数学归纳法及其应用举例

合集下载

数学归纳法及其应用

数学归纳法及其应用

原创性声明本人声明:所呈交的论文是本人在导师指导下进行的研究成果。

除了文中特别加以标注和致谢的地方外,论文中不包含其他人已发表或撰写过的研究成果。

参与同一工作的其他同志对本文研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。

签名:日期:本论文使用授权说明本人完全了解有关保留、使用学位论文的规定,即:学校有权保留论文及送交论文复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容。

(保密的论文在解密后应遵守此规定)学生签名:指导教师签名:日期:本科生毕业设计开题报告注:1、学院可根据专业特点,可对该表格进行适当的修改。

【内封面】南通大学毕业论文摘要数学归纳法是一种常用的证明方法,它的应用极其广泛。

本文讨论了数学归纳法的原理,以数学归纳法原理为基础,在不同条件下对数学归纳法原理进行变易,扩大数学归纳法的应用范围。

并对数学归纳法的分类、应用进行总结,给出数学归纳法在初等代数、高等代数中的应用典例。

关键字:数学归纳法、原理、变易、应用。

ABSTRACTMathematical induction is a common method of proof, and its applications is very broad. This article discusses the principle of mathematical induction, promotes the principle of mathematical induction under different conditions, and expands the range of applications induction on the basis of the principle. It summarizes the classification and application of mathematical induction. Typical examples of applications of mathematical induction are given in elementary algebra and advanced algebra.Key words: Mathematical induction,Principle,Variation,Application目录摘要 (I)ABSTRACT.................................................................................................... I I1.引言 (1)2.数学归纳法原理及变易 (1)2.1数学归纳法的本原 (3)2.2数学归纳法原理 (3)2.3数学归纳法原理变易 (4)3.数学归纳法的表现形式 (6)3.1 第一数学归纳法 (6)3.2 第二数学归纳法 (6)3.3 跳跃归纳法 (7)3.4 双向归纳法 (8)3.5 反向归纳法 (8)4.数学归纳法的应用 (10)4.1数学归纳法在初等代数中的典型应用 (10)4.1.1 证明恒等式 (10)4.1.2 证明不等式 (12)4.1.3 证明整除问题 (12)4.1.4 证明几何问题 (12)4.2 数学归纳法在高等数学中的应用 (13)4.2.1 数学归纳法证明德摩根定律推广式 (13)4.2.2 数学归纳法证明行列式 (14)5.结论 (16)参考文献 (17)致谢......................................................................... 错误!未定义书签。

