基于核磁共振技术的代谢组学研究进展ppt课件
磁共振波谱成像 ppt课件 ppt课件

– 磁共振波谱分析(MRS)
脑功能成像
• 测量脑内化合物
• 测量脑局部代谢和血氧变化技术 • 测量脑内神经元活动的技术
测量脑代谢和血氧变化
• 当脑活动增加时,局部血流,氧代谢和糖代谢 增加,可以功能定位,对脑局部反应特征研究
– PET – 光学成像技术
– 功能磁共振成像(fMRI)
• 灌注成像:外源性灌注成像(PWI) 内源性,血氧水平依赖法(BOLD)
• 选用SV或 MV • 选择成像参数 • 兴趣区的选择定位 • 自动预扫描:匀场、水抑制 • 数据采集后处理和分析
序列及扫描参数
• SV, press
• TR 1500 ms • TE 144/35 ms
• 自动预扫描后获得的参数:
– 线宽(Ln)小于10Hz – 水抑制大于95%
• FOV 24 cm
提高分辨力和敏感度: MRS反映局部磁场的瞬 间变化,对任何原因引起磁场均一性的微小波 动均较敏感,导致波峰增宽和重迭,从而降低 MRS技术的分辨力和敏感度 定量分析困难:尤其是绝对定量
MRS临床应用
• 脑部
• 体部:前列腺、肝脏、乳腺等
MRS在脑部临床应用技术
• 点分辨波谱法 PRESS
• 可以同时获取病变侧和未被病变累及的区域, 评价病灶的范围大 。
• 匀场比较困难,由于多个区域同时获得相同的 磁场均匀性。对临近颅骨、鼻窦或后颅窝的病 灶,由于磁敏感伪影常常一次匀常不能成功
• 采集时间比较长 。
单体素与多体素的比较
单体素
容易实现
多体素
覆盖范围大,一次采集可获得较 多信息
百倍,甚至几千倍,如不抑制,代谢物将被掩盖
• 匀场和水抑制后: 线宽,头颅小于10Hz,肝脏小
基于核磁-质谱稳定同位素分辨的代谢组学及肿瘤代谢应用

基于核磁-质谱稳定同位素分辨的代谢组学及肿瘤代谢应用1.引言1.1 概述在代谢组学研究领域,核磁-质谱稳定同位素分辨技术已经成为一种重要的分析方法。
基于核磁共振和质谱技术的结合,该技术能够在代谢水平上提供全面和准确的信息,进一步揭示生物体内代谢网络的变化与调控机制。
代谢组学通过分析细胞或组织中代谢产物的整体组成和相对含量,可以获得关于生物体内代谢物组成和变化的全貌,有助于了解生物体在不同状态下的代谢特征和相互作用。
肿瘤代谢学研究是代谢组学的一个热点领域。
肿瘤细胞的代谢特征与正常细胞不同,具有高度依赖糖酵解和异常的脂肪酸代谢等特点。
通过分析肿瘤细胞的代谢变化,可以揭示肿瘤的发生机制、进展过程以及治疗反应,为肿瘤的早期诊断和治疗提供新的思路和方法。
基于核磁-质谱稳定同位素分辨的代谢组学技术,可以通过标记和追踪代谢物中特定同位素的变化,实现对代谢途径和代谢流动的定量分析。
这种方法能够提供代谢物的结构信息和代谢途径的动力学变化,进一步拓展了代谢组学的研究领域。
在肿瘤代谢研究中,通过核磁-质谱稳定同位素分辨的代谢组学技术,我们可以深入了解肿瘤细胞的代谢特征、代谢途径的调控机制以及与肿瘤发生的相关因素。
这对于肿瘤的分型、诊断和治疗提供了重要的参考依据。
综上所述,基于核磁-质谱稳定同位素分辨的代谢组学技术在肿瘤代谢研究中具有重要的应用价值。
通过该技术,我们能够全面了解肿瘤细胞的代谢特征和代谢途径的变化,从而为肿瘤的早期诊断和治疗提供新的策略和方法。
1.2文章结构文章结构部分的内容可以包括以下内容:本文主要分为引言、正文和结论三个部分。
引言部分主要概述了本文的研究背景和目标。
首先,介绍了代谢组学在肿瘤研究中的重要性和应用前景。
接着,详细介绍了基于核磁-质谱稳定同位素分辨技术的代谢组学方法及其在肿瘤代谢研究中的应用。
最后,阐述了本文的目的,即通过研究核磁-质谱稳定同位素分辨的代谢组学在肿瘤代谢研究中的应用,为肿瘤诊断和治疗提供新的策略和方法。
磁共振波谱技术(讲+全)PPT

