荧光分析法检测原理及应用

合集下载

荧光分析法检测原理及应用举例

荧光分析法检测原理及应用举例

1 荧光定义某些化学物质从外界吸收并储存能量而进入激发态,当其从激发态回到基态时,过剩的能量以电磁辐射的形式放射出去即发光,称之为荧光。

可产生荧光的分子或原子在接受能量后引起发光,供能一旦停止,荧光现象随之消失。

2 荧光分类由化学反应引起的荧光称为化学荧光,由光激发引起的荧光称为光致荧光,课题主要研究光致荧光。

按产生荧光的基本微粒不同,荧光可分为原子荧光、X 射线荧光和分子荧光,课题主要研究分子荧光。

3 光致荧光机理某一波长的光照射在分子上,分子对此光有吸收作用,光能量被分子所吸收,分子具有的能量使分子的能级由最低的基态能级上升至较高的各个激发态的不同振动能级,称为跃迁。

分子在各个激发态处于不稳定的状态,并随时在激发态的不同振动能级下降至基态,在下降过程中,分子产生发光现象,此过程为释放能量的过程,即为光致荧光的机理。

光致荧光的过程按照时间顺序可分为以下几部分。

分子受激发过程在波长为10~400nm的紫外区或390~780nm的可见光区,光具有较高的能量,当某一特征波长的光照射分子时,是的分子会吸收此特征波长的光能量,能量由光传递到分子上,此过程为分子受激发过程。

分子中的电子会出现跃迁过程,在稳定的基态向不稳定的激发态跃迁。

跃迁所需要的能量为跃迁前后两个能级的能量差,即为吸收光的能量。

分子跃迁至不稳定的激发态中即为电子激发态分子。

在电子激发态中,存在多重态。

多重态表示为2S+1。

S为0或1,它表示电子在自转过程中,具有的角动量的代数和。

S=0表示所有电子自旋的角动量代数和为0,即所有电子都是自旋配对的,那么2S+1=1,电子所处的激发态为单重态,用Si 表示,由此可推出,S即为基态的单重态,S1为第一跃迁能级激发态的单重态,S2为第二跃迁能级激发态的单重态。

S=1表示电子的自旋方向不能配对,说明电子在跃迁过程中自旋方向有变化,存在不配对的电子为2个,2S+1=3,电子在激发态中位于第三振动能级,称为三重态,用Ti 来表示,T1即为第一激发态中的三重态,T2即为第二激发态中的三重态,以此类推。

