合同变换二次型
矩阵的合同变换

矩阵的合同变换矩阵的合同变换摘要:矩阵的合同变换是高等代数矩阵理论中,基本交换。
在《高等代数》里,我们仅讨论简单而直接的变换,而矩阵的合同变换与矩阵相似变换,二次型等有着诸多相同性质和联系。
关键词:矩阵 秩 合同 对角化定义1:如果矩阵A 可以经过一系列初等变换变成B ,则积A 与B 等价,记为A B ≅定义2:设A ,B 都是数域F 上的n 阶方阵,如果存在数域F 上的n 阶段可逆矩阵P 使得1B P Ap-=,则称A 和B 相似A B :定义3:设A ,B 都是数域F 上的n 阶矩阵,如果存在数域F 上的一个n 阶可逆矩阵P ,使得T P AP B=那么就说,在数域F 上B 与A 合同。
以上三个定义,都具有自反性、传逆性、对称性、 性。
定理1:合同变换与相似变换都是等价变换 证明:仅证合同变换,相似变换完全相似 因为P 可逆,所以P 存在一系列初等矩阵的乘积,即12mP Q Q Q =L 。
此时711T T Tm n PQ Q Q -=L 边为一系列初等矩阵的乘积若111TTT T mn mB P AP Q QQ AQ Q -==L L 则B 由A 经过一系列初等变换得到。
所以A B ≅,从而知合同变换是等价变换。
定理2:合同变换与相似变换,不改变矩阵从而111()PQQP ---=又由于1111()()()QP QP T QP P TQT ----= 1()T T QP P TQ -=T QQ =1QQ -=E = 1QP -∴为正交矩阵 所以A B :且A B ≅定时5:两合同矩阵,若即PTAP B =,若A 为对称矩阵,则B 为对称阵,而两相似矩阵则不一定有些性质证明:A B ≅即TP AP B =,若对称阵,则TAA=()T T TB P AP =T T P A P=TP AP = B =所以B 边为对称阵[注]:相似矩阵对此结论不具有一般性,它在什么情况下成立呢?引理6:对称矩阵相似于对角阵⇔A 的每一个特征根λ有秩||I A n s λ-=-,S 为λ的重数.证明:任给对称的n 阶矩阵A 一个特征根λ,以其重数以秩||I A r λ-=,则||r n s n r s I A λ=-⇔-=⇔-12000n x x x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦M M ,线性无关的解向量个数为n r -个,即5个又因属不同特征根的特征向量线性无关⇔n 阶对称阵A 有n 个线性无关的特征向量 ⇔n 阶对称阵可对角化从定理5,引理6中我们发现了合同在应用中的侧重点,如对二次型应用例 求一非线性替换,把二次型123122313(,,)262f x x x x x x x x x =-+二次型`23(,,)f x x x 矩阵为011103130A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦对A 相同列与行初等变换,对矩阵E ,施行列初等变换212103230A -⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦→200020006⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦100111110111001101E ⎡⎤⎡⎤⎢⎥⎢⎥→→--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦112233113111001x y x y x y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦可把二次型化为标准型222123123(,,)226f x x x y y y =-+解法(2)212103230A -⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦210102022⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦2001022022⎡⎤⎢⎥⎢⎥→--⎢⎥⎢⎥--⎣⎦2001002006⎡⎤⎢⎥⎢⎥→-⎢⎥⎢⎥⎣⎦此时2221231231(,,)262f x x x zz z =-+此时非线性退化替换为11223311321112001x z x z x z ⎡⎤-⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦发现在注[1]:任意对称阵合同的对角阵及其变换阵不是唯一确定的特性1:在合同变换中具有变换和结果的多样性[注]:在对角阵上元素相等及其它元素元素边相等情况下又有哪些性质呢?例3.用可逆性变换化二次型222123123123123(,,)(2)(2)(2)f x x x x x x x x x x x x =-+++-+++-解:222112132233:666666f xx x x x x x x x --+-+对二次型矩阵为633363336A --⎡⎤⎢⎥--⎢⎥=⎢⎥--⎢⎥⎣⎦10060060001099963300000022236399000336012216118100111121010102211801010102100100118A E ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥=→→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎢⎥⎣⎦⎢⎥⎢⎥⎢⎢⎥⎢⎥⎢⎣⎦⎣⎦⎣⎦E B ⎡⎤=⎢⎥⎣⎦⎥⎥⎥标准形2212f yy =+,则1122331618011801x y x y x y ⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦PTA B=[注]当P 改变两行的位置交换后,发现00016186 3 3100036310101818618336000001111⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎡⎤⎡⎤⎥⎥⎢⎥⎢⎥--=⎢⎥⎥⎢⎥⎢⎥⎢⎥⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦定理2:在A 为对角线上元素相等,其余元素也相等,则若有TP AP B =,则调整P 的任意两行,对角阵形式不变。
二次型的标准型

在某些情况下,二次型标准型的 计算和实现可能比较复杂和耗时 ,需要高效的算法和高性能的计 算平台。
在实际应用中,二次型标准型的 精度和稳定性也需要不断提高和 完善,以适应更加复杂和精密来自 应用需求。THANKS
谢谢您的观看
二次型的向量表示法可以用来计算向量的长度,以及求解向 量的加法和数量积。
二次型的几何意义
二次型的几何意义可以表示为平面上一个点的轨迹。 二次型的几何意义可以用来求解最短路径问题,以及计算点到直线的距离。
03
二次型的变换
合同变换
定义
合同变换是在线性代数中,通过非退化的线性变换将一个二次型化为标准型。
二次型的标准型
xx年xx月xx日
目录
• 引言 • 二次型的表示 • 二次型的变换 • 二次型的标准型 • 结论
01
引言
什么是二次型
二次型定义
二次型是一种由实数变量和二次形式构成的数学对象 ,一般形式为 $f(x_1,x_2,\ldots,x_n)=a_1x_1^2+a_2x_2^2+\cdot s+a_nx_n^2+b_1x_1x_2+b_2x_1x_3+\cdots+b_{n -1}x_{n-1}x_n$,其中$a_i$和$b_i$是实数。
二次型的标准型的意义
二次型的标准型可以帮助我们更好地理解和研究二次型的性 质和结构。
二次型标准型的应用
线性代数中二次型的判 定
通过二次型的标准型可以判断一个二 次型是否为非退化的,也可以计算其 行列式、特征值等线性代数的概念。
物理学中二次型的意义
在物理学中,许多问题涉及到二次型 的求解,如弹性力学中的弹性系数矩 阵、量子力学中的哈密顿算符等,二 次型的标准型可以为我们提供求解的 思路和方法。
6_2 配方法化二次型为标准形

②将x1, x2,…, xn正交化标准 化为h1, h2,…, hn,令 P=(h1, h2,…, hn), 仍有 P -1AP= 正交必无关 , 即有 P TAP= 因为PT=P -1.