MRS vs MRI
基于组织中水的T2弛豫 时间,及脂肪的信号
信号来源于全脑,解剖 信息来自质子及分布及 其在及其在不同组织中 的相对弛豫率的不同
T2WI,T1WI,FLAIR
MRS vs MRI
基于代谢物的T2弛 豫时间
信号来源于脑的特 定区域
PRESS,STEAM, CSI
所得的谱线均会有差别,代谢物比值也有所 不同
3.0T vs 1.5T
Press:TR1500ms,TE35ms
3.0T vs 1.5T
Press:TR1500ms,TE35ms
1.5T PRESS vs STEAM
TR1500ms,TE35ms
1.5T PRESS vs STEAM
水中的氢质子在1.5T 场强条件下的进动 频率是63.9MHz
长链脂肪酸中的氢 质子在同场强条件 下的进动频率为 63.9MHz-224Hz
绝对频率差实际意 义较小
以“百万分之” (parts per million,ppm) 来表示化合物之
间的频率差别是
恒定的。(无场 强依赖)
MRS的定量计算
绝对定量与相对定量 相对定量:以各种代谢物峰的高度或峰下
面积的比值进行定量分析 绝对定量:以内源性的水或独立的外源性
的标准浓度的物质作参照进行计算
机体对代谢物浓度的影响因素
年龄 脑内不同部位 体温 肝、肾参与Cr合成,肝病时Cr下降 糖尿病、肾病、渗透压异常、移植肾、输
mI/Cr: 0.60±0.24 mI/Cr: 0.65±0.08
后扣带回灰质 左侧脑室后脚旁白质
NAA/Cr: 1.40±0.10 NAA/Cr: 1.61±0.14
基于核磁共振扫描(NMR)的赭曲霉毒素A毒性血浆代谢组学研究

-
I
On l i n e s y s t e m: h t t p : / / ww wj a b i o t e c h or g
no-
墩髓 髓 撼
: : . …
…
朋嚣黛 囊I
研 究报 告
Le t t e r
基 于核 磁 共振 扫 描( N MR ) 的赭 曲霉 毒 素 A毒 性 血浆代 谢 组学 研 究
XI A Ka i HE Xi a o - Y u n HAO J u n ・ Ra n HUANG , Ku n — Lu n LI ANG Z h i — Ho n g XU ' We n — T a o
1 C o l l e g e o f F o o d S c i e n c e a n d Nu t r i t i o n a l E n g i n e e r i n g , C h i n a Ag r i c u l t u r a l Un i v e r s i t y , Be i j i n g 1 0 0 0 8 3 , C h i n a ; 2 T h e S u p e r v i s i o n , I n s p e c t i o n& T e s t i n g C e n t e r o f G e n e t i c a l l y Mo d i i f e d O r g a n i s ms F o o d S a f e t y , Mi n i s t r y o f Ag r i c u l t u r e , Be i j i n g 1 0 0 0 8 3 , C h i n a ; 3 B e i j i n g Ke y L a b o r a t o r y o f N u — t r i t i o n He a l t h& F o o d S a f e t y , B e i j i n g 1 0 0 0 8 3 . C h i n a Co r r e s p o n d i n g a u t h o r , x u we n t a o b o y @s i n a . c o m
《核磁共振》PPT课件