荧光分析法的基本原理

荧光分析法的基本原理

荧光分析法的基本原理
荧光分析法是一种常用的分析化学方法,它利用物质在受到激发后发出的荧光
来进行定量或定性分析。

荧光分析法具有灵敏度高、选择性好、分析速度快等优点,因此在生物医学、环境监测、食品安全等领域得到了广泛的应用。

荧光分析法的基本原理是物质受到激发后发出的荧光强度与其浓度成正比。


物质受到特定波长的激发光照射后,其中的分子会吸收能量并处于激发态,随后分子会自发地返回基态并释放出能量,这种能量以荧光的形式发射出来。

荧光分析法利用荧光强度与物质浓度的关系来进行分析,通过测量样品的荧光强度,可以间接地推断出样品中目标物质的浓度。

荧光分析法的基本原理还包括激发光源、激发光和荧光检测器。

激发光源通常
采用紫外灯或激光器,用于提供足够的能量来激发样品中的分子。

激发光是指对样品进行激发的光线,其波长通常由样品的特性决定。

荧光检测器则用于测量样品发出的荧光强度,并将其转化为电信号进行处理和分析。

在实际应用中,荧光分析法可以应用于各种领域。

在生物医学领域,荧光分析
法可以用于检测生物标记物、药物浓度、蛋白质含量等,具有灵敏度高、特异性强的优点。

在环境监测领域,荧光分析法可以用于检测水体中的重金属离子、有机物污染物等,能够快速、准确地进行分析。

在食品安全领域,荧光分析法可以用于检测食品中的添加剂、农药残留、重金属等有害物质,为食品安全提供可靠的分析手段。

总之,荧光分析法作为一种灵敏度高、选择性好的分析方法,具有广泛的应用
前景。

通过深入理解荧光分析法的基本原理,结合实际应用需求,可以更好地利用这一分析方法,为各个领域的分析工作提供更加准确、快速、可靠的支持。

荧光光谱分析法PPT课件

荧光光谱分析法PPT课件
发射光谱(荧光光谱)的位置? 磷光光谱的位置?
第12页/共39页
荧光发射光谱 荧光激发光谱
磷光光谱
200 260 320 380 440 500 560 620 室温下菲的乙醇溶液荧(磷)光光谱
第13页/共39页
激发光谱与发射光谱的关系
a. Stokes位移 荧光光谱总是位于物质激发光谱的长波一侧,即荧光波长大于激发光波长的
4
第4页/共39页
小结:分子能级与跃迁 基态(S0)→激发态:吸收特定频率的辐射;量子化;跃迁 一次到位; 激发态→基态:多种途径和方式(见能级图);速度最快、激发态寿命最短的途 径占优势,发生的几率大; 第一、第二、…电子激发单重态 S1 、S2… ; 第一、第二、…电子激发三重态 T1 、 T2 … ;
17
第17页/共39页
2.有机化合物的分子结构与荧光的 关系
(1)跃迁类型:* → 的荧光效率高,系间跨越过程的速率常数小,有利于荧 光的产生; (2)共轭效应:提高共轭度有利于增加荧光效率并产生红移
(3)刚性平面结构:可降低分子振动 ,减少与溶剂的相互作用,故具有很强 的荧光。如荧光素和酚酞有相似结构, 荧光素有很强的荧光,酚酞却没有。
21
第21页/共39页
3. 溶液pH 对酸碱化合物,溶液pH的影响较大,需要严格控制;
当荧光物质本身是弱酸或弱碱时,溶液的pH值对该荧光物质的荧光强度有较大影响, 这主要是因为在不同酸度中分子和离子间的平衡改变,离子结构发生变化,因此荧光强度 也有差异。每一种荧光物质都有它最适宜的发射荧光的存在形式,也就是有它最适宜的 pH值范围。例如苯胺在不同pH值下有下列平衡关系:
磷光发射:电子由第一激发三重态的最低振动能级→基态(T1 →S0跃迁);发光速度很 慢: 10-4~100s、磷光的能量比荧光小

荧光分析法

荧光分析法

荧光分析法一、基本原理某些物质的分子能吸收能量而发射出荧光,根据荧光的光谱和荧光强度,对物质进行定性或定量的方法,称为荧光分析法(fluorescence analysis)。

荧光分析法具有灵敏度高、选择性强、需样量少和方法简便等优点,它的测定下限通常比分光光度法低2~4个数量级,在生化分析中的应用较广泛。

在室温下分子大都处在基态的最低振动能级,当受到光的照射时,便吸收与它的特征频率相一致的光线,其中某些电子由原来的基态能级跃迁到第一电子激发态或更高电子激发态中的各个不同振动能级,这就是在分光光度法中所述的吸光现象。

跃迁到较高能级的分子,很快(约10-8s)因碰撞而以热的形式损失部分能量,由所处的激发态能级下降到第一电子激发态的最低振动能级,能量的这种转移形式,称为无辐射跃迁。

由第一电子激发态的最低振动能级下降到基态的任何振动能级,并以光的形式放出它们所吸收的能量,这种光便称为荧光。

荧光分析法是测定物质吸收了一定频率的光以后,物质本身所发射的光的强度。

物质吸收的光,称为激发光;物质受激后所发射的光,称为发射光或荧光。

如果将激发光用单色器分光后,连续测定相应的荧光的强度所得到的曲线,称为该荧光物质的激发光谱(excitation spectrum)。

实际上荧光物质的激发光谱就是它的吸收光谱。

在激发光谱中最大吸收处的波长处,固定波长和强度,检测物质所发射的荧光的波长和强度,所得到的曲线称为该物质的荧光发射光谱,简称荧光光谱(fluorescence spectrum)。

