2012年秋季九年级期末跟踪测试数学试题 (3)

合集下载

2012年九年级调研测试数学试卷

2012年九年级调研测试数学试卷

2012年初中毕业生学业水平调研测试数学科说明:1.本试卷共4页,考试时间为100分钟,满分120分;2.各题均在答题卷指定位置上作答,否则无效;考试结束时,只交回答题卷. 一、选择题(本大题共5小题,每小题3分,共15分,每小题给出的4个选项中 只有一个是正确的,请将所选选项的字母填写在答题卷相应的位置上) 1、2-的相反数是( A )A 、2B 、2-C 、21D 、21-2、《国家教育中长期发展纲要》规划2015年我国九年义务教育阶段在校人数达 到161,000,000人,用科学记数法表示为( C )A 、61061.1⨯B 、71061.1⨯C 、81061.1⨯D 、91061.1⨯ 3、下列计算中,正确的是( C )A 、532=+B 、2222=+C 、2)2(2=-D 、3223=-4、如图,MN 为⊙O 的弦,︒=∠50M ,则MON ∠等于( D ) A 、︒50 B 、︒55 C 、︒65 D 、︒805、外切两圆的圆心距为7,其中一圆的半径为4,则另一圆的半径是( D ) A 、11 B 、7 C 、4 D 、3二、填空题(本大题共5小题,每小题4分,共20分,请把下列各题的正确答案 填写在答题卷相应的位置上)6、已知正比例函数kx y =的图象经过点(1,2-),则=k -27、函数11-=x y 中,自变量x 的取值范围是 x ≠1 8、一个袋中有6个红球,4个黑球,2个白球,每个球除颜色外完全相同,从袋 中任意模出一个球,那么模出 红 球的可能性最大.9、圆弧长为π6,它所对的圆心角为︒120,则该圆的半径为 910、已知DEF ∆∽ABC ∆,相似比为21,若ABC ∆的周长为8cm ,则DEF ∆的周 长是 4 cm .三、解答题(本大题共5小题,每小题6分,共30分) 11、计算:00)3(45tan 60sin 923++︒--+-π 解:原式31123323=+--+=(评分方法:式中每个和化简正确给1分,答案正确给满分)12、先化简,后求值:)2(24422x x x x x +÷+++,其中2=x . 解:原式xx x x x 1)2(12)2(2=+⋅++=……………… 4分 当2=x 时,原式2221==……………… 6分 13、已知一次函数b kx y +=的图象经过点A (1,1-),B (2,1).(1)求这个一次函数的解析式;(2)判断点C (1-,1)是否在这个一次函数的图象上.解:依题意得, ⎩⎨⎧=+-=+121b k b k , ……………… 2分解得,2=k ,3-=b ∴32-=x y ; ……………… 4分 (2)当1-=x 时,53)1(2-=--⨯=y ,∴点C (1-,1)不在一次函数的图象上. ……………… 6分15、求抛物线342+-=x x y 的顶点坐标和它与x 轴的交点坐标.解:∵1)2(2--=x y , ……………… 3分 ∴抛物线的顶点坐标是(2,1-); ……………… 4分 当0=y 时,0342=+-x x ,解得,11=x ,32=x ……………… 5分∴抛物线与x 轴的交点坐标是(1,0),(3,0) ……………… 6分14、已知,ABC∆在方格纸中的位置如图所示,每个小方格的边长为1.(1)请写出点A、C的坐标;(2)以原点为位似中心,相似比为2,在第一象限内将ABC∆放大,请画出放大后的图形///CBA∆.解:(1)A(2,3),C(6,2);每个坐标占1分,(2)如图,画图正确给满分四、解答题(本大题共4小题,每小题7分,共28分)16、一只口袋中放有若干只红球和白球,这两种球除颜色外完全相同,袋中的球已经搅匀,蒙上眼睛从口袋中取出一只球,取出红球的概率是14.(1)取出白球的概率是多少?(2)如果袋中的白球有18只,那么袋中的红球有多少只?解:(1)因袋子中只有红球和白球,故取白球的概率为43411=-,………………3分(2)若红球为x只,则4118=+xx,6=x………………7分yABCO17、如图,已知AB 是圆O 的直径,DC 是圆O 的切线,点C 是切点,DC AD ⊥垂足为D ,且与圆O 相交于点E . (1)求证:BAC DAC ∠=∠,(2)若圆O 的直径为5cm ,3=EC cm ,求AC 的长. 解:(1)连接OC ,∵DC 是圆O 的切线,∴DC OC ⊥, ………………1分 又DC AD ⊥, ∴OC ∥AD ,∴ACO DAC ∠=∠, ………………2分 ∵OC OA =,∴ACO BAC ∠=∠∴BAC DAC ∠=∠; ………………4分 (2)由(1)得 BAC DAC ∠=∠;EC BC =∴3==EC BC , ………………6分 ∴cm BC AB AC 422=-= ………………7分18、有一条长40cm 的绳子,问:(1)怎样围成一个面积为752cm 的长方形?(2)能围成一个面积为1012cm 的长方形吗?如果能,请说明围法,如果不能,请说明理由.(3)怎样围成一个面积最大的长方形?