下页 结束
返回 下页 下页 结束
作业:
P128页 习题四 8, 9
《线性代数》
返回
下页
结束
现将X=PY代入二次型,得
f ( X ) X T AX
X PY
( PY )T A( PY ) Y T ( PT AP)Y ,
d1 0 0 y1 0 d 0 y2 2 T yn Y Y , 0 0 d y n n
2
(1)就是相应的满秩线性变换,其中的 满秩方阵 P 为
《线性代数》 返回 下页 下页
P 0 0
1 0
结束
2 3 1
例2 用配方法化下列二次型为标准型.
f ( x1 , x2 , x3 ) x1 x2 x2 x3
解:f 中不含变量的平方项,但f 中含乘积项x1x2,为使f 出现平 方项可作下列变换:
上式右端除第一外,已不再含x1 ,继续对x2配方得: 4 2 y1 x1 x2 x3 f 2( x1 x2 x3 ) 2 3( x2 x2 x3 ) 3 x3 3 2 2 2 5 2 令 y2 x2 x3 2 3 2( x1 x2 x3 ) 3( x2 x3 ) x3 3 3 x3 y3
第 6章
二次型
一、二次型与二次型的化简 *二、配方法化二次型为标准形 *三、合同变换法化二次型为标准形 四、正交变换化二次型为标准形 五、惯性定律与正定二次型
二次型配方法技巧

二次型配方法技巧1. 了解二次型的定义:二次型是一个关于n个变量的二次多项式表达式。
2. 熟悉二次型的标准形式:二次型可以通过合同变换转化为标准形式,即只有平方项和零次项,没有交叉项。
3. 使用合同变换进行化简:合同变换是一种可以改变二次型的平方项系数和常数项的技巧。
4. 理解二次型的矩阵表示:将二次型表示为一个对称矩阵的形式可以简化计算和分析。
5. 利用矩阵特征值分析二次型的性质:二次型的矩阵表示的特征值和特征向量可以提供关于二次型的有用信息。
6. 使用特征值分解进行对角化:特征值分解是将对称矩阵对角化的一种方法,可以简化二次型的计算。
7. 利用二次型的正定性或负定性分析问题:正定二次型的性质可以提供最小值,而负定二次型的性质可以提供最大值。
8. 使用配方法求取二次型的最值:配方法是一种将二次型转化为平方项的和的技巧,可以简化最值计算。
9. 利用配方法实现二次型的化简:配方法可以将二次型化为一系列完全平方的和,从而简化计算。
10. 了解二次型的相关概念:相关概念如秩、正交等可以帮助理解和分析二次型的性质。
11. 使用二次型的正交对角化技巧:正交对角化可以将二次型转化为只有对角线上有非零项的形式,从而简化计算。
12. 利用二次型的秩分析问题的解空间:二次型的秩可以提供有关解空间的信息,例如是否存在非零解等。
13. 考虑二次型的约束条件:二次型的约束条件可以提供额外的限制条件,从而限制解的范围。
14. 利用拉格朗日乘子法求解二次型最值问题:拉格朗日乘子法是一种用于处理带约束条件的最值问题的技巧。
15. 考虑二次型的线性变换:通过线性变换,可以改变二次型的项的系数和平方项之间的关系,从而简化计算。
16. 使用线性变换进行坐标变换:线性变换可以实现坐标系的变换,从而改变二次型的标准形式。
17. 考虑二次型的对称性:二次型的对称性可以提供关于对称轴、顶点等的有用信息。
18. 使用二次型的谱分解进行矩阵分析:谱分解可以将对称矩阵分解为特定形式的矩阵,从而简化计算。
化二次型为标准型的方法

化二次型为标准型的方法二次型及其矩阵表示在解析几何中,我们看到,当坐标原点与中心重合时,一个有心二次曲线的一般方程ax" + 2bxy+ cy' =f .(1)为了便于研究这个二次曲线的几何性质,我们可以选择适当的角度作转轴(反时针方 X = X cos&-y sin&• •y = X sin0+y cos0把方程(1)化成标准方程。
在二次曲而的研究中也有类似的情况。
(1)的左端是一个二次齐次多项式。
从代数的观点看,所谓化标准方程就是用变量 的线性替换(2)化简一个二次齐次多项式,使它只含平方项。
二次齐次多项式不但在几 何中出现,而且数学的其他分支以及物理、力学中也常会碰到。
现在就来介绍它的一些最 基本的性质。
向转轴)(2)设P 杲一数感,一个系数在数域P I :的X|.X2,•…Xn 的二次齐次多项式f(XpXx ・・・,Xn)= a…xf +2apX]X 》+・•・+ 2d]nX]Xn +a"X 分2 +・・・ + 2a*nXjXn +・・・ + annXn2称为数域P 上的一个n 元二次型,或者在不致引起混淆时简称二次型。
设X|,X2■…,x…: y^y, y…是两组文字,系数在数域P 中的一组关系式X| =勺』|+匂汙2+・・・5人X2=C2.yi+c…y,+...c,…y… X3=C3y +。
32『2+…(3"九 (4) 1/"=5』2+%九+…5肌 称为由XpX2 x…到yid?人的一个线性替换八如果 G H0,那么线性替换(4)就 称为非退化的。
在讨论二次型时,矩阵是一个有力的工具,因此把二次型与线性替换用矩阵来表示。
另 那二ivj ・由于XjXj=XjXi ,所以 f(X|,X2,・・・,x…) = a]]X/ + 2di2X|X2+・・・ + 2a]nX|Xn +3,2X2"+... + 2a2…X2Xj, +n n =工工a/iXj i —1它的系数排成一个n*n 矩阵州2…% 幻2…幻n它就称为二次型的矩阵。