谱上的共振信号位置反映样品分子的局部结构(例如官能 团,分子构象等);信号强度则往往与有关原子核在样品中 存在的量有关。
3
5.1 概述
目前常用的磁场强度下测量NMR所需照射电磁波落在射频 区(60~600 MHz)。
36
5.3.1 质子的化学位移
在各种化合物分子中,与同一类基团相连的质子, 它们都有大致相同的化学位移。
化学位移是分析分子中各类氢原子所处位置的重要 依据。
值越大,表示屏蔽作用越小,吸收峰出现在低场; 值越小,表示屏蔽作用越大,吸收峰出现在高场。
37
5.3 核磁共振氢谱
5.3.2 影响化学位移的因素 1. 取代基的诱导效应 2. 各向异性效应 3. 共轭效应 4. 氢键和溶剂效应
为高,其能量差E为:
E H0
I
为自旋核产生的磁矩。
由于I =1/2,故
(5-2)
E 2H0
16
(5-3)
5.2.1 原子核的自旋 在外磁场作用下,自旋核能级的裂分如图所示。
在外磁场作用下,核自旋能级的裂分示意图 17
5.2.1 原子核的自旋
由图可见,当磁场不存在时,I =1/2的原子核对两种可 能的磁量子数并不优先选择任何一个,具有简并的能级;
脉冲傅里叶变换NMR仪的问世,极大得推动了NMR技术, 特别是使13C,15N,29Si等核磁共振及固体NMR得以广泛应用。 发明者R. R. Ernst 曾获1991年诺贝尔化学奖。
在过去10 年中,NMR谱在研究溶液及固体状态的材料结 构中取得了巨大的进展。
核磁共振技术在代谢组学研究中的应用

核磁共振技术在代谢组学研究中的应用代谢组学是研究生物体内代谢物的种类、组成和变化规律的科学。
通过代谢组学研究,我们可以全面了解生物体内代谢物的变化情况,揭示生物体内代谢过程的特征和规律,为疾病的诊断和治疗提供有力的依据。
核磁共振技术是代谢组学研究中最重要的分析手段之一,可以实现非破坏性、无辐射的对生物组织和体内物质的分析,具有极高的分辨能力和灵敏度。
核磁共振技术主要利用核磁共振现象进行分析。
核磁共振是指物质受外加磁场激发后,原子核自身的磁矩会发生动态变化,从而产生特征性的共振信号。
利用核磁共振技术,可以对样品中的原子核进行定量和定性的测量,获得有关样品分子结构、组成及分子间相互作用的信息。
在代谢组学研究中,核磁共振技术可以用于对生物体内代谢产物进行定性和定量分析。
通过核磁共振技术,可以获得生物体内代谢物的含量、分子结构、化学位移和峰面积等信息。
从而可以揭示生物体内代谢物的种类、数量和变化规律,进而研究代谢通路的调控机制和生物体的生理状态。
核磁共振技术在代谢组学研究中的应用涉及多个领域。
在医学方面,核磁共振技术可以用于疾病的早期诊断、治疗效果的评估和药物代谢动力学的研究。
例如,在癌症研究中,核磁共振技术可以帮助确定不同组织和器官的代谢差异,及时发现肿瘤并评估其恶性程度。
在药物研究中,核磁共振技术可以研究药物与生物体内代谢物的相互作用,揭示药物的代谢途径和代谢产物,为药物设计和个体化用药提供依据。
在农业和食品科学方面,核磁共振技术可以用于研究农产品的质量和安全问题。
通过核磁共振技术,可以检测农产品中的残留农药、重金属和有害物质,保障农产品质量。
同时,核磁共振技术还可以鉴定农产品中的营养成分和食品添加剂,为食品安全和营养评估提供可靠依据。
在环境科学方面,核磁共振技术可以用于研究生物体和环境因子之间的相互作用关系。
通过分析环境样品中的代谢产物,可以了解环境污染的程度和来源,评估其对生物体的影响。
这对于环境保护和生态安全具有重要意义。
核磁共振波谱法讲义课件