解:(1)设长方形的长为x ,则宽为x -20, ………………1分 则75)20(=-x x ,即075202=+-x x , ………………3分151=x ,52=x ,长方形的长为15cm ,宽为5cm . ………………4分 (2)若101)20(=-x x ,即0101202=+-x x , ∵010114202<⨯⨯-=∆,∴方程无实数根,不能围成面积为1012cm 的长方形. ………………5分 或:长方形的面积100100)10(20)20(22≤+--=--=-=x x x x x S (3)设长方形的面积为S ,∵100)10(20)20(22+--=--=-=x x x x x S , ………………6分 ∴当10=x 时,S 有最大值,此时它的宽为10, ∴当围成边长为10cm 的正方形时面积最大. ………………7分19、在东西方向的海岸线l 上有一长为1km 的码头MN ,在码头西端M 的正西9.5km 处有一观察站A ,某一时刻测得一艘匀速直线航行的轮船位于A 的北偏西︒30,且与A 相距20km 的B 处;航行一段时间后,又测得该轮船位于A 的北偏东︒60,且与A 相距34km 的C 处. (1)求点B 和点C 到l 的距离;(2)如果该轮船不改变航向继续航行,那么轮船能否 正好行至码头MN 靠岸?请说明理由.解:(1)过点B 作l BD ⊥于D ,过点C 作l CE ⊥于E ,则在ABD Rt ∆中,31060sin =︒⋅=AB BD , ………………1分 在ACE Rt ∆中,3230sin =︒⋅=AC CE ………………2分 (2)延长BC 交l 于F ,1060cos =︒⋅=AB AD , 630cos =︒⋅=AC AE ………………3分 ∴16=DE ,由BDF ∆∽CEF ∆得,EFDFCE BD =, ………………5分 EFEF+=1632310, 4=EF , ∴10=AF , ………………6分 ∵5.105.9<<AF ,∴若不改变航向继续航行,则轮船正好行至码头MN 靠岸.…………7分 (2)法二、可求得B (10-,310),C (6,32) …………4分直线BC 的解析式是3523+-=x y , …………5分 BC 与x 轴的交点坐标是(10,0),即10=AF …………6分 ∵5.105.9<<AF ,∴若不改变航向继续航行,则轮船正好行至码头MN 靠岸.…………7分ll五、解答题(本大题共3小题,每小题9分,共27分) 20、观察下列算式:①1432312-=-=-⨯ ②1983422-=-=-⨯ ③116154532-=-=-⨯ …… ……(1)请按以上规律写出第4个算式;(2)把这个算式用含n 字母的式子表示出来;(3)你在(2)中所写的算式一定成立吗?请说明理由. 解:(1)125245642-=-=-⨯; …………3分 (2)1)1()2(2-=+-+n n n (n 为整数); …………6分 (3))12(2)1()2(222++-+=+-+n n n n n n n12222---+=n n n n 1-= …………9分21、已知,如图①所示,在ABC ∆和ADE ∆中,AC AB =,AE AD =,DAE BAC ∠=∠,且点B 、A 、D 在一条直线上,连接BE 、CD . (1)求证:CD BE =;(2)若M 、N 分别是BE 和CD 的中点,将ADE ∆绕点A 按顺时针旋转,如图②所示,试证明在旋转过程中,AMN ∆是等腰三角形; (3)试证明AMN ∆与ABC ∆和ADE ∆都相似.解:(1)∵DAE BAC ∠=∠,∴CAD BAE ∠=∠, ∵AC AB =,AE AD =, ∴ACD ABE ∆≅∆, ∴CD BE =; …………3分 (2)由(1)得,ACD ABE ∆≅∆ ∴ACD ABE ∠=∠,CD BE =∵M 、N 分别是BE 和CD 的中点,CD BE = ∴CN BM =,又AC AB =,∴ACN ABM ∆≅∆, …………6分 ∴AN AM =,即AMN ∆是等腰三角形; (3)由(2)可知,ACN ABM ∆≅∆∴BAM CAN ∠=∠,∴BAM MAB CAN ∠=∠+∠+∠MAB ∴MAN BAC ∠=∠,又DAE BAC ∠=∠, ∴DAE BAC MAN ∠=∠=∠, …………8分∴AMN ∆,ABC ∆,ADE ∆都是顶角相等的等腰三角形, ∴AMN ∆∽ABC ∆∽ADE ∆ …………9分CEDABBCEDM N图①图②22、如图,已知抛物线c bx ax y ++=2(0≠a )经过点A (1,0),B (6,0)和C (0,4 )三个点.(1)求抛物线的解析式;(2)设点E (m ,n )是抛物线上一个动点,且位于第四象限,四边形OEBF 是以OB 为对角线的平行四边形,求四边形OEBF 的面积S 与m 之间的函数关系式,并写出自变量m 的取值范围;(3)当四边形OEBF 的面积为24时,请判断四边形OEBF 是否为菱形?解:(1)依题意得,⎪⎩⎪⎨⎧==++=++406360c c b a c b a ,解得,32=a ,314-=b ,4=c , ∴4314322+-=x x y ……………… 4分求解析式有多种方法,可参照评分(2)24284431432621222-+-=⎪⎭⎫⎝⎛+-⨯⨯⨯-=m m m m S , ……… 5分自变量m 的取值范围是61<<m . ……………… 6分 (3)当24=S 时,24242842=-+-m m ,31=m ,42=m , ……………… 7分)4,3(4433143322-∴-=+⨯-⨯=∴E n 5)4()36(,5)4(32222=-+-==-+=∴BE OE ,OE=BE )4,4(,44431443242-∴-=+⨯-⨯==E n m 时,当 52)4()46(,24)4(42222=-+-==-+=∴BE OE ,O E ≠BE 故只有当3=m 时,有5==EB EO ,四边形OEBF 是菱形; ……………… 9分。