东北大学线性代数_第六章课后习题详解二次型

教学基本要求:1.掌握二次型及其矩阵表示,了解二次型的秩的概念.2.了解合同变换和合同矩阵的概念.3.了解实二次型的标准形和规范形,掌握化二次型为标准形的方法.4.了解惯性定理.5.了解正定二次型、正定矩阵的概念及其判别方法.第六章二次型本章所研究的二次型是一类函数,因为它可以用矩阵表示,且与对称矩阵一一对应,所以就通过研究对称矩阵来研究二次型.“研究”包括:二次型是“什么形状”的函数?如何通过研究对称矩阵来研究二次型?二次型是“什么形状”的函数涉及二次型的分类.通过对称矩阵研究二次型将涉及矩阵的“合同变换”、二次型的“标准形”、通过正交变换化二次型为标准形、惯性定理、正定二次型等.一、二次型与合同变换1. 二次型n个变量x1,x2,…,x n的二次齐次函数f(x1,x2,…,x n)=a11x12+a22x22+…+a nn x n2+2a12x1x2+…+2a1n x1x n+…+…+2a n-1 n x n-1x n (6.1) 称为一个n元二次型.当系数a ij均为实数时,称为n元实二次型. (P131定义6.1)以下仅考虑n元实二次型.设11121n112222n21n2n nn na a a xa a a xA,xa a a x⎛⎫⎛⎫⎪ ⎪⎪ ⎪==⎪ ⎪⎪ ⎪⎝⎭⎝⎭,那么f(x1,x2,…,x n)=x T A x. (6.2)式(6.2)称为n元二次型的矩阵表示.例6.1(例6.1 P 132)二次型f 与对称矩阵A 一一对应,故称A 是二次型f 的矩阵,f 是对称矩阵A 的二次型,且称A 的秩R(A)为二次型f 的秩. (定义6.2 P 132)由于二次型与对称矩阵是一一对应的,所以从某种意义上讲,研究二次型就是研究对称矩阵.定义6.2 仅含平方项的二次型f(x 1,x 2,…,x n )=a 11x 12+a 22x 22+…+a nn x n 2 (6.3)称为标准形.系数a 11,a 22,…,a nn 仅取-1,0,1的标准形称为规范形. (定义6.3 P 132)标准形的矩阵是对角矩阵.二次型有下面的结论:定理6.1 线性变换下,二次型仍变为二次型.可逆线性变换下,二次型的秩不变. (定理6.1 P 133) 这是因为T T x CyB C ACTT A B C AC C 0R(A)R(B)f x Axfy By ==↔=≠=⇒==⇐.2. 合同变换在可逆线性变换下,研究前后的二次型就是研究它们的矩阵的关系.定义6.3 设A,B 是同阶方阵,如果存在可逆矩阵C ,使B=C T AC ,则称A 与B 是合同的,或称矩阵B 是A 的合同矩阵.对A 做运算C T AC 称为对A 进行合同变换,并称C 是把A 变为B 的合同变换矩阵. (定义6.4 P 133)矩阵的合同关系具有反身性、对称性、传递性.注意:(1)合同的矩阵(必须是方阵)必等价,但等价的矩阵(不一定是方阵)不一定合同. (P 134)A 与B 合同 ⇔∃可逆矩阵C ,∂B=C T AC A 与B 等价 ⇔∃可逆矩阵P ,Q ,∂B=PAQ(2)合同关系不一定是相似关系,但相似的实对称矩阵一定是合同关系. (推论1 P 137)正交矩阵Q ,∂Q -1AQ= Q T AQ=B ⇒ A 与B 既相似又合同合同变换的作用:对二次型施行可逆线性变换等价于对二次型的矩阵施行合同变换.x Cy TT TT C 0T C 0f x Ax y C ACy y ByA C AC B=∆≠≠===⇔=如果B 是对角矩阵,则称f=y T B y 是f=x T A x 的标准形.二、用正交变换化二次型为标准形 1. 原理由第五章第三节知:对于实对称阵A ,存在正交矩阵Q ,使Q -1AQ 为对角矩阵(对角线上的元素为A 的n 个特征值).因此,二次型f=x T A x 经正交变换x =Q y 就能化为标准形f=y T (Q T AQ)y =y T (Q -1AQ)y .定理6.2 任意实二次型都可经正交变换化为标准形,且标准形中的系数为二次型矩阵的全部特征值. (定理6.2 P 134)推论1 任意实对称矩阵都与对角矩阵合同. (推论1 P 137)推论2 任意实二次型都可经可逆线性变换化为规范形. (推论2 P 137)正交变换既是相似变换又是合同变换.相似变换保证矩阵有相同的特征值,化标准形则必须经合同变换.所以,正交变换是能把二次型化为“系数为特征值”的标准形的线性变换.2.用正交变换化二次型为标准形的步骤用正交变换化二次型f=x T A x 为标准形的过程与将实对称阵A 正交相似对角化的过程几乎一致.具体步骤如下:(1)求出A 的全部互异特征值λ1,λ2…,λs ;(2)求齐次线性方程组(λi E-A)x =ο(i=1,2,…,s)的基础解系(即求A 的n 个线性无关特征向量); (3)将每一个基础解系分别正交化、规范化,得到n 个正交规范的线性无关特征向量ε1,ε2,…,εn ; (4)正交相似变换矩阵Q=(ε1,ε2,…,εn ),正交相似变换x =Q y 把二次型f=x T A x 变为标准形f=y T (Q T AQ)y .例6.2(例6.2 P 134) 例6.3(例6.3 P 135)三、用配方法化二次型为标准除了正交变换,事实上,还存在其它的可逆线性变换能把二次型化为标准形.举例说明如下.