数学归纳法的应用知识点总结

数学归纳法的应用知识点总结

数学归纳法的应用知识点总结数学归纳法是一种重要的证明方法,常被应用于数学、逻辑以及计算机科学的领域。

它的核心思想是通过建立一个基础情形的真实性,以及在基础情形成立的前提下推导出一个一般情形的真实性,从而得出结论。

本文将对数学归纳法的基本概念和应用进行总结。

一、数学归纳法的基本原理数学归纳法包括三个步骤:基础步骤、归纳假设和归纳证明。

首先,我们需要证明当n取某个特定值时,结论成立,这称为基础步骤。

接下来,我们假设当n=k时,结论成立,这称为归纳假设。

最后,通过归纳证明,我们将证明当n=k+1时,结论也成立。

二、数学归纳法的应用举例1. 求和公式数学归纳法可以用来证明一些求和公式的正确性。

例如,我们要证明正整数n的前n项和公式为:1+2+3+...+n = n(n+1)/2。

首先,我们可以验证当n=1时,等式左边为1,右边也等于1(1×2/2),因此基础步骤成立。

然后,我们假设当n=k时,等式成立,即1+2+3+...+k = k(k+1)/2。

接下来,我们需要证明当n=k+1时,等式也成立。

我们将等式左边的前k+1项展开,得到1+2+3+...+k+(k+1)。

根据归纳假设,前k项的和为k(k+1)/2,再加上第k+1项(k+1),则等式左边的和为(k+1)(k+2)/2。

与等式右边相比,我们可以得出结论,即当n=k+1时,等式也成立。

2. 整数性质证明数学归纳法也可以用来证明一些关于整数的性质。

例如,我们要证明任意正整数n的平方是奇数。

首先,我们验证当n=1时,等式成立,因为1的平方是1,是奇数。

然后,假设当n=k时,等式成立,即k的平方是奇数。

接下来,我们通过归纳证明,证明当n=k+1时,等式也成立。

我们将等式左边展开,得到(k+1)的平方。

根据归纳假设,k的平方是奇数,那么k的平方加上2k再加1,仍然是奇数。

因此,当n=k+1时,等式也成立。

三、数学归纳法的注意事项1. 基础步骤的正确性是数学归纳法的基础,必须确保基础步骤成立。

数学归纳法及应用列举

数学归纳法及应用列举

2k 1
(B)
k 1
(D) 2k 3 k 1
2.1 数学归纳法及其应用举例
(3)用数学归纳法证明: 2+4+6+……+2n=n2+n
例题讲解:
题1:用数学归纳法证明:
13 23 33 .... n3 1 n2 (n 1)2 4
例题讲解:
题2:用数学归纳法证明: 12 23 34 ..... n(n 1) 1 n(n 1)(n 2)
新授课
递推基础
数学归纳法证明一个与正整数有关命题的步骤是:
(1)证明当 n 取第一个值 n(0 如 n0 1或2等)时结论正确;
(2)假设时 n k(k N且k n0 ) 结论正确,证明
n k 1 时结论也正确.
递推依据
(3)由(1)(2)得最后下结论
练习:
用数学归纳法证明“不等式
1

1 2

1 3

...
..
1 2n
1ຫໍສະໝຸດ n(n*且n

1)
时,第一步应验证不等式(B)
(A)1
1 2

2
(B)1
1 2

1 3

2
(C)1 1 1 3 (D)1 1 1 1 3
23
234
; https:///xuxiaoming/ 徐小明新浪博客
圾扔下来,可是有一天,它改变了对垃圾的态度。它每天都把垃圾踩到自己的脚下,并从垃圾中找到残羹来维持自己的生命,而不是被垃圾所淹没。终于有一天它重新回到了地面上。 ? 训练要求: ? 1.这则材料应该给出的话题是: ? 3.你的作文题目是: ? 4.你的论点或主旨是: ? 5.请写 出能体现你的中心主旨的一句名言、歌词等或自编一句有哲理的话,不超过30字。 ? 6.请你联系所学过的课文,写出一二则相关课内论据。语言要简洁。 ? 7.请你联系并提炼你的现实生活,或亲身经历或耳闻目睹的社会现象,写出一二则生活论据。 ? 8.请你联系所读过的各类课外书报,提 炼整理出一二则论据。 ? 9.请为你的论点写出一段说理性文字。100字以内。 ? 10.你认为在立意上需要提醒大家注意的问题: ? 考前高考作文审题立意强化训练参考答案 ? 一、“坚持,便要在精神上压倒对方(困难或敌人)”,“振作精神便能顽强坚持”,这两种立意便有点不简单了; 而主要从弗雷泽的角度立意:“本是旗鼓相当,但一念之间的放弃意味着失败”,就或许有些与众不同;结合两个人的角度立意恐怕更少了吧?殊不知新意也便在此了:“胜利与失败原来是近邻,就在于坚持还是放弃”。然而不管怎样立意,总不能绕开“坚持”。 ? 