2012海淀区初三二模数学试题及答案

2012海淀区初三二模数学试题及答案

海淀区九年级第二学期期末练习数学试卷答案及评分参考 2012. 6说明: 与参考答案不同, 但解答正确相应给分. 一、选择题(本题共32分,每小题4分)1. B2. C3. A4. C5. B6. D7. D8. C 二、填空题(本题共16分,每小题4分)9.23x ≥10. 5 11. 12 12.8; 21n n +- (每空各 2分) 三、解答题(本题共30分,每小题5分)13.解:11125()3tan604-+--+︒=235433+-+ …………………………………………………4分=531+. …………………………………………………5分14.解:去分母,得 ()()()()63223x x x x x ++-=-+. ………………………………2分2261826x x x x x ++-=+-. ……………………………………………………3分 整理,得 324x =-.解得 8x =-. ………………………………………………………………4分 经检验,8x =-是原方程的解.所以原方程的解是8x =-. ……………………………………………………5分15.证明:∵ AC //EG ,∴ C CPG ∠=∠. …………1分∵ BC //EF ,∴ CPG FEG ∠=∠. ∴ C FEG ∠=∠. …………………………………………2分在△ABC 和△GFE 中, ,,,AC GE C FEG BC FE =⎧⎪∠=∠⎨=⎪⎩∴ △ABC ≌△GFE . …………………………………………………4分 ∴A G ∠=∠. …………………………………………………5分16. 解:原式=()()()21111111a a a a a +-⋅-+-- ……………………………………………2分 =()21111a a a +--- …………………………………………………3分=22.(1)a -- …………………………………………………4分由2220a a --=,得 2(1)3a -=.∴ 原式=23-. …………………………………………………5分 17.解:(1)依题意设一次函数解析式为2y kx =+. …………………………………1分 ∵ 点A(2,0-)在一次函数图象上,∴022k =-+.G F ED C BA P∴ k=1. ……………………………………………………2分 ∴ 一次函数的解析式为2y x =+. …………………………………3分 (2)ABC ∠的度数为15︒或105︒. (每解各1分) ……………………5分18.解: ∵∠ADB=∠CBD =90︒,∴ DE ∥CB.∵ BE ∥CD , ∴ 四边形BEDC 是平行四边形. ………1分∴ BC=DE. 在Rt △ABD 中,由勾股定理得 2222(45)48AD AB BD =-=-=. ………2分设DE x =,则8EA x =-. ∴8EB EA x ==-.在Rt △BDE 中,由勾股定理得 222DE BD EB +=.∴ 22248x x +=-(). ……………………………………………………3分 ∴ 3x =.∴ 3BC DE ==. ……………………………………………………4分∴1116622.22ABD BDC ABCD S S S BD AD BD BC ∆∆=+=⋅+⋅=+=四边形 ………… 5分四、解答题(本题共20分,第19题、第20题各5分,第21题6分, 第22题4分) 19.解:(1)甲图文社收费s (元)与印制数t (张)的函数关系式为0.11s t =. ……1分 (2)设在甲、乙两家图文社各印制了x 张、y 张宣传单, 依题意得{1500,0.110.13179.x y x y +=+= ………………………………………… 2分解得800,700.x y =⎧⎨=⎩ ……………………………………………… 3分 答:在甲、乙两家图文社各印制了800张、700张宣传单. ………………4分 (3) 乙 . ……………………………………………………… 5分 20.(1)证明:连结OC. ∴ ∠DOC =2∠A. …………1分 ∵∠D = 90°2A -∠,∴∠D+∠DOC =90°. ∴ ∠OCD=90°.∵ OC 是⊙O 的半径, ∴ 直线CD 是⊙O 的切线. ………………………………………………2分 (2)解: 过点O 作OE ⊥BC 于E, 则∠OEC=90︒. ∵ BC=4,∴ CE=12BC=2.∵ BC//AO, ∴ ∠OCE=∠DOC.