例6.4(例6.4 P 139) 例6.5(例6.5 P 139)总结:用配方法化二次型为标准形的过程分两种情形: (1)二次型中含有平方项例如,若二次型中含有平方项a 11x 12,则把所有含x 1的项集中起来配方,接下来考虑a 22x 22,并类似地配方,直到所有项都配成了平方和的形式为止.(2)二次型中不含平方项,只有混合项例如,若二次型中不含平方项,但有混合项2a 12x 1 x 2,则令112212ii x y y ,x y y ,x y ,i 3,...,n.=+⎧⎪=-⎨⎪==⎩ 那么关于变量y 1,y 2,…,y n 的二次型中就有了平方项,然后回到(1).四、正定二次型 1. 惯性定理虽然把二次型化为标准形的可逆线性变换不唯一,从而标准形也可能不唯一,但同一个二次型的所有标准形却总满足如下惯性定理.定理6.3(惯性定理) 设实二次型f=x T A x 的秩为r ,且在不同的可逆线性变换x =C y 和x =D y 下的标准形分别为f=λ1y 12+λ2y 22+…+λr y r 2, λi ≠0,f=μ1y 12+μ2y 22+…+μr y r 2, μi ≠0,则λ1,λ2…,λr 与μ1,μ2…,μr 中正数的个数相同. (定理6.3 P 142)定义6.4 二次型f 的标准形中的正(负)系数的个数称为f 的正(负)惯性指数. (定义6.5 P 143)惯性定理指出,可逆变换不改变惯性指数.推论 n 阶实对称阵A 与B 合同的充分必要条件是A 与B 有相同的正惯性指数和负惯性指数. (推论 P 143)正惯性指数+负惯性指数=R(A). 正惯性指数=正特征值的个数, 负惯性指数=负特征值的个数.2. 二次型的分类二次型(/二次型的矩阵)的分类:(定义6.6-6.7 P 143)f f f f f /A f 0,x 0(A A 0)/A f 0,x 0(A A 0)/A f 0,x 0(A A 0)/A f 0,x 0(A A 0)/A x 0,f (x)0y 0,f (y)0⎧⇔>∀≠>⎪⇔≥∀≠≥⎪⎪⇔<∀≠<⎨⎪⇔≤∀≠≤⎪⎪⇔∃≠∂>∃≠∂<⎩正定正定记作半正定半正定记作负定负定记作半负定半负定记作不定且由此,根据惯性定理可知,合同变换不改变实对称矩阵的类型.3.正定二次型(正定矩阵)的判定定理6.4 n 元实二次型f=x T A x 为正定(负定)二次型的充分必要条件是f 的正(负)惯性指数等于n . (定理6.4 P 143)定理6.5 n 元实二次型f=x T A x 为半正定(半负定)二次型的充分必要条件是f 的正(负)惯性指数小于n ,且负(正)惯性指数为0. (推论1 P 143)推论2 n 阶实对称阵A 正定(负定)的充分必要条件是A 的n 个特征值全是正数(负数);A 半正定(半负定)的充分必要条件是A 的n 个特征值为不全为正数(负数)的非负数(非正数). (推论2 P 143)例6.6(例6.6 P 143) 例6.7(例6.7 P 144) 例6.8(例6.8 P 144) 例6.9(例6.9 P 144)定义6.4 设A=(a ij )n ,则行列式11121k 12222k k k1k2kka a a a a a D (k 1,2,,n)a a a ==称为A 的k 阶顺序主子式. (定义6.8 P 144)定理6.6 n 阶实对称矩阵A 正定的充分必要条件是A 的各阶顺序主子式都大于零;A 负定的充分必要条件是A 的所有顺序主子式中奇数阶的小于零而偶数阶的大于零. (定理6.5 P 144)例6.10(例6.10 P 145)五、二次型应用[实例6-1] 二次曲面图形的判定六、习题(P 148) 选择题:1.提示:110.5A 11000.50.50.51-⎛⎫ ⎪= ⎪ ⎪--⎝⎭⇒|1|=1>0, 119901100=>, 100A 199100.51 1.25=<-- ⇒ 选D2.提示:f(x 1,x 2,x 3)= x 12+2x 22+3x 32-2x 1x 2+2x 2x 3 =(x 1-x 2)2+(x 2+x 3)2+2x 32⇒ 正惯性指数为3,故选A3.提示:方法一 特征值为2,-1,-1,故选C.方法二 011A 101110⎛⎫ ⎪= ⎪⎪⎝⎭⇒ |0|=0,排除A,B011010=-<, |A|=2>0,排除D ⇒ 选C4. B填空题:1.提示:f(x 1,x 2,x 3)= x 12+2x 22+3x 32+4x 1x 2+8x 1x 3-2x 2x 3.2. 1200221001300000⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭. 错误的解答:120221012⎛⎫ ⎪⎪ ⎪⎝⎭3.提示:323221r r r r 2r r211211211A 121033033112033000-+-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⇒ 秩为2错误的解答:正惯性指数为3,故秩为3. 事实上,线性变换y1= x1+x2, y2= x2-x3, y3= x1+x3不可逆,故R(f)<3.4.提示:A可逆、对称⇒A-1=(A-1)T AA-1⇒x=A-1y.5.提示:tE-A的特征值为t-1, t-2,…, t-n ⇒t >n.6.