在建立荧光分析法时,需根据荧光光谱来选择适当的测定波长。

激发光谱和荧光光谱是荧光物质定性的依据。

对于某一荧光物质的稀溶液,在一定波长和一定强度的入射光照射下,当液层的厚度不变时,所发生的荧光强度和该溶液的浓度成正比,这是荧光定量分析的基础。

荧光物质的线性范围一般在0.00005-100微克/ml,当荧光物质溶液的吸光度小于或等于0.05时荧光强度和浓度才成线性关系。

化学实验知识:荧光分析法在化学分析中的应用和实验方法

化学实验知识:荧光分析法在化学分析中的应用和实验方法

化学实验知识:“荧光分析法在化学分析中的应用和实验方法”荧光分析法是一种非常常见的化学分析方法,特别适用于有机化合物的分析,其基础是物质分子吸收光能激发到高能态后再发出特定波长的荧光。

荧光分析法与其他分析方法相比,具有灵敏度高、特异性强、便于自动化等优点。

下面就让我们一起来了解荧光分析法的应用和实验方法。

一、荧光分析法在化学分析中的应用:1.食品中添加剂的检测食品中含有许多添加剂,如防腐剂、着色剂、甜味剂等,荧光分析法能够快速准确地检测食品中的添加剂含量。

2.环境污染物的检测环境中存在着大量的污染物,其中一些有机污染物具有比较显著的荧光特性,荧光分析法可以对这些污染物进行快速准确的检测。

3.药品活性成分的分析荧光分析法可以对药品中含有的活性成分进行高灵敏的分析,尤其是对那些生物活性强的化合物,荧光分析法比其他分析方法更优。

4.生化分析中的应用荧光分析法在生化分析中的应用尤其广泛,如对生物大分子的定量分析、酶的活性测定、蛋白质的鉴定等。

二、荧光分析法的实验方法:1.实验仪器:荧光分析法对实验仪器要求比较高,需要使用荧光光谱仪和荧光探针。

2.实验步骤:1)荧光标准品的制备:选用一种已知浓度的荧光物质作为标准品,制备出不同浓度的荧光标准品。

2)实验样品制备:将待检测样品按照标准方法制备出来,并将其转化为可检测的荧光化合物。

3)样品的检测:将荧光标准品和待检测样品在荧光光谱仪的一定波长下进行检测,并对荧光峰进行积分和计算。

4)荧光曲线的绘制:根据荧光标准品的荧光数据绘制出荧光曲线,从而用来计算样品中荧光化合物的浓度。

5)数据处理:根据荧光曲线和样品检测的荧光数据,进行数据处理,计算出样品中荧光化合物的浓度。

三、实验注意事项:1)荧光试剂必须保持干燥,避免阳光照射和高温环境。

2)待检测的样品需避免与荧光试剂接触过程中的直接光照。

3)在进行荧光分析实验的时候,应该使用纯净的溶剂和实验器皿,以避免不必要的干扰和误差。

荧光分析法

荧光分析法

四氯化碳的拉曼光与激发光波长相近,即与 荧光波长相差较大,对荧光检测干扰较小。
影响荧光强度的主要因素
是波长比入射光较 长的拉曼散射光。因为物质发射的荧光波长比 激发光(即入射光)波长长。
• 消除溶剂拉曼光干扰的方法: - 选择合适的溶剂
- 改变激发光波长,使拉曼光向短波方向移动 如硫酸奎宁的测定
1.荧光检测的基本原理
14
2.荧光的激发光谱和发射光谱
激发光谱(excitation spectrum):固定测量波长, 将激发光的光源分光,测定不同波长的激发光照射 下所发射的荧光强度的变化,以IF —λ激发作图,便 可得到荧光物质的激发光谱。 发射光谱或荧光光谱(fluorescence spectrum):固 定激发光波长和强度, 让物质发射的荧光通过单色 分光,以测定不同波长的荧光强度, 以IF—λ荧光作图 ,便可得到荧光物质的荧光光谱。
(四)、影响荧光强度的外部因素
温度
溶剂
酸度
01
02
03
荧光熄 灭剂
散射光
04
05
1. 温度的影响
• 随温度降低,荧光强度增加。如荧光素钠在 0℃以下,每降10℃荧光效率增加3%。-80 ℃ 时达到100%。
• 原因是温度升高,分子运动速度加快, 碰撞机率增加,使无辐射跃迁增加,因 而降低了荧光;
常见溶剂在不同激发光波长下的拉曼光波长
激发光 波长 248 水 271 溶剂拉曼光波长 乙醇 环己烷 267 四氯化碳 - 氯仿 -
267
313
365 405 436
350
416 469 511
344
405 459 500
344
408 458 499

