相同v时,/t /越大,P越大7在两样本均数比较的t检验中,无效假设为()D 两总体均数相等8两样本均数比较作t检验时,分别取以下检验水准,犯Ⅱ型错误()E a=0.309正态性检验,按a=0.10水准,认为:::其错误的()等于B,而B未知10关于假设检验,说法正确的是()C 采用配对t检验还是两样本t检验是由:::1完全随机设计资料的方差分析中,必有()SS总=SS组间+SS组内2随机区组设计资料的方差分析中,对其各变::()SS总=SS处理+SS区+SS误3当组数等于2时,对于同一资料,方差:::()完全等价且t=4方差分析结果,F处理,则统计推论是()A 各样本均数都不相等5完全随机设计方差分析中的组间均方是()C 表示某处理因素的效应和随机误差两者:::6配对设计资料,若满足正态性和方差:::::()A 随机区组设计的方差分析7k个组方差齐性检验有统计学意义()A 不全相等1医院日门诊各科疾病分类资料,可作为计算()B 构成比2计算某地某年肺癌发病率,其分子应是()B 该地平均患者人数3一种新的沼疗方法可以延长生命,但不能治愈疾病,则…..()A 该地患病率增加4在使用相对数时,容易犯的错误是()A 将构成比当作率看待5在实际工作中,发生把构成比率分析的错误的主要….() A 构成比与率的计算一样6要比较甲乙两厂某工种工人……() C 假设甲乙两厂某工种工人的工龄构成比相同7要比较甲乙两厂工人患某种职业病的患病率….() E 甲乙两厂合并的工人的工龄构成8定基比和环比属于()指标 D 相对比1 x2分布的形状()B 同t分布2 x2值的取值范围()C 0<x2<+∞3当四格表的周边合计不变时,如果…则理论频数() C不变4下列检验不适用x2检验的是() A 两样本均数的比较5以下关于x2检验的自由度的说法,正确的是() E 若x20.05,v1>x20.05,v2,则自由度v1<v2 6, 5个样本率作比较,x2 >x20.01,4,则在a=0.05检验水。
张厚粲《现代心理与教育统计学》(第3版)配套题库[课后习题](假设检验)
](https://img.taocdn.com/s3/m/e725406667ec102de2bd89c9.png)
第8章 假设检验1.从假设检验的过程看,统计推断有什么特点? 答:(1)假设检验的基本过程是①根据问题要求,提出虚无假设0H 和备择假设1H 。
②选择适当的检验统计量。
③规定显著性水平α。
④计算检验统计量的值。
⑤做出决策。
(2)从假设检验的过程看,“反证法”是统计推论的一个重要特点。
假设检验是推论统计中最重要的内容,它的基本任务就是事先对总体参数或总体分布形态做出一个假设,然后利用样本信息来判断原假设是否合理,从而决定是否接受原假设。
假设检验的基本思想是概率性质的反证法。
为了检验虚无假设,首先假定虚无假设为真。
在虚无假设为真的前提下,如果导致违反逻辑或违背人们常识和经验的不合理现象出现,则表明“虚无假设为真”的假定是不正确的,也就不能接受虚无假设。
若没有导致不合理现象出现,那就认为“虚无假设为真”的假定是正确的,也就是说要接受虚无假设。
2.从α与β两类错误的关系分析,为什么α与β的和不一定等于1?答:α与β是在两个前提下的概率。
α是拒绝0H 时犯错误的概率(这时前提是“0H 为真”);β是接受0H 时犯错误的概率(这时“0H 为假”是前提),所以αβ+不一定等于1。
图8.3 α与B 的关系示意图如果010H μμ=:为真,关于i X 与μ的差异就要在图8.3中左边的正态分布中讨论。
对于某一显著性水平α,其临界点为X α。
(将两端各/2α放在同一端)。
X α右边表示0H 的拒绝区,面积比率为α;左边表示0H 的接受区,面积比率为1α-。
在“0H 为真”的前提下随机得到的i X 落到拒绝区时拒绝0H 是犯了错误的。
由于i X 落到拒绝区的概率为α,因此拒绝在“0H 为真”时所犯错误(I 型)的概率等于α。