∵∠COE+∠OCE=90︒, ∠D+∠DOC=90︒,∴ ∠COE=∠D. ……………………………………………………3分∵tan D =12,∴tan COE ∠=12.D E C B A O DC BA E A BC DO∵∠OEC =90︒, CE=2,∴4tan CEOE COE ==∠.在Rt △OEC 中, 由勾股定理可得 222 5.OC OE CE =+=在Rt △ODC 中, 由1tan 2OC D CD ==,得45CD =, ……………………4分由勾股定理可得 10.OD =∴2510.AD OA OD OC OD =+=+=+ …………………………………5分 21.解:(1)(64)50%20+÷=. 所以李老师一共调查了20名学生. …………………1分 (2)C 类女生有 3 名,D 类男生有 1 名;补充条形统计图略.说明:其中每空1分,条形统计图1分. ……………………………………4分 (3)解法一:由题意画树形图如下:………………………5分从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选两位同学恰好是一位男同学和一位女同学的结果共有3种.所以P(所选两位同学恰好是一位男同学和一位女同学)=3162=. ………………6分解法二:由题意列表如下:A 类D 类 男 女 女男 (男,男) (女,男) (女,男) 女 (男,女) (女,女) (女,女)………………………5分由上表得出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选 两位同学恰好是一位男同学和一位女同学的结果共有3种.所以P(所选两位同学恰好是一位男同学和一位女同学)=3162=. ………………6分 22.解:(1)画图如下:(答案不唯一) …………………………………2分图3(2)图3中△FGH 的面积为7a. …………………………………4分 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23. 解:(1)∵ 抛物线2(1)(2)1y m x m x =-+--与x 轴交于A 、B 两点, ∴210,(2)4(1)0.m m m由①得1m,由②得0m ,∴ m 的取值范围是0m且1m . ……………………………………………2分①②H F GABC E 1E 2E 3P 1P 2M 1M 2N 1N 2…………………………………………1分从D 类中选取从A 类中选取女女男男女女男女男(2)∵ 点A 、B 是抛物线2(1)(2)1y m x m x =-+--与x 轴的交点, ∴ 令0y =,即 2(1)(2)10m x m x -+--=.解得 11x =-,211x m =-. ∵1m >,∴ 10 1.1m >>-- ∵ 点A 在点B 左侧,∴ 点A 的坐标为(1,0)-,点B 的坐标为1(,0)1m -. …………………………3分 ∴ OA=1,OB=11m -. ∵ OA : OB=1 : 3,∴ 131m =-.∴43m. ∴ 抛物线的解析式为212133y x x =--. ………………………………………4分 (3)∵ 点C 是抛物线212133y x x =--与y 轴的交点,∴ 点C 的坐标为(0,1).依题意翻折后的图象如图所示.令7y =,即 2121733x x --=. 解得16x =, 24x =-.∴ 新图象经过点D (6,7).当直线13y x b =+经过D 点时,可得5b =. 当直线13y x b =+经过C 点时,可得1b =-.当直线1(1)3y x b b =+<-与函数2121(0)33y x x x =-->的图象仅有一个公共点P(x0, y0)时,得 20001121333x b x x +=--.整理得 2003330.x x b ---=由2(3)4(33)12210b b ,得74b =-.结合图象可知,符合题意的b 的取值范围为15b -<≤或74b. ……………7分 说明:15b -<≤ (2分),每边不等式正确各1分;74b(1分)lDC B A-4-3-2-18-8-71234567-6-5-4-3-2-17654321y xO24.解:(1)∵22222 22121211 2()()4422y x x x mx m m x m m m m m m=-=-+-⋅=--,∴抛物线的顶点B的坐标为11(,)22m m-. ……………………………1分(2)令2220x xm-=,解得1x=,2x m=.∵抛物线xxmy222-=与x轴负半轴交于点A,∴A (m, 0), 且m<0. …………………………………………………2分过点D作DF⊥x轴于F.