荧光法原理

荧光法原理1. 荧光法简介荧光法是一种利用物质在激发后发射荧光的原理来进行分析的方法。

该方法广泛应用于化学、生物学、材料科学等领域,通过测量样品的荧光光谱和荧光强度,可以得到样品的成分、结构和性质信息。

2. 荧光的基本原理荧光是指在特定条件下,物质受到光激发后,吸收光能量,然后再以辐射光能量的方式重新释放出来。

荧光现象的产生基于物质的电子激发和松弛过程。

2.1 激发过程当物质受到激发光的照射时,其分子中的电子从基态跃迁到激发态,此过程中物质吸收了激发光的能量。

这个过程可以通过下式表示:M+ℎνex→M∗其中,M为物质的基态,ℎνex为激发光的能量,M∗为物质的激发态。

2.2 衰减过程在激发态中,分子经历一系列非辐射和辐射的衰减过程,最终回到基态。

这个过程可以通过下式表示:M∗→M+ℎνem其中,ℎνem为发射光的能量。

2.3 荧光光谱荧光法通过测量物质在激发后发射的光谱来分析样品。

荧光光谱是荧光强度与波长的关系曲线,可以反映物质的组成和结构。

3. 荧光法的应用荧光法广泛应用于以下几个方面:3.1 化学分析荧光法可以用于分析有机物、无机物和金属离子等化学物质。

通过测量荧光光谱和荧光强度,可以确定样品的成分和浓度。

3.2 生物学研究荧光法在生物学研究中有着重要的应用。

例如,在药物筛选中,可以使用荧光法来检测药物与目标蛋白的结合情况;在细胞成像中,可以利用荧光染料标记细胞内的特定分子,并通过荧光显微镜观察细胞内的活动。

3.3 材料科学荧光法也常用于材料科学研究中。

例如,可以利用荧光染料或荧光探针来研究材料的光电性能、表面活性以及结构性质。

3.4 环境监测荧光法在环境监测中也有着广泛的应用。

例如,可以利用荧光法检测水体中的有机污染物,或者利用荧光染料追踪大气中的污染物的传输和扩散过程。

4. 荧光法的优势和局限性荧光法具有以下几个优势:4.1 高灵敏度荧光法具有很高的灵敏度,可以检测到非常低浓度的物质。

4.2 高选择性荧光法通过选择合适的荧光染料或荧光探针,可以实现对目标物质的高选择性检测。

荧光分析法在药物分析中的应用

荧光分析法在药物分析中的应用
荧光分析法是一种通过观察物质在光激发下发出的荧光来分析其化学成分和性质的分
析方法。

荧光分析法具有灵敏度高、特异性好、选择性强、非破坏性等特点,被广泛应用
于药物分析领域。

荧光分析法可以用于药物的定量分析。

荧光分析法可以测定药物中含量极低的化合物,其灵敏度远高于常规光谱分析方法。

荧光法可以用于测定药物中微量的维生素、激素、抗
生素等成分,只需少量样品即可获得准确的定量结果。

荧光分析法可以用于药物的质量控制。

荧光分析法可以用于对药物的纯度、稳定性等
进行评价。

通过检测药物在荧光激发下发出的荧光信号,可以评估药物的纯度和含量偏差
情况,从而判断药物是否符合质量标准。

荧光分析法还可以应用于药物的药代动力学研究。

荧光分析法可以通过荧光显微镜观