而又落到0H 的接受区时,由于前提仍是“0H 为真”,因此接受0H 是正确决定,i X 落在接受区的概率为1α-。
,那么正确接受0H 的概率就等于1α-。
如0.05α=则10.95α-=,这0.05和0.95均为“0H 为真”这一前提下的两个概率,一个指犯错误的可能性,一个指正确决定的可能性,这二者之和当然为1。
统计学课后习题参考答案
第一章复习思考题与练习题:一、思考题1.统计的基本任务是什么?2.统计研究的基本方法有哪些?3.如何理解统计总体的基本特征。
4.试述统计总体和总体单位的关系。
5.标志与指标有何区别何联系。
二、判断题1、社会经济统计的研究对象是社会经济现象总体的各个方面。
()2、在全国工业普查中,全国企业数是统计总体,每个工业企业是总体单位。
()3、总体单位是标志的承担者,标志是依附于单位的。
()4、数量指标是由数量标志汇总来的,质量指标是由品质标志汇总来的。
()5、全面调查和非全面调查是根据调查结果所得的资料是否全面来划分的()。
三、单项选择题1、社会经济统计的研究对象是()。
A、抽象的数量关系B、社会经济现象的规律性C、社会经济现象的数量特征和数量关系D、社会经济统计认识过程的规律和方法2、某城市工业企业未安装设备普查,总体单位是()。
A、工业企业全部未安装设备B、工业企业每一台未安装设备C、每个工业企业的未安装设备D、每一个工业3、标志是说明总体单位特征的名称,标志有数量标志和品质标志,因此()。
A、标志值有两大类:品质标志值和数量标志值B、品质标志才有标志值C、数量标志才有标志值D、品质标志和数量标志都具有标志值4、统计规律性主要是通过运用下述方法经整理、分析后得出的结论()。
A、统计分组法B、大量观察法C、综合指标法D、统计推断法5、指标是说明总体特征的,标志是说明总体单位特征的,所以()。
A、标志和指标之间的关系是固定不变的B、标志和指标之间的关系是可以变化的C、标志和指标都是可以用数值表示的D、只有指标才可以用数值表示答案:二、 1.× 2.× 3.√ 4.× 5.×三、 1.C 2.B 3.C 4.B 5.B第三章一、复习思考题1.什么是平均指标?平均指标可以分为哪些种类?2.为什么说平均数反映了总体分布的集中趋势?3.为什么说简单算术平均数是加权算术平均数的特例?4.算术平均数的数学性质有哪些?5.众数和中位数分别有哪些特点?6.什么是标志变动度?标志变动度的作用是什么?7.标志变动度可分为哪些指标?它们分别是如何运用的?8.平均数与标志变动度为什么要结合运用?二、练习题(教材第四章P108课后习题答案)1.某村对该村居民月家庭收入进行调查,获取的资料如下:按月收入分组(元)村民户数(户)500~600 600~700 700~800 800~900 900以上20 30 35 25 10合计120 要求:试用次数权数计算该村居民平均月收入水平。
统计学(贾5)课后练答案(7-8章)
第七章参数估计7.1 (1) =0。
7906(2)==1。
54957。
2 某快餐店想要估计每位顾客午餐的平均花费金额。
在为期3周的时间里选取49名顾客组成了一个简单随机样本。
(1)假定总体标准差为15元,求样本均值的抽样标准误差。
=2。
143(2)在95%的置信水平下,求估计误差。
,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t=因此,=1.96×2。
143=4。
2(3)如果样本均值为120元,求总体均值的95%的置信区间.置信区间为:==(115.8,124.2)7.3 ==(87818.856,121301。
144)7.4 从总体中抽取一个n=100的简单随机样本,得到=81,s=12。
要求:大样本,样本均值服从正态分布:或置信区间为:,==1。
2(1)构建的90%的置信区间.==1.645,置信区间为:=(79。
03,82.97)(2)构建的95%的置信区间。