二、本则材料中最后三句 话当是理解文意的关键,三次提到“大石头”,成了理解文意的关键。可以提出这样的问题:“你们工作,生活和学习中最重要的'大石头'是什麽呢?”思考之后就会得出这样一个结论:“大石头”就是生活,工作和学习中的最重要东西。 ? 可谈自己生活中最重要的'大石头'是自信心,有了 自信心,自己就有了进取的动力,就有了腾飞的马达;可谈“爱”是生活中最重要的“大石头”,有了爱,就有了温暖,有了关怀,有了理解,有了支撑,这个世界便充满了温馨;可谈学习是人生中最重要的“大石头”,进入知识经济时代,学习是生存的保障也是人类进一步发展的需要,更 是人的精神支柱…… ? 这个题目要“谈谈你的看法”,那就只有写成议。 ? 三、不要抱怨你的学校不好,不要抱怨你的专业不好,不要抱怨你住在破宿舍里,不要抱怨你的男人穷,你的女人丑,不要抱怨你没有一个好的爸爸,不要抱怨你的工作差,工资少,不要抱怨你空怀一身绝技没有人 赏识…… ? 现实有太多的不如意,就算生活给你的是垃圾,你同样能把垃圾踩在脚下,登上理想之巅。 ? 高考作文审题强化训练(二) ? (一)命题作文 1.请以“坚守信念”为题,写一篇不少于800字的文章。 要求:①立意自定。②除诗歌外,文体不限。③不得抄袭。 【写作指引】 这 是属于哲理类的写作命题。题目是一个四字短语,它包含了两个要素,即“坚守”和“信念”。但以“坚守”为主,写作的重心应当定位在如何“坚守”之上。而且必须明确要表现的是“坚守”,不是一般的“呵护”、“守护”,更不是“树立”、“拥有”等。既是“坚守”,肯定遭遇了一些 对“信念”的冲击波,可能还是比较严重的挫折和打击等。没有这些因素的烘衬,“坚守”之“坚”未能凸现出来。特别要注意的还有,不能绕开“坚守”而大谈“信念”,不然就导致重心移位了。依据考生自身的写作能力,无论是选择记叙类文体,运用具体事例来表现“坚守”之精彩,还 是选择议论类文体,通过分析、推理来论“坚守”之重要,均可写出佳作。 2.白雪覆盖,大地一片沉寂,忽而春风涌起,一片灰黑的土地转眼间绿意盎然,让人不能相信,那冬天里,这些种子曾怎样在黑暗的地下舞蹈过呢?平静的湖面如镜般明澈,也会一瞬即风生水起,巨浪滔天,这种力 量它如何孕育?世界上许多静止的事物从未停止过运动。 请以“静止就是舞蹈”为题,体裁不限,写一篇不少于800字的文章。 【写作指引】 (1)这个话题具有思辨色彩,以写议为佳。首先我们从“静止”可联想到生命的一个停顿、一种安静,人为什么要安静,想和尚面壁是为了什么,一 是反省,一是破禅。那么我们人生安静也是为了求得自己的更新,道德的进步;是为了在寂寞中苦心而求孤诣,为了学术的成果,为了事业的前进,多少人在喧嚣红尘中默然孤坐,而这样的安静其实是为了等待一个惊世的爆发,一个绝世的舞蹈。而“舞蹈”是生命更新的动力,是美的韵律的 呈现。再读材料联想,这世界运动是永恒的,万物静止是个假象,其实都在生生不息,如蛹化蝶,如沙砾变成珍珠,如种子在黑暗的地下怒涨的生命,这样就可联系科学家、思想家等人来论论题。还可联想到静止的文字与涌动的思想,多少哲人伟人已逝,而透过发黄的纸张,我们依稀可见他 们铮铮的铁骨,他们的谆谆善诱,他们的悲天悯人,他们的积极入世,他们的舍我其谁等。 (2)立意:“静止”可以理解为长期的积累、平凡努力、勤奋付出等,“舞蹈”可以理解为惊世爆发、一鸣惊人、成就人生、取得成功等。 3.《艺术人生》在盘点2004年文艺人物时使用了一个关键 词——“守望”。这是个令人心动的字眼:它是老师期待的眼神,是父母新添的白发,更是你孜孜以求的脚步。我们守望亲情,守望责任,守望未来……守望是信念,是坚守,是期盼。有些东西甚至需要用一辈子去守望。也许不是每一道江流都能入海,不是每一个守望都能圆满。但有了守望, 生活变得深刻,心灵变得充实。守望中,我们拒绝诱惑;守望中,我们执着追求;守望中,我们走向成熟…… 请以“在守望中……”为题,写一篇不少于800字的文章。 【写作指引】 守望有不同的对象、不同的意义、不同的过程。可以运用比喻的修辞使“守望”由抽象变为具体可感的形象, 用引用的方式来具体阐释“守望”的内涵,用排比的形式来为“守望”论,也可以综合运用比喻、引用、排比等修辞,展开论述。写成议要有对“守望”的形象化理解,可以在选择材料和论的时候,对材料采用形象化的叙述,可以设置一种情境,烘托出“守望”的价值和意义,以使文字获得 色彩、造型和构图等方面的效果。同时,要充分调动自己的思想感情,自我“激情”,使自己进入到事件中去,同所写的人一起喜、怒、哀、乐、忧、思,让语言充满感情。 4.请以“与……对话”为题写一篇文章,体裁不限,不少于800字。 【写作指引】 这虽是一篇命题作文,其实寻找思