由D为BO中点,DF//BC, 可得CF=FO=1. 2 CO∴ DF =1. 2BC由抛物线的对称性得AC = OC. ∴ AF : AO=3 : 4.∵ DF //EO,∴△AFD∽△AOE.∴.FD AFOE AO=由E (0, 2),B11(,)22m m-,得OE=2, DF=14m-.∴13 4. 24m-=∴ m = -6.∴抛物线的解析式为2123y x x=--. ………………………………………3分(3)依题意,得A(-6,0)、B (-3, 3)、C (-3, 0).可得直线OB的解析式为x y-=,直线BC为3x=-. 作点C关于直线BO的对称点C '(0,3),连接AC '交BO 于M,则M即为所求.由A(-6,0),C' (0, 3),可得直线AC'的解析式为321+=xy.由13,2y xy x⎧=+⎪⎨⎪=-⎩解得2,2.xy=-⎧⎨=⎩∴点M的坐标为(-2, 2). ……………4分由点P在抛物线2123y x x=--上,设P (t,2123t t--).(ⅰ)当AM为所求平行四边形的一边时. 如右图,过M作MG⊥ x轴于G,过P1作P1H⊥ BC于H,则xG= xM =-2, xH= xB =-3.由四边形AM P1Q1为平行四边形,可证△AMG≌△P1Q1H .yxOC'MCBAFEDyxOCBAP1Q1GHyxOC'MCBA可得P1H= AG=4. ∴ t -(-3)=4. ∴ t=1.∴17(1,)3P -. ……………………5分如右图,同 方法可得 P2H=AG=4. ∴ -3- t =4. ∴ t=-7.∴27(7,)3P --. ……………………6分 (ⅱ)当AM 为所求平行四边形的对角线时, 如右图,过M 作MH ⊥BC 于H, 过P3作P3G ⊥ x 轴于G,则xH= xB =-3,xG=3P x =t.由四边形AP3MQ3为平行四边形, 可证△A P3G ≌△MQ3H .可得AG= MH =1. ∴ t -(-6)=1. ∴ t=-5.∴35(5,)3P -. ……………………………………………………7分 综上,点P 的坐标为17(1,)3P -、27(7,)3P --、35(5,)3P -. 25. 解:(1)BN 与NE 的位置关系是BN ⊥NE ;CEBM =22. 证明:如图,过点E 作EG ⊥AF 于G, 则∠EGN=90°. ∵ 矩形ABCD 中, AB=BC , ∴ 矩形ABCD 为正方形.∴ AB =AD =CD, ∠A=∠ADC =∠DCB =90°.∴ EG//CD, ∠EGN =∠A, ∠CDF =90°. ………………………………1分 ∵ E 为CF 的中点,EG//CD,∴ GF=DG =11.22DF CD =∴ 1.2GE CD = ∵ N 为MD(AD)的中点, ∴ AN=ND=11.22AD CD =∴ GE=AN, NG=ND+DG=ND+AN=AD=AB. ……………………………2分∴ △NGE ≌△BAN . ∴ ∠1=∠2.∵ ∠2+∠3=90°, ∴ ∠1+∠3=90°. ∴ ∠BNE =90°.∴ BN ⊥NE . ……………………………………………………………3分 ∵ ∠CDF =90°, CD=DF,321GFEA (M )CD NB HAB CMC'O xyG Q 2P 2Q3P 3G HC yxO C'MB A可得∠F =∠FCD =45°,2. CFCD.于是122.2CFCE CE CEBM BA CD CD……………………………………4分(2)在(1)中得到的两个结论均成立.证明:如图,延长BN交CD的延长线于点G,连结BE、GE,过E作EH⊥CE,交CD于点H.∵四边形ABCD是矩形,∴AB∥CG.∴∠MBN=∠DGN,∠BMN=∠GDN.∵N为MD的中点,∴MN=DN.∴△BMN≌△GDN.∴MB=DG,BN=GN.∵BN=NE,∴BN=NE=GN.∴∠BEG=90°.……………………………………………5分∵EH⊥CE,∴∠CEH =90°.∴∠BEG=∠CEH.∴∠BEC=∠GEH.由(1)得∠DCF =45°.∴∠CHE=∠HCE =45°.∴EC=EH, ∠EHG =135°.∵∠ECB =∠DCB +∠HCE =135°,∴∠ECB =∠EHG.∴△ECB≌△EHG.∴EB=EG,CB=HG.∵BN=NG,∴BN⊥NE. ……………………………………………6分∵BM =DG= HG-HD= BC-HD =CD-HD =CH=2CE,∴CEBM=22. ……………………………………………7分(3)BN⊥NE;CEBM不一定等于22.………………………………………………8分HGAB CDEMNF。