察荧光标记的药物在生物体内的分布和代谢过程,从而研究药物的吸收、分布、代谢和排泄,揭示药物在体内的行为。

荧光分析法还可以用于药物制剂的研究和控制。

荧光分析法可以用于评估药物制剂的
稳定性、释放特性和药物在制剂中的分布情况。

通过荧光分析,可以了解荧光标记的药物
在制剂中的分布情况,优化制剂的配方,提高药物的疗效和稳定性。

化学分析技术中的荧光法

化学分析技术中的荧光法荧光法是化学分析技术中常用的一种方法,其基本原理是利用物质吸收能量后产生的激发态分子的自发辐射。

荧光法具有高灵敏度、高选择性、快速、非破坏性等优点,因此在分析领域中得到了广泛应用。

一、荧光现象荧光现象是很多物质在受激光照射或吸收其他电磁波后,从基态跃迁到激发态,再从激发态衰减到基态时,自然辐射出的光现象。

其光谱分布与吸收光谱不同,一般在较长波长处产生。

荧光的激发带宽度很大(可以从两纳米到上百纳米),且激发光对物质的化学性质影响较小,因此在分析领域中具有独特的优势。

二、荧光分析法1. 直接测量法荧光分析法一般分为直接测量法和间接测量法两类。

直接测量荧光分析法中,荧光物质为测量对象,测量时将激发光辐射到样品中,测量样品发出的荧光强度,然后通过与标准曲线比较,可以计算出样品中荧光物质的浓度。

直接测量荧光分析法具有快速、灵敏度高、稳定性好等优点。

但它也面临着无法消除因测量系统的几何位置和分析效果差异而引起的扰动信号等问题。

2. 间接测量法另一种荧光分析法是间接测量法。

它是通过荧光物质与已知物质的相互作用来测定未知物质的量。

例如,糖类物质可以被邻苯二甲酸酐(PA)酰化成PA-糖酐,这种物质能够与荧光比爱琴素(ANS)结合产生荧光,而且糖酐的数量与荧光信号的强度成正比。

通过对标准曲线的制备,可以计算出未知糖酐的浓度。

间接测量荧光分析法的优点是可以避免测量系统的几何位置和分析效果差异而引起的扰动信号的干扰,但它也存在某种程度上的样品处理和校准难度大的问题。

三、荧光分析在生命科学中的应用荧光分析方法在生命科学领域中已经得到了广泛的应用,例如,在生化学、免疫学、细胞、化学生物学等各个领域。

在免疫学中,荧光抗体标记技术被广泛用于检测蛋白质和微生物。

常用的标记染料包括荧光素和菲罗达胺等。

荧光分析方法还能够用于细胞成像和病理学分析。

蛋白质标记生物发光剂(luciferase)能够被转染到细胞内,进而检测细胞中的信号通路或者探究细胞蛋白质之间的交互作用。

原子荧光光谱法

原子荧光光谱法原子荧光光谱法一、概述原子荧光光谱法是一种专门用于分析原子的物质结构和组成的方法。

该方法利用了原子的特性发射出特定波长的光线来进行分析,具有高灵敏度和精确度等优点。

它广泛应用于化工、冶金、电子、环保等领域中。

二、工作原理原子荧光光谱法的工作原理是将待检物样品进入火焰或等离子体中加热到极高温度,使其中原子被激发到激发态,然后随着原子的自发跃迁,从激发态跃迁回基态时,发出一定波长的特定光线,通过仪器检测出这些发射光谱,再进行计算和分析得到样品中元素成分的定量分析结果。