环境科学中的应用
总结词
核磁共振波谱法在环境科学中也有重要的应 用。
详细描述
核磁共振波谱法可用于研究环境中的污染物 和天然有机物。通过测量水中、土壤中、大 气中有机污染物的核磁共振信号,核磁共振 波谱法能够提供关于污染物的种类、浓度和 分布的信息。此外,核磁共振波谱法还可用 于研究天然有机物(如腐殖质)的组成和降
多维核磁共振技术
多维核磁共振技术是一种通 过使用多个频率和磁场分量 来解析核磁共振信号的技术
。
通过多维核磁共振技术,可 以获得更丰富的化学位移信 息和耦合常数信息,从而更
好地解析分子结构。
多维核磁共振技术被广泛应 用于有机化学、材料科学等 领域,对于研究有机分子结 构、材料组成等具有重要意 义。
06 核磁共振波谱法实验操作演示
药物代谢与动力学研究
总结词
核磁共振波谱法在药物代谢与动力学研 究中具有广泛的应用。
VS
详细描述
核磁共振波谱法可用于研究药物在体内的 代谢过程和动力学行为,进而揭示药物的 作用机制和药效。通过测量药物分子在不 同时间点的代谢产物和浓度,核磁共振波 谱法能够提供关于药物吸收、分布、代谢 和排泄的重要信息,有助于新药开发和优 化治疗方案。
耦合常数
测量相邻原子核间自旋作用的强度和方向,揭示分子结构中的空间构型和相互作用。
04 核磁共振波谱法的实验技术应用
CHAPTER
有机化合物的结构鉴定
要点一
总结词
核磁共振波谱法是一种常用的实验技术,可用于有机化合 物的结构鉴定。
要点二
详细描述
核磁共振波谱法是一种基于核自旋磁矩的实验技术,通过 测量原子核在磁场中的共振频率来确定分子的结构。在有 机化合物的结构鉴定中,核磁共振波谱法可用于确定分子 中各原子的连接方式和化学环境,进而推断出分子的三维 结构。常见的核磁共振波谱法包括一维和二维核磁共振谱 ,其中二维核磁共振谱能够提供更丰富的结构信息。
NMR(核磁共振)PPT课件

式中:ω— 角速度;v — 进动频率(回旋频率);
γ— 旋磁比(特征性常数)
.
15
由Larmor方程表明,自旋核的进动频率与外加磁场 强度成正比。当外加磁场强度B0 增加时,核的回旋角 速度增大,其回旋频率也增加。对1H核来说,当磁场 强度B0为1.4092T(1T=104)高斯时,所产生的回旋频 率v为60兆赫(γ =26. 753×107 rad·T−1·s−1);B0 为2.3487T高斯时,所产生的回旋频率v为100兆赫。
.
22
(2)自旋—自旋驰豫(spin-spin relaxation):自旋— 自旋驰豫亦称横向驰豫,一些高能态的自旋核把能量转
移给同类的低能态核,同时一些低能态的核获得能量跃
迁到高能态,因而各种取向的核的总数并没有改变,全 体核的总能量也不改变。自旋—自旋驰豫时间用T2来表 示,对于固体样品或粘稠液体,核之间的相对位置较固 定,利于核间能量传递转移,T2约10−3s。而非粘稠液 体样品,T2约1s。
.
4
p为角动量,其值是量子化的,可用自旋量子数表示p 为角动量,其值是量子化的,可用自旋量子数表
p h I(I1)
2
( 5.2 )
式中:h为普郎克常数(6.63×10−34J·s);−I为 自旋量子数,与原子的质量数及原子序数有关。式中: h为普郎克常数(6.63×10−34J·s);−I为自旋量子 数,与原子的质量数及原子序数有关。
由永久磁铁和电磁铁获得的磁场一般不能超过2.4T,这相 应于氢核的共振频率为100MHz。对于200MHz以上高频谱仪 采用超导磁体。由含铌合金丝缠绕的超导线圈完全浸泡在液氦 中间,对超导线圈缓慢地通入电流,当超导线圈中的电流达到 额定值(即产生额定的磁场强度时),使线圈的两接头闭合, 只要液氦始终浸泡线圈,含铌合金在此温度下的超导性则使电 流一直维持下去。使用超导磁体,可获得10~17.5T的磁场, 其相应的氢核共振频率为400~750 MHz。