提示:方法一a22A2a222a⎛⎫⎪= ⎪⎪⎝⎭与6⎛⎫⎪⎪⎪⎝⎭相似⇒3a=6 ⇒a=2方法二f(y1,y2,y3) =6y12⇒A有2个0特征值⇒R(A)=1 ⇒a=2方法三f(y1,y2,y3)=6y12⇒A的特征值为6,0,0二次型的特征值为a+4, a-2, a-2 ⇒a+4=0, a-2=0 ⇒a=27.提示:A的各行元素之和为3 ⇒A(1,1,…,1)T=3(1,1,…,1)TR(f)=1 ⇒3是A的唯一非零特征值⇒标准形为f(y1,y2,y3)=3y12或f(y1,y2,y3)=3y22或f(y1,y2,y3)=3y32解答题:1.参见P134-135的例6.2、例6.32.参见P139的例6.4、例6.53.参见P145的例6.104.(1)521A21111t-⎛⎫⎪=-⎪⎪--⎝⎭|5|=5>0,521021=>,101A211t2010t1=-=->-⇒t>2(2)1t 1A t 12125-⎛⎫ ⎪= ⎪ ⎪-⎝⎭|1|=1>0,21t1t 0t 1=->, 2A 5t 4t 0=--> ⇒ -4/5<t<05.提示:f=x T A x =x T U T U x =|U x |2≥0.因为U 可逆,故当x ≠ο时,U x ≠ο,从而f=|U x |2>0,所以f 为正定二次型(A=U T U 是正定矩阵).6.提示:因为A 正定,故存在正交矩阵Q 和正定对角矩阵D=diag(λ1,λ2,…,λn ),使A=QDQ T .令D 1=diag(12n ,,...,λλλ),则A=QDQ T = QD 1D 1T Q T =U T U ,其中U=(QD 1)T .5、6两题表明A 是正定矩阵的充分必要条件是存在可逆矩阵U 使A=U T U .7.提示:设对称矩阵A 与矩阵B 合同,则存在可逆矩阵C ,使C T AC=B. B T =(C T AC)T =C T AC=B ,所以与对称矩阵合同的矩阵必是对称矩阵.8.提示:方法一 矩阵A 与矩阵-A 合同,则存在可逆矩阵C ,使C T AC=-A .从而|C T AC|=|-A| ⇒ |C|2·|A|=(-1)n |A| ⇒ |A|(|C|2-(-1)n )=0A ⇒可逆|C|2=(-1)nC ⇒可逆|C|2>0,故n 为偶数方法二 A 的正惯性指数= -A 的负惯性指数A 的负惯性指数= -A 的正惯性指数 A 与-A 合同⇒ A 与-A 有相同的正惯性指数和负惯性指数 ⇒ A 的正惯性指数= A 的负惯性指数 ⇒ n 为偶数9.提示:513153 A153023 33k00k3---⎛⎫⎛⎫⎪ ⎪=--→-⎪ ⎪⎪ ⎪--⎝⎭⎝⎭因为R(A)=2,所以k=3.(或由R(A)=2,有|A|=0,得k=3.) 余下略.10.提示:20003a0a3⎛⎫⎪⎪⎪⎝⎭与125⎛⎫⎪⎪⎪⎝⎭相似a02200103a29a5a2 0a35>⇒=⇒-=⇒=余下略.11. 提示:1b1b a1111⎛⎫⎪⎪⎪⎝⎭与14⎛⎫⎪⎪⎪⎝⎭相似2a51b1a3b a1b1 111+=⎧⎪=⎧⎪⇒=⇒⎨⎨=⎩⎪⎪⎩余下略.12.提示:(1)A的特征值为1,1,0,Q的第3列是属于0的特征向量,1的特征向量与其正交,易知为(√2/2,0,-√2/2)T和(0,1,0)T,是Q的前两列.于是A=Qdiag(1,1,0)Q T=….(2)A+E的特征值为2,2,1,所以A+E为正定矩阵.13.提示:(1)a01E A0a111(a1)λ--λ-=λ--λ--222a 11(a)01110(a 1)a 12(a)01010(a 1)a2(a)1(a 1)(a)((2a 1)a a 2)(a)((2a 1)(a 2)(a 1))(a)((a 2))((a 1))λ--=λ--λ--λ--=λ--λ--λ--=λ--λ--=λ-λ--λ+--=λ-λ--λ+-+=λ-λ--λ-+ A 的特征值为a-2,a,a+1.(2)二次型f 的规范形为f(y 1,y 2,y 3)=y 12+y 22,所以A 有2个正特征值,一个0特征值.由于a-2<a<a+1,所以a-2=0,故a=2.14.提示:A 正定 ⇔ A 的任意特征值λ>0 ⇒ |A|>0⇒ A -1的任意特征值1/λ>0 ⇒ A -1正定A*的任意特征值|A|/λ>0 ⇒ A*正定15.提示:∀x ≠ο,x T (A+B)x =x T A x +x T B x >0 ⇒ A+B 正定16.提示:A 与对角矩阵diag(λ1,λ2,…,λn ) (λ1≥λ2≥…≥λn )相似⇔ ∃正交矩阵Q ,∂Q AQ=diag(λ1,λ2,…,λn )ny Qx T T2i i i 1n n 22i i 1i i n x 1y 1x 1y 1i 1i 1f x Ax y Dy y max f max y ,min f min y ========⇒===λ⇒=λ≤λ=λ≥λ∑∑∑ 当分别取T1y e =和T n y e =时,得1n x 1x 1max f ,min f ===λ=λ.17.提示:设λ是A 的特征值,则λ3+λ2+λ-3=0,λ的值为1或复数. 因为A 是实对称矩阵,所以A 的特征值全为1,因此A 为正定矩阵.18.提示:A,B 实对称 ⇒ A,B 的特征值都是实数A 的特征值都大于a ,B 的特征值都大于b⇒ A-aE 和B-bE 正定 (若λ是A 的特征值,则λ-a 是A-aE 的特征值)15⇒第题 (A-aE)+(B-bE)正定,即A+B-(a+b)E 正定⇒ A+B 的特征值都大于a+b.19.