三、操作流程1.准备样品:将待分析物质制成高纯度的化合物或纯金属样品。

2.样品预处理:将样品加入溶剂中,加热或酸化等方式使其转变成原子迹状态。

3.样品的雾化:将样品雾化成细小的颗粒,通过进一步的气体等离子体激励,使得原子处于激发态。

4.测量光谱:通过分光仪等仪器测量样品中元素特征光谱,得出样品元素成分的信息。

5.结果分析:根据光谱结果,采用定量方法对待分析物质的成分进行分析和计算,获得定量分析结果。

四、应用领域原子荧光光谱法适用于分析大量金属元素,可用于纯金属、杂质金属等检测。

它被广泛应用于冶金、化工、电子、环保等领域。

比如用于水质、土壤、废水等环保领域的检测,能够检测出其中的重金属元素,为环保工作提供有力的技术保障。

五、存在的问题尽管原子荧光光谱法在分析中具有很大的优势,在实际应用中仍然存在一些问题。

比如由于仪器灵敏度限制,使用样品的环境也会对结果产生影响。

此外,样品的制备过程也会对结果产生重要影响。

对于不同样品的处理方法还需进一步研究。

综上所述,原子荧光光谱法是一种非常重要的化学分析方法,应用广泛。

在实际操作和结果分析时,需要注意一些问题。

未来,我们需要根据实际的样品情况,不断地改进研究方法,提高分析的准确性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

荧光分析法检测原理及应用
荧光分析是一种应用广泛的分析技术,其原理是利用物质在激发光作用下发生荧光现象,通过测量荧光强度来确定物质的存在、浓度和质量。

荧光分析技术具有灵敏度高、选择性强、操作简便、可在线监测等优点,因此在化学、生物、环境等领域得到广泛应用。

荧光分析的基本原理是荧光的激发和发射。

荧光是电子从高能级跃迁到低能级时发生的一种发光现象,这个过程与吸收光的波长、激发态的能级、自旋、分子振动和环境因素有关。

荧光物质受到激发光后会发生激发态跃迁,跃迁的能量损失会通过发射光发出,发出的光的波长和强度与荧光物质的种类、浓度、环境和仪器参数等因素有关。

荧光分析法通常有多种变体,如直接荧光法、间接荧光法、竞争性荧光法、荧光共振能量转移法(FRET)和生物传感等。

在直接荧光法中,即使没有其他化学试剂参与反应,荧光分析也可以直接检测分析物的荧光强度。

对于一些无法进行直接荧光检测的分析物质,可以使用间接荧光法或竞争性荧光法进行检测。

在这些方法中,某些分析物会与其他的分析物或化学试剂发生作用,从而影响荧光强度或比例。

利用这些作用,可间接地检测分析物的浓度。

荧光共振能量转移法(FRET)是一种新兴的荧光分析方法。

该方法利用两种染料之间的荧光共振能量传输来测量分析物质的存在和浓度。

该方法的一个优点是,它可以在小颗粒中检测小分子,因此被广泛应用于药物筛选、细胞检测和酶学研
究等领域。

荧光分析技术在许多领域得到广泛应用。

生物分析方面,荧光法可用于检测DNA、蛋白质、抗体等生物分子。

在环境监测方面,荧光法可用于检测重金属、农药、水中有害化学物质等污染物质。

在医学领域,荧光法可用于检测癌症、病毒、细胞增殖和分化等生理过程。

总之,荧光分析法是一种非常有用和广泛应用的分析技术,其原理和方法对于许多不同领域的化学、生物和环境应用都有很大的意义。

随着科学技术的不断进步,人们可以期待荧光分析法在未来发挥更加重要和创新的作用。

相关文档
最新文档