常见数学思想方法应用举例

常见数学思想方法应用举例

常见数学思想方法应用举例1.归纳法:归纳法是一种从特殊到一般的推理方法,通常应用于证明一些性质在所有情况下成立。

例如,我们可以使用归纳法来证明1+2+3+...+n的总和公式为n(n+1)/2、首先,当n=1时,左侧为1,右侧为1(1+1)/2,成立。

接下来,假设对于一些k成立,即1+2+3+...+k=k(k+1)/2、那么当n=k+1时,左侧为1+2+3+...+k+(k+1),右侧为(k+1)((k+1)+1)/2、我们可以将左侧拆分为k(k+1)/2+(k+1),然后代入归纳假设得到右侧,因此可以推断1+2+3+...+n=n(n+1)/2对于所有自然数n成立。

2.递推法:递推法是一种逐步推进的思想方法,在每一步中根据前一步的结果得到下一步的结论。

递推法常常应用于数列和数列的性质推导。

例如,斐波那契数列就是一个典型的应用递推法得到的数列。

斐波那契数列的定义是:第一个和第二个数都是1,从第三项开始,每一项都等于前两项的和。

即,F(1)=1,F(2)=1,F(n)=F(n-1)+F(n-2)(n≥3)。

通过递推法,我们可以计算任意给定项的斐波那契数列。

3.反证法:反证法是一种通过假设命题的否定形式为真,再通过推导推出与已知事实矛盾的结论,从而推断原命题为真的思想方法。

例如,我们想要证明根号2是无理数。

假设根号2是有理数,可以表示为p/q,其中p和q是互质的。

如果我们将这个假设代入p^2/q^2=2,可以得到p^2=2q^2、这意味着p的平方是一个偶数,因此p也是一个偶数(偶数的平方是偶数)。

我们可以将p表示为2k,其中k是一个整数,那么我们得到(2k)^2=2q^2,即4k^2=2q^2,化简为2k^2=q^2、这表明q的平方也是偶数,进一步可以推断q也是偶数。

但这与p和q是互质的假设相矛盾,因此根号2不可能是有理数,即它是无理数。

4.数学归纳法:数学归纳法是一种证明自然数性质的方法,适用于证明具有递推性质的命题。

数学公式知识:数学归纳法的定义与应用

数学公式知识:数学归纳法的定义与应用

数学公式知识:数学归纳法的定义与应用数学归纳法是一种常用的证明方法,用于证明一些有关自然数的性质。

其基本思想是:首先证明当n=1时命题成立,然后利用假设n=k 时命题成立推断出n=k+1时命题也成立,从而得证当n为任意正整数时命题都成立。

一、数学归纳法的基本原理假设我们要证明对于任意正整数n,命题P(n)成立。

使用归纳法证明该命题时,需要完成以下两个步骤:(1)证明当n=1时,命题P(n)成立。

(2)证明当n=k时命题成立时,n=k+1时命题也成立。

在第一步中,需要证明的是当n=1时P(1)成立。

证明的方法可以是直接证明,也可以是通过推理证明。

例如,对于命题P(n)为“1+2+3+...+n=n(n+1)/2”,可以对n=1时P(1)进行直接证明:当n=1时,左边为1,右边为1(1+1)/2=1所以1=1,命题成立。

在第二步中,需要证明的是当n=k时命题成立时,n=k+1时命题也成立。

证明的方法可以是直接证明,也可以是通过推理证明。

例如,对于命题P(n)为“1+2+3+...+n=n(n+1)/2”,可以通过下列步骤证明当n=k时命题成立时,n=k+1时命题也成立:假设当n=k时命题P(k)成立,即:1+2+3+...+k=k(k+1)/2现在需要证明当n=k+1时命题P(k+1)也成立:1+2+3+...+k+(k+1)=(k+1)(k+2)/2对于左边式子,我们可以将其拆分为前面k项的和加上最后一项,即:1+2+3+...+k+(k+1)=(1+2+3+...+k)+(k+1)根据假设,左边等于k(k+1)/2+(k+1),即k(k+1)/2+k/2+k/2+1=k(k+1)/2+k+1=k(k+1+2)/2而右边等于(k+1)(k+2)/2,两边相等。

因此,当n=k+1时,命题P(n)成立。

二、数学归纳法的应用举例数学归纳法可以应用于各种数学问题的证明,下面举几个例子。

例1:证明1+2+3+...+n=n(n+1)/2我们已经在第一部分进行了证明,这里再次重点强调一下:首先证明当n=1时命题成立,即1=1(1+1)/2,然后根据假设n=k时命题成立推导得出当n=k+1时命题也成立,即1+2+3+...+k+(k+1)=(k+1)(k+2)/2例2:证明2的n次幂大于n例如,证明2的n次幂大于n,即2^n>n。

数学归纳法及其应用举例(一)

数学归纳法及其应用举例(一)

3. 如果让你设计多米诺骨
牌你怎么设计?
数学归纳法:(1)先证明当n取第一个 值n0(例如n=1)时命题成立,(2)然后假 设当n=k ( kN, k n0)时命题成立,并 证明当n=k+1时命题也成立,那么就证明 这个命题成立.
二.探究原理
1.已知数列{an},an=(n2-5n+5)2 ,
教 学 程 序 设 计
抽象原理
探究原理
变式训练
应用举例
一. 抽象原理
1.一个盒子里有很多个乒乓球, 第一次摸出一个是橙色,第二次、 第三次摸出的都是橙色,能否就 说第四个也是橙色?
盒子里有十个乒乓球, 怎么证明都是橙色?
2. 已知数列{an}满足a1=1, sn 是数列{an}的前n项和, sn=2 a n (n >1,nN)求an
数学归纳法及其应用举例(一)
教学目标 :
初步理解“数学归纳法原理” 的涵义,并正确运用数学归纳 法解决简单的数学问题.
掌握数学归纳法证题的两个 步骤和一个结论. 透过现象看本质的辨证唯物 主义教育.
重点难点 :
理解数学归纳法涵义.
设计思想:
以自主探究,合作交流的学习 方式,开展探究数学归纳法的 思想方法的形成过程.
(1)求a1,a2,a3,a4 (2)能否得出an=1 2. 判断下列证明方法对不对? 假设n=k时,等式 2+4+6+…+2n=n2+n+1成立,
就是 2+4+6+…+2k=k2+k+1.
那么2+4+6+…+2k+2(k+1)=k2+k+1+2(k+1)=(k+1)2+(k+1)+1. 这就是说,如果n=k时等式成立,那么n=k+1时等式也成立.对于 任何n N*,