提示:必要性 设R(A)=n ,令B=A ,则AB+B T A=2A 2为正定矩阵.充分性 设AB+B T A 是正定矩阵,若R(A)<n ,那么A x =ο有非零解y . 因此,y T (AB+B T A)y =(A y )T By+ y T B T (A y )=ο,这与AB+B T A 正定矛盾,所以R(A)=n.20.提示:考虑二次型g(x,y,z)=2x 2+4y 2+5z 2-4xz ,由于202E A 040(1)(4)(6)205λ-λ-=λ-=λ-λ-λ-λ-,⇒ A 的特征值全为正数⇒ g(x,y,z)=2x 2+4y 2+5z 2-4xz 是椭球曲面⇒ f(x,y,z)=2x 2+4y 2+5z 2-4xz+2x-4y+1是椭球曲面附加题:1.设A 为m 阶正定矩阵,B 为m×n 实矩阵,证明:B T AB 为正定矩阵的充分必要条件为R(B)=n .提示:B T AB 正定⇔ ∀x ≠ο, x T B T AB x =(B x )T A(B x )>0⇔ ∀x ≠ο,有B x ≠ο⇔ B x =ο只有零解⇔ R(B)=n七、计算实践实践指导:(1)掌握二次型及其矩阵表示,了解二次型的秩的概念.(2)了解实二次型的标准形式及其求法.(3)了解合同变换和合同矩阵的概念.(4)了解惯性定理和实二次型的规范形.(5)了解正定二次型、正定矩阵的概念及其判别法.例6.1 设12A 21⎛⎫= ⎪⎝⎭, 则在实数域上与A 合同的矩阵为[D ]. (A)2112-⎛⎫ ⎪-⎝⎭; (B)2112-⎛⎫ ⎪-⎝⎭; (C)2112⎛⎫ ⎪⎝⎭; (D)1221-⎛⎫ ⎪-⎝⎭.(2008 数二 三 四)提示:合同的矩阵有相同的秩,有相同的规范形,从而有相同的正惯性指数与负惯性指数.故选D .例6.2 已知二次型f(x 1,x 2,x 3)=(1-a)x 12+(1-a)x 22+2x 32+2(1+a)x 1x 2的秩为2.(1)求a 的值;(2)求正交变换x =Q y ,把f 化成标准形;(3)求方程f(x 1,x 2,x 3)=0的解. (2005 数一)解 (1) 1a 1a 0220A 1a 1a 01a 1a 0002002-+⎛⎫⎛⎫ ⎪ ⎪=+-→+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭R (A )2=⇒1+a=1-a ⇒ a=0(2) 略.(3) f(x 1,x 2,x 3)=0⇔ (x 1+x 2)2+2x 32=0 ⇔ x 1=-x 2, x 3=0 ⇒ 解为k(-1,1,0)T , k ∈R例6.3 若二次曲面的方程x 2+3y 2+z 2+2axy+2xz+2yz=4经正交变换化为y 12+4z 12=4,则a= 1 . (2011 数一)提示:二次型f(x,y,z)=x 2+3y 2+z 2+2axy+2xz+2yz 经正交变换化为标准形f=y 12+4z 12,因此二次型矩阵1a 1A a 31111⎛⎫ ⎪= ⎪ ⎪⎝⎭与014⎛⎫ ⎪ ⎪ ⎪⎝⎭相似.所以 1a 1a 310a 1111=⇒=.例6.4 设矩阵211100A 121,B 010112000--⎛⎫⎛⎫ ⎪ ⎪=--= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,则A 与B [B ].(A)合同且相似; (B)合同但不相似;(C)不合同但相似; (D)既不合同也不相似. (2007 数一)解 211E A 121121112112λ-λλλλ-=λ-=λ-λ-λ-2111030(3)003=λλ-=λλ-λ-即A 的特征值为0,3,3.故A 与B 不相似.由于A 与B 有相同的正惯性指数与负惯性指数,所以A 与B 合同.故选B .例6.5 设A 为3阶非零矩阵,如果二次曲面x (x y z)A y 1z ⎛⎫ ⎪= ⎪ ⎪⎝⎭在正交变换下的标准方程的图形如下图,则A 的正特征值个数为[B ]. (2008 数一)(A) 0; (B) 1; (C) 2;(D)3.提示:图形是双曲抛物面,说明A 的秩为2,正惯性指数为1,所以选B.例6.6 设A 为三阶实对称矩阵, 且满足条件A 2+2A=O .已知A 的秩R(A)=2,(1)求A 的全部特征值;(2)当k 为何值时,矩阵A+kE 为正定矩阵.解 (1)设λ是A 的特征值,则λ2+2λ=0,λ=0或-2R(A)=2 ⇒ A 的特征值为0,-2,-2(2) A+kE 的特征值则为k, k-2, k-2 ⇒ 当k>2时,A+kE 为正定矩阵例6.7 设101A 020101=⎛⎫ ⎪ ⎪ ⎪⎝⎭,矩阵B=(kE+A)2,其中k 为实数,E 为单位矩阵. 求对角矩阵Λ,使B 与Λ相似,并问k 为何值时,B 为正定矩阵.解 A 是实对称矩阵,则kE+A 是实对称矩阵,(kE+A)2是实对称矩阵.A 与diag(0,2,2)相似⇒ kE+A 与diag(k,k+2,k+2)相似⇒ (kE+A)2与diag(k 2,(k+2)2,(k+2)2)相似⇒ Λ=diag(k 2,(k+2)2,(k+2)2)⇒ 当k ≠0且k ≠-2时,B 为正定矩阵例6.8 设A ,B 分别为m 阶和n 阶正定矩阵, 试判定分块矩阵A O C O B =⎛⎫ ⎪⎝⎭的正定性. 解 ∀x ≠ο, y ≠ο,有x T A x >0, x T B x >0⇒ x ≠ο或y ≠ο,有(x T ,y T )≠ο, (x T ,y T )C ⎛⎫ ⎪⎝⎭x y =x T A x +x T B x >0 ⇒ A O C O B =⎛⎫ ⎪⎝⎭正定例6.9 设T A C D CB =⎛⎫ ⎪⎝⎭为正定矩阵,其中A,B 分别为m 阶与n 阶对称矩阵,C 为m ⨯n 矩阵. (1) 计算P T DP ,其中1m n E A C P OE --=⎛⎫⎪⎝⎭. (2) 利用(1)的结果,判断矩阵B-C T A -1C 是否为正定矩阵,并证明你的结论. (2005 数三)。