==1。
96,置信区间为:=(78。
65,83.35)(3)构建的99%的置信区间.==2.576,置信区间为:=(77。
91,84.09)7.5 (1)==(24.114,25.886)(2)==(113。
184,126.016)(3)==(3.136,3。
702)7。
6 (1)==(8646.965,9153.035)(2)==(8734。
35,9065。
65)(3)==(8761。
395,9038。
605)(4)==(8681。
95,9118.05)7.7 某大学为了解学生每天上网的时间,在全校7 500名学生中采取重复抽样方法随机抽取36人,调解:(1)样本均值=3。
32,样本标准差s=1.61=0。
9,t===1.645,==(2。
88,3。
76)=0。
95,t===1。
96,==(2。
79,3.85)=0.99,t===2.576,==(2。
63,4.01)7。
8 ==(7.104,12.896)7。
9 某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成的一个随机样本,他们到单位的距离(单位:km)分别是:10 3 14 8 6 9 12 11 7 5 10 15 9 16 13 2假定总体服从正态分布,求职工上班从家里到单位平均距离的95%的置信区间。
第7章 假设检验基础
S
2 X1
S
2 X2
2
S
4 X1
S
4 X2
n1 1 n2 1
34
第七章 假设检验基础
H0:1 2 H1 : 1 2 0.05
n1 8, X1 13.7, S1 4.21, n2 12, X 2 6.5, S2 1.34
t X1 X2
S12
S
2 2
n1 n2
13.7 6.5 4.6817 4.212 1.342
31
第七章 假设检验基础
H0
:
2 1
2 2
H1
:
2 1
2 2
,
0.05
F
S12 S22
1.022 0.562
3.3176,
1 10 1 9,
2 10 1 9
查F 临界值表3.2:F0.05,(9,9)=4.03,F < F0.05,(9,9) ,得P>0.05
按α=0.05水准不拒绝H0,故还不能认为两法检测结 果精度不同。
7
第七章 假设检验基础
2、确定检验水准: 亦称为显著性水准,符号为α,是预
先给定的概率值。它是当前研究中约定的 小概率事件的概率水平。
8
第七章 假设检验基础
3、选择检验方法并计算统计量: 要根据所分析资料的类型和统计推断的
目的要求选用不同的检验方法。
4、确定P 值: 目的是明确当前抽样结局是否为原假
已知:0 14.1 X 14.3 s 5.08 n 36
4
第七章 假设检验基础
从统计学角度考虑东北某县与北方儿童 前囟门闭合月龄有差别有两种可能: 1)差别是由于抽样误差引起。 2)差异是本质上的差异,即二者来自不同 总体。
张厚粲《现代心理与教育统计学》第3版笔记和课后习题含考研真题详解(假设检验)【圣才出品】
想的希望证实的假设。这种假设称为科学假设,用统计术语表示时称为研究假设,记作 H1 。 3.在统计学中不能对 H1 的真实性直接检验,需要建立与之对立的假设,称作虚无假设
(null hypothesis),或称为无差假设、零假设、原假设,记为 H0 。在假设检验中 H0 总是 作为直接被检验的假设,而 H1 与 H0 对立,二者择一,因而 H1 有时又称为对立假设或备择 假设(alternative hypotheses),它的意思是一旦有充分理由否定虚无假设 H0,则 H1 这 个假设备你选择。假设检验的问题,就是要判断虚无假设 H0 是否正确,决定接受还是拒绝 (reject)虚无假设 H0。若拒绝虚无假设 H0,则接受备择假设 H1。运用统计方法若证明 H0 为真,则 H1 为假;反之 H0 为假,则 H1 为真。虚无假设与备择假设互相排斥并且只有一 个正确。因而虚无假设是统计推论的出发点。虚无假设常常是根据历史资料,或根据周密考