《数学归纳法及其应用举例》教案

《数学归纳法及其应用举例》教案中卫市第一中学 俞清华教学目标:1.认知目标:了解数学归纳法的原理,掌握用数学归纳法证题的方法。

2.能力目标:培养学生理解分析、归纳推理和独立实践的能力。

3.情感目标:激发学生的求知欲,增强学生的学习热情,培养学生辩证唯物主义的世界观和勇于探索的科学精神。

教学重点:了解数学归纳法的原理及掌握用数学归纳法证题的方法。

教学难点:数学归纳法原理的了解及递推思想在解题中的体现。

教学过程:一.创设情境,回顾引入师:本节课我们学习《数学归纳法及其应用举例》(板书)。

首先给大家讲一个故事:从前有一个员外的儿子学写字,当老师教他写数字的时候,告诉他一、二、三的写法时,员外儿子很高兴,告诉老师他会写数字了。

过了不久,员外要写请帖宴请亲朋好友到家里做客,员外儿子自告奋勇地要写请帖。

结果早晨开始写,一直到了晚间也没有写完,请问同学们,这是为什么呢? 生:因为有姓“万”的。

师:对!有姓“万”的。

员外儿子万万也没有想到“万”不是一万横,而是这么写的“万”。

通过这个故事,你对员外儿子有何评价呢?生:(学生的评价主要会有两种,一是员外儿子愚蠢,二是员外儿子还是聪明的。

) 师:其实员外儿子观察、归纳、猜想的能力还是很不错的,但遗憾的是他猜错了!在数学 上,我们很多时候是通过观察→归纳→猜想,这种思维过程去发现某些结论,它是一种创造性的思维过程。

那么,我们在以前的学习过程中,有没有也像员外儿子那样猜想过某些结论呢? 生:有。

例如等差数列通项公式的推导。

师:很好。

我们是由等差数列前几项满足的规律:d a a 011+=,d a a +=12,d a a 213+=,d a a 314+=,……归纳出了它的通项公式的。

其实我们推导等差数列通项公式的方法和员外儿子猜想数字写法的方法都是归纳法。

那么你能说说什么是归纳法,归纳法有什么特点吗? 生:由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。

特点:特殊→一般。

数学归纳法及应用列举

证明交点的个数f(n)等于 n(n 1)
2
已知数列{an}的通项公式
an
4 (2n 1)2
数列{bn}的通项满足
bn (1 a1)(1 a2 )...(1 an )
用数学归纳法证明:
bn
2n 1
1 2n
2.1 数学归纳法及其应用举例
练习:
课后练习:1,2,3 课堂小结 ①归纳法; ②数学归纳法; ③数学归纳法证题程序化步骤 ; 作业: P67 习题2.1 1,2
新授课
递推基础
数学归纳法证明一个与正整数有关命题的步骤是: (1)证明当 n 取第一个值 n(0 如 n0 1或2等)时结论正确;
(2)假设时 n k(k N且k n0 ) 结论正确,证明
n k 1 时结论也正确.
递推依据
(3)由(1)(2)得最后下结论
练习:
用数学归纳法证明“不等式
1
(3)用数学归纳法证明: 2+4+6+……+2n=n2+n
例题讲解:
题1:用数学归纳法证明:
13 23 33 .... n3 1 n2 (n 1)2 4
例题讲解:
题2:用数学归纳法证明: 122334.....n(n1) 1n(n1)(n2)
3
练习: 用数学归纳法证明以下等式: (1)12 22 32 .... n2 n(n 1)(2n 1)
2.1 数学归纳法及其应用举例
2.1 数学归纳法及其应用举例
先证明当n 取第一个值 n(0 如 n0 1 )时
命题成立,然后假
设当 n k(k N , k n0 )时命题成立,
再证明当 n k 1 时命题
也成立,那么就证明这个命题成立, 这种证明方法叫做数学归纳法.