化二次型为标准型的方法
化二次型为标准型的方法化二次型为标准型的方法二、二次型及其矩阵表示在解析几何中,我们看到,当坐标原点与中心重合时,一个有心二次曲线的一般方程是 22ax 2bxy cy f ++=. (1)为了便于研究这个二次曲线的几何性质,我们可以选择适当的角度θ,作转轴(反时针方向转轴) ''''x x cos y sin y x sin y cos θθθθ=-?=+?? (2)把方程(1)化成标准方程。
在二次曲面的研究中也有类似的情况。
(1)的左端是一个二次齐次多项式。
从代数的观点看,所谓化标准方程就是用变量的线性替换(2)化简一个二次齐次多项式,使它只含平方项。
二次齐次多项式不但在几何中出现,而且数学的其他分支以及物理、力学中也常会碰到。
现在就来介绍它的一些最基本的性质。
设P 是一数域,一个系数在数域P 上的12n x ,x ,...,x 的二次齐次多项式22212n 11112121n 1n 2222n 2n nn n f (x ,x ,...,x )a x 2a x x ...2a x x a x ...2a x x ...a x =++++++++称为数域P 上的一个n 元二次型,或者在不致引起混淆时简称二次型。
设12n x ,x ,...,x ;12n y ,y ,...,y 是两组文字,系数在数域P 中的一组关系式11111221n n 22112222n n 33113223n n n n12n22nn nx c y c y ...c y x c y c y ...c y x c y c y ...c y ...........x c y c y ...c y =++??=++??=++=++?? (4)称为由12n x ,x ,...,x 到12n y ,y ,...,y 的一个线性替换,。
如果ij c 0≠,那么线性替换(4)就称为非退化的。
在讨论二次型时,矩阵是一个有力的工具,因此把二次型与线性替换用矩阵来表示。
6-2矩阵的合同关系
信息系 刘康泽
上面三个式子的右边显然仍是对称阵。这就是说: 上面三个式子的右边显然仍是对称阵。这就是说:对 三个式子的右边显然仍是对称阵 对称矩阵进行一次同类型的初等行与列的变换, 进行一次同类型的初等行与列的变换 所得矩阵 对称矩阵进行一次同类型的初等行与列的变换, 仍然是对称矩阵。 仍然是对称矩阵。 设 A = (aij ) n×n , aij = a ji , i , j = 1, 2, ⋯ , n
Λ1 O O O 则 D1 D2 = O Λ = O 。 O O 2 于是 C T ACD2 = D1 D2 = O ,
即 也即
ACD2 = (C ) O = O ,
T −1
ACD2C T = OC T = O ,
T
对称, 令 B = CD2C ,则 B 对称, r (B) = r ( D2 ) = n − r , 且满足
例 2 设 A 是 n 阶可逆实对称矩阵, A 与 − A 合同, 阶可逆实对称矩阵, 合同, 且 必为偶数。 则 n 必为偶数。 证明:由假设知,存在可逆 可逆的矩阵 证明:由假设知,存在可逆的矩阵 C ,使得
− A = C T AC 2 n 两边取行列式有( 两边取行列式有(注意到 A ≠ 0 ) ( −1) A = C A , :
T
C AC = B , 合同, 则称 A 与 B 合同,记为 A ≃ B 。
根据上面的讨论立即得: 根据上面的讨论立即得: 定理】 【定理】 一个二次型经非奇异线性变换后仍变为二次 且新二次型矩阵与原二次型的矩阵合同。 型,且新二次型矩阵与原二次型的矩阵合同。
T
信息系 刘康泽
合同关系具有以下性质: 合同关系具有以下性质:
信息系 刘康泽
二次型及其规范型
二次型及其规范型二次型是数学中重要的概念,广泛应用于代数、线性代数以及物理学等领域。
本文将介绍二次型的基本定义、性质以及规范型的概念和应用。
一、二次型的定义和性质在线性代数中,我们称一个关于n个变量的多项式函数为一个二次型。
一个二次型可以表示为如下形式:$Q(x_1, x_2, \cdots, x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij}x_ix_j$其中,$a_{ij}$是一个常数,$x_1, x_2, \cdots, x_n$是n个变量。
二次型具有以下性质:1. 对称性:如果$a_{ij} = a_{ji}$,则二次型称为对称二次型;2. 非负定性:当二次型对于所有的非零向量$x$都有$Q(x) > 0$时,称其为正定二次型;当$Q(x) \geq 0$,但存在非零向量$x_0$使得$Q(x_0) = 0$时,称其为半正定二次型;3. 定性:二次型的正负定性与其矩阵的特征值有关,正定二次型对应的特征值全为正数,半正定二次型对应的特征值非负。