1 / 54
圣才电子书
一、假设检验的原理
十万种考研考证电子书、题库视频学习平台
(一)假设与假设检验
1.假设是科学研究中广泛应用的方法,它是根据已知理论与事实对研究对象所做的假
定性说明。统计学中的假设一般专指用统计学术语对总体参数所做的假定性说明。
2.在进行任何一项研究时,都需要根据已有的理论和经验事先对研究结果做出一种预
导致逻辑上的矛盾从而否定原来的假设条件。假设检验中的“不合理现象”是指小概率事件
在一次试验中发生了,它是基于人们在实践中广泛采用的小概率事件原理,该原发生的”。假设推断的依据就是小概率事件原理。通常
情况下,将概率不超过 0.05 的事件当作“小概率事件”,有时也定为概率不超过 0.01 或者
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 假设检验习题答案
一、单选
1.D;2.B;3.A;4.B;5.C;6.C;7.B;8.A;9.B;10.D
二、多选
1.CD;2.CE;3.AC;4.AC;5.BCD
6.ACE;7.ACE;8.ABC;9.ABC;10.AB
三、计算分析题
1、(1)120uH:; 121uH:
(2)检验统计量:nx/0Z=。在α=0.05时,临界值zα/2=1.96,故拒绝域为|z|>1.96。
(3) 当x=2.25克时,=Z=nx/025/0.61212.25=2.08
由于|z|=2.08>1.96,拒绝H0:μ=120;应该对生产线停产检查。
(4) 当x=11.95克时,=Z=nx/025/0.61211.95=-0.42。
由于|z|=-0.42<1.96,不能拒绝H0:μ=120;不应该对生产线停产检查。
2、5000uH:
5001uH:
0
510500108108/1064xSn
Z=
由于645.1ZZ,拒绝原假设。决策:购买新电池。
3、(1)100000uH:
100001uH:
针对上述假设,犯第一类错误时,表明产品合格,但误认为不合格(弃真错误),导致不
能够出口该批产品。犯第二类错误时,表明产品不合格,但误认为其合格(取伪错误),所
以此决策错误将导致出口不合格产品将造成较大损失。
(2)由于属于左单侧检验,所以拒绝域在左侧,所以临界值为负。即1.645Z
1000=1.645200400xZ
,则:
由1.645ZZ,解得拒绝域为903.55x
由1.645ZZ,解得不能拒绝域为903.55x
(3)10050100005051.64520010400ZZ,不能拒绝原假设。
(4)用EXCEL的统计中的NORMSDIST函数,输入5Z,得到函数值0.999,
由于是左侧检验,P=0.9990.05,不能绝原假设。
4、由于此命题是一个尚未证明的命题,在单侧检验中,原假设对此命题应持否定的态度。
0210uuH:
0211uuH:
属于n较小,2221,据此,应采用t分布,其自由度为f。经测算有;
128.2)()(.694.132,3234.32,461.3675,429.2431,25.629,67.589222121212105.0222121nSnSxxt
ttffSSxx)(分布表知由若取
由于tt,故拒绝原假设。
5、按照教材P196—197的EXCEL操作方法有:
t-检验: 成对双样本均值分析
变量 1 变量 2
平均 5825 6145
方差 1204428.57 1867314.3
观测值 8 8
泊松相关系数 0.99005738
假设平均差 0
df 7
t Stat -2.8311933
P(T<=t) 单尾 0.01268138
t 单尾临界 1.8945786
P(T<=t) 双尾 0.02536276
t 双尾临界 2.36462425
由于t值=
-2.8311933,其绝对值大于)18(2t=1.8946,应拒绝原假设,认为耐
磨性有显著差异。