高中数学中的数学归纳法详细解释与应用

高中数学中的数学归纳法详细解释与应用数学归纳法是高中数学中一个重要的证明方法,它可以用来证明关于整数的命题的真实性。

数学归纳法包括三个步骤:基础步骤、归纳假设和归纳步骤。

本文将详细解释数学归纳法的原理和应用。

一、数学归纳法的原理数学归纳法是一种直观且有效的证明方法。

它的主要思想是从一个已知命题在整数集中的某个整数成立开始,证明该命题在整数集中的所有满足一定性质的整数上成立。

1. 基础步骤:首先,我们需要证明命题在某个整数上是成立的。

通常,这个整数是最小的可能值,例如0或者1。

2. 归纳假设:接下来,我们假设命题在一个自然数k上成立,即假设命题P(k)为真。

3. 归纳步骤:通过归纳假设,我们将证明命题在下一个整数k+1上也成立,即证明P(k+1)为真。

这一步通常需要运用数学方法,如代数运算、推导或其他定理的应用等。

通过以上三个步骤,我们可以得出结论:命题P(n)对于所有大于等于基础步骤中所选择的整数n成立。

二、数学归纳法的应用数学归纳法在高中数学中有广泛的应用,下面举例说明其中几个重要的应用领域。

1. 数列与数和:数学归纳法可以用来证明数列的性质。

例如,我们可以通过数学归纳法证明等差数列的通项公式。

首先,证明当n=1时命题成立;然后假设当n=k时命题成立,即得到通项公式的正确性;最后,通过归纳步骤证明当n=k+1时命题也成立,从而得到通项公式的普遍性。

2. 数学恒等式的证明:数学归纳法可以用来证明数学恒等式的正确性。

例如,我们可以通过数学归纳法来证明n个自然数的和公式:1+2+3+...+n = n(n+1)/2。

首先,证明当n=1时恒等式成立;然后假设当n=k时恒等式成立;最后通过归纳步骤证明当n=k+1时恒等式也成立,从而证明了恒等式的普遍性。

3. 不等式的证明:数学归纳法也可以用来证明不等式的正确性。

例如,我们可以通过数学归纳法证明当n为正整数时,2^n > n。

首先,证明当n=1时不等式成立;然后假设当n=k时不等式成立;最后通过归纳步骤证明当n=k+1时不等式也成立,从而证明了不等式的普遍性。

数学归纳法的应用与证明技巧

数学归纳法的应用与证明技巧数学归纳法是我们在学习数学的过程中经常会接触到的一种证明方法。

它的应用范围很广,可以用来证明各种数学定理、性质和命题。

在本文中,我将介绍数学归纳法的基本原理以及一些常用的证明技巧。

一、数学归纳法的基本原理数学归纳法是一种用来证明命题在自然数集上成立的方法,它包含两个基本步骤:基础步和归纳步。

1. 基础步:首先,我们需要证明命题在最小的自然数上成立,通常是证明命题在n=1时成立。

2. 归纳步:接下来,我们假设命题在自然数k上成立(k为任意自然数),然后通过这个假设证明命题在自然数k+1上也成立。

通过这两个步骤,我们就可以得出结论,命题在自然数集上成立。

二、数学归纳法的应用举例在数学中,有很多可以使用数学归纳法进行证明的命题。

下面,我将通过几个具体的例子来说明数学归纳法的应用。

1. 证明1+2+...+n = n(n+1)/2首先,我们需要证明基础步。

当n=1时,左边的和式为1,右边的表达式为1(1+1)/2,两边相等,命题成立。

接下来,我们假设命题在自然数k上成立,即1+2+...+k = k(k+1)/2。

然后,我们可以通过这个假设来证明命题在自然数k+1上也成立。

当n=k+1时,左边的和式为1+2+...+k+(k+1),根据假设,我们知道1+2+...+k = k(k+1)/2,将其代入等式中得到:1+2+...+k+(k+1) = k(k+1)/2 + (k+1) = (k+1)(k+2)/2右边的表达式为(k+1)(k+2)/2,所以命题在自然数k+1上也成立。

通过基础步和归纳步,我们可以得出结论,命题1+2+...+n =n(n+1)/2在自然数集上成立。

2. 证明2的n次方大于n,当n≥4时成立首先,我们证明基础步。

当n=4时,2的4次方等于16,大于4,命题成立。

接下来,我们假设命题在自然数k上成立,即2的k次方大于k。

然后,我们通过这个假设来证明命题在自然数k+1上也成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:数学归纳法及其应用举例
【教学目标】
1. 使学生了解归纳法, 理解数学归纳的原理与实质.
2. 掌握数学归纳法证题的两个步骤;会用“数学归纳法”证明简单的与自然数有关的命题.
3. 培养学生观察, 分析, 论证的能力, 进一步发展学生的抽象思维能力和创新能力,让学
生经历知识的构建过程, 体会类比的数学思想.
4. 努力创设课堂愉悦情境,使学生处于积极思考、大胆质疑氛围,提高学生学习的兴趣和
课堂效率.
5. 通过对例题的探究,体会研究数学问题的一种方法(先猜想后证明), 激发学生的学习热
情,使学生初步形成做数学的意识和科学精神.
【教学重点】归纳法意义的认识和数学归纳法产生过程的分析
【教学难点】数学归纳法中递推思想的理解