二、规范型的定义和性质在研究二次型时,我们常常希望将其化为一个标准的形式,这就是规范型。
规范型的特点是尽可能简单且易于研究。
对于任意的n维实二次型,我们可以通过合同变换将其化为规范型。
合同变换是指对矩阵进行相似变换,即通过矩阵的乘积将一矩阵转化成与之相似的另一矩阵。
具体而言,对于对称矩阵$A$,存在可逆矩阵$P$,使得$P^TAP = \Lambda$,其中$\Lambda$为对角矩阵,对角线上的元素为$A$的特征值。
规范型的具体形式取决于原始二次型的特征值分布。
根据特征值的正负,规范型可以分为以下几种情况:1. 正定二次型的规范型为$x_1^2 + x_2^2 + \cdots + x_n^2$;2. 负定二次型的规范型为$-x_1^2 - x_2^2 - \cdots - x_n^2$;3. 除了以上两种情况外,还有其他特征值组合形式的规范型。
二次型的标准型
xx年xx月xx日
目 录
• 引言 • 二次型的表示 • 二次型的变换 • 二次型的标准型 • 结论
01
引言
什么是二次型
二次型定义
二次型是一种由实数变量和二次形式构成 的数学对象,一般形式为 $f(x_1,x_2,\ldots,x_n)$,其中$x_i$是实 数变量。
VS
二次型的变量
二次型的向量表示
二次型的向量表示法中,向量是单位向量。
二次型的向量表示法可以用来计算向量的长度,以及求解向 量的加法和数量积。
二次型的几何意义
二次型的几何意义可以表示为平面上一个点的轨迹。 二次型的几何意义可以用来求解最短路径问题,以及计算点到直线的距离。
03
二次型的变换
合同变换
1 2
定义
合同变换是在线性代数中,通过非奇异线性变 换将一个二次型化为标准型。
弹性力学
在弹性力学中,物体的应变能密度通常表示为应变向量的二次型。通过将应 变能密度表示为标准型,可以简化弹性力学问题的求解过程,并得到一些有 用的物理性质。
二次型的表示
二次型的矩阵表示
二次型的矩阵表示法中,矩阵是实对称矩阵 。
二次型的矩阵表示法可以用来求解线性方程 组,以及判断线性变换是否可逆。
二次型标准型的计算和模拟需要大量的计算资源和时间 ,对于大规模高复杂度的系统可能存在计算效率低下的 问题。
THANKS
谢谢您的观看
应用
相似变换在矩阵的分解和化简、 特征值求解等领域有着广泛的应 用。
位似变换
定义
位似变换是在复数域上的一种线性变换,通过位似变换可以将一个复二次型化为具有相同主轴长度的复二次型。
过程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合同变换二次型
合同变换是线性代数中一个重要的概念,特别在二次型的研究中
起着重要的作用。
本文将详细介绍合同变换的概念和性质,并阐述合
同变换与二次型之间的关系。
首先,我们来了解一下合同变换的定义。
定义:对于一个n维向
量空间V和其上的一个非退化对称二次型Q,如果存在一个可逆线性变换T:V→V,使得对于任意向量x∈V,都有Q(x)=Q(T(x)),那么称
T为合同变换。
接下来,我们来研究合同变换的性质。
首先,合同变换保持二次
型的符号:具体来说,如果二次型Q是正定(或负定)的,那么经过
合同变换T后,新的二次型Q'也是正定(或负定)的。
其次,合同变
换保持二次型的秩和惯性指数不变。
换句话说,合同变换不改变二次
型的非零特征值的个数,并且二次型的秩在合同变换下保持不变。
最后,合同变换是可逆的,即存在逆变换T^-1,使得T(T^-1(x))=x。
接下来,我们来探讨合同变换与二次型之间的关系。
事实上,合
同变换可以将一个复杂的二次型变换为一个更加简单和易于研究的形式。
具体来说,通过合同变换,我们可以将二次型化简为对角形式,
即只有主对角线上存在非零项的形式。
这样一来,我们可以更加方便
地对二次型进行分析和计算。
同时,合同变换还可以将二次型的矩阵
表示变换为一个特殊的形式,即合同矩阵。
合同矩阵是一个对称矩阵,且具有特殊的性质,使得对于任意向量x,都有x^TAX=Q(x),其中A
是合同矩阵。
利用合同矩阵的性质,我们可以更加方便地计算二次型
的特征值、秩和惯性指数等重要性质。
在应用方面,合同变换在线性代数的各个领域都有重要的应用。
首先,在矩阵理论中,合同变换可以用来简化矩阵的计算和分析。
例如,在对称矩阵的特征值问题中,我们可以通过合同变换将对称矩阵
化简为对角矩阵,从而更加方便地求解特征值和特征向量。
其次,在
几何学中,合同变换可以用来描述平面、曲线和曲面的变换规律。
例
如,在二次曲线的研究中,我们可以通过合同变换将一般的二次曲线
化简为标准形式,从而更加方便地描述和分析二次曲线的性质。
最后,在优化理论中,合同变换可以用来优化二次型函数的求解。
例如,在
二次规划问题中,我们可以通过合同变换将一般的二次规划问题化简
为标准形式,从而更加方便地求解最优解。
综上所述,合同变换是线性代数中一个重要的概念,特别在二次
型的研究中起着重要的作用。
通过合同变换,我们可以将复杂的二次
型化简为更加简单和易于研究的形式,从而方便地求解和分析二次型
的各种性质。
希望本文对于读者理解合同变换的概念和性质,以及合
同变换与二次型之间的关系有所帮助。