【教学方法】类比启发探究式教学方法
【教学手段】多媒体辅助课堂教学
【教学程序】
第一阶段:输入阶段——创造学习情境,提供学习内容
1. 创设问题情境,启动学生思维
(1) 不完全归纳法引例:
明朝刘元卿编的《应谐录》中有一个笑话:财主的儿子学写字.这则笑话中财主的儿子
得出“四就是四横、五就是五横……”的结论,用的就是“归纳法”,不过,这个归纳推出
的结论显然是错误的.

(2) 完全归纳法对比引例:
有一位师傅想考考他的两个徒弟,看谁更聪明一些.他给每人一筐花生去剥皮,看看每
一粒花生仁是不是都有粉衣包着,看谁先给出答案.大徒弟费了很大劲将花生全部剥完了;
二徒弟只拣了几个饱满的,几个干瘪的,几个熟好的,几个没熟的,几个三仁的,几个一仁、
两仁的,总共不过一把花生.显然,二徒弟先给出答案,他比大徒弟聪明.

在生活和生产实际中,归纳法也有广泛应用.例如气象工作者、水文工作者依据积累的
历史资料作气象预测,水文预报,用的就是归纳法.这些归纳法却不能用完全归纳法.

2. 回顾数学旧知,追溯归纳意识
(从生活走向数学,与学生一起回顾以前学过的数学知识,进一步体会归纳意识,同时
让学生感受到我们以前的学习中其实早已接触过归纳.)

(1) 不完全归纳法实例: 给出等差数列前四项, 写出该数列的通项公式.
(2) 完全归纳法实例: 证明圆周角定理分圆心在圆周角内部、外部及一边上三种情况.

3. 借助数学史料, 促使学生思辨
(在生活引例与学过的数学知识的基础上,再引导学生看数学史料,能够让学生多方位
多角度体会归纳法,感受使用归纳法的普遍性.同时引导学生进行思辨:在数学中运用不完
全归纳法常常会得到错误的结论,不管是我们还是数学大家都可能如此.那么,有没有更好
的归纳法呢?)

问题1 已知na=22)55(nn(n∈N),

(1)分别求1a;2a;3a;4a.
(2)由此你能得到一个什么结论?这个结论正确吗?
(培养学生大胆猜想的意识和数学概括能力.概括能力是思维能力的核心.鲁宾斯坦指
出:思维都是在概括中完成的.心理学认为“迁移就是概括”,这里知识、技能、思维方法、
数学原理的迁移,我找的突破口就是学生的概括过程.)

问题2 费马(Fermat)是17世纪法国著名的数学家,他曾认为,当n∈N时,
122
n
一定都是质数,这是他对n=0,1,2,3,4作了验证后得到的.后来,18世纪伟大的瑞士
科学家欧拉(Euler)却证明了1252=4 294 967 297=6 700 417×641,从而否定了费
马的推测.没想到当n=5这一结论便不成立.
问题3 41)(2nnnf, 当n∈N时,)(nf是否都为质数?
验证: f(0)=41,f(1)=43,f(2)=47,f(3)=53,f(4)=61,f(5)=
71,f(6)=83,f(7)=97,f(8)=113,f(9)=131,f(10)=151,…,f(39)

=1 601.但是f(40)=1 681=241,是合数.

第二阶段:新旧知识相互作用阶段——新旧知识作用,搭建新知结构
4. 搜索生活实例,激发学习兴趣
(在第一阶段的基础上,由生活实例出发,与学生一起解析归纳原理, 揭示递推过程.孔
子说:“知之者不如好之者,好之者不如乐之者.”兴趣这种个性心理倾向一般总是伴随着良
好的情感体验.)

实例:播放多米诺骨牌录像
关键:(1) 第一张牌被推倒; (2) 假如某一张牌倒下, 则它的后一张牌必定倒下. 于
是, 我们可以下结论: 多米诺骨牌会全部倒下.
搜索:再举几则生活事例:推倒自行车, 早操排队对齐等.

5. 类比数学问题, 激起思维浪花

类比多米诺骨牌过程, 证明等差数列通项公式dnaan)1(1:
(1) 当n=1时等式成立; (2) 假设当n=k时等式成立, 即dkaak)1(1, 则
daakk
1
=dka]1)1[(1, 即n=k+1时等式也成立. 于是, 我们可以下结论:

等差数列的通项公式dnaan)1(1对任何n∈*N都成立.
(布鲁纳的发现学习理论认为,“有指导的发现学习”强调知识发生发展过程.这里通
过类比多米诺骨牌过程,让学生发现数学归纳法的雏形,是一种再创造的发现性学习.)

6. 引导学生概括, 形成科学方法
证明一个与正整数有关的命题关键步骤如下:
(1) 证明当n取第一个值0n时结论正确;
(2) 假设当n=k (k∈*N,k≥0n) 时结论正确, 证明当n=k+1时结论也正确.
完成这两个步骤后, 就可以断定命题对从0n开始的所有正整数n都正确.
这种证明方法叫做数学归纳法.
第三阶段:操作阶段——巩固认知结构,充实认知过程
7. 蕴含猜想证明, 培养研究意识
(本例要求学生先猜想后证明,既能巩固归纳法和数学归纳法,也能教给学生做数学的
方法,培养学生独立研究数学问题的意识和能力.)

例题 在数列{na}中, 1a=1, nnnaaa11(n∈*N), 先计算2a,3a,4a的值,再
推测通项na的公式, 最后证明你的结论.
8. 基础反馈练习, 巩固方法应用
(课本例题与等差数列通项公式的证明差不多,套用数学归纳法的证明步骤不难解答,
因此我把它作为练习,这样既考虑到学生的能力水平,也不冲淡本节课的重点.练习第3
题恰好是等比数列通项公式的证明,与前者是一个对比与补充.通过这两个练习能看到学生
对数学归纳法证题步骤的掌握情况.)

(1)用数学归纳法证明:1+3+5+…+(2n-1)=2n.
(2)首项是1a,公比是q的等比数列的通项公式是11nnqaa.
9. 师生共同小结, 完成概括提升
(1) 本节课的中心内容是归纳法和数学归纳法;
(2) 归纳法是一种由特殊到一般的推理方法,它可以分为完全归纳法和不完全归纳法两
种,完全归纳法只局限于有限个元素,而不完全归纳法得出的结论不一定具有可靠性,数学
归纳法属于完全归纳法;
(3) 数学归纳法作为一种证明方法,其基本思想是递推(递归)思想,使用要点可概括为:
两个步骤一结论,递推基础不可少,归纳假设要用到,结论写明莫忘掉;
(4) 本节课所涉及到的数学思想方法有:递推思想、类比思想、分类思想、归纳思想、
辩证唯物主义思想.

10. 布置课后作业, 巩固延伸铺垫
在数学归纳法证明的第二步中,证明n=k+1时命题成立, 必须要用到n=k时命题
成立这个假设.这里留一个辨析题给学生课后讨论思考:
用数学归纳法证明: 1222221132nn(n∈*N)时, 其中第二步采
用下面的证法:
设n=k时等式成立, 即
1222221132
kk

, 则当n=k+1时,

12212122222111132
kkkk

你认为上面的证明正确吗?为什么?
教后反思:
1.数学归纳法是一种用于证明与自然数n有关的命题的正确性的证明方法.它的操作
步骤简单、明确,教学重点不应该是方法的应用.我认为不能把教学过程当作方法的灌输,
技能的操练.为此,我设想强化数学归纳法产生过程的教学,把数学归纳法的产生寓于对归
纳法的分析、认识当中,把数学归纳法的产生与不完全归纳法的完善结合起来.这样不仅使
学生可以看到数学归纳法产生的背景,从一开始就注意它的功能,为使用它打下良好的基础,
而且可以强化归纳思想的教学,这不仅是对中学数学中以演绎思想为主的教学的重要补充,
也是引导学生发展创新能力的良机.

2.在教学方法上,这里运用了在教师指导下的师生共同讨论、探索的方法.目的是加
强学生对教学过程的参与.为了使这种参与有一定的智能度,教师应做好发动、组织、引导
和点拨.学生的思维参与往往是从问题开始的,本节课按照思维次序编排了一系列问题,让
学生投入到思维活动中来,把本节课的研究内容置于问题之中,在逐渐展开中,引导学生用
已学的知识、方法予以解决,并获得知识体系的更新与拓展.

3.运用数学归纳法证明与正整数有关的数学命题,两个步骤缺一不可.理解数学归纳
法中的递推思想,尤其要注意其中第二步,证明n=k+1命题成立时必须要用到n=k时命
题成立这个条件.这些内容都将放在下一课时完成,这种理解不仅使我们能够正确认识数学
归纳法的原理与本质,也为证明过程中第二步的设计指明了思维方向.

相关文档
最新文档