2012届九年级上期末学情调研数学试题(含答案)

2012届九年级上期末学情调研数学试题(含答案)

第6题九年级期末学情调研数学试题说明:1.本试卷包含选择题(第1题~第8题)、填空题(第9题~第18题)、解答题(第19题~第28题)三部分.本卷满分150分,考试时间为120分钟.考试结束后,请将答题纸交回.2.答题前,请将自己的姓名、考试证号、所在学校等填写在答题纸相应的位置上.3.所有的试题都必须在专用的“答题纸”上作答,选择题用2B 铅笔作答、非选择题在指定位置用0.5毫米黑色水笔作答.在草稿纸上答题无效 4.第19至28题, 应在答题纸的相应位置上写出计算或证明的主要步骤.5.作图必须用铅笔作答,并请用黑色水笔加黑加粗,描写清楚.一、选择题:(本大题共8题,每小题3分,共24分)1▲ )ABCD2.抛物线y=(x+1)2的顶点坐标是( ▲ )A .(-1,0)B .(1,0)C .(0,1)D .(0,-1) 3.下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧。

其中正确的有( ▲ )A .4个B .3个C .2个D .1个4.已知四边形ABCD 是平行四边形,下列结论中不正确...的是( ▲ ) A .当AB=BC 时,它是菱形B .当AC ⊥BD 时,它是菱形 C .当∠ABC=90°时,它是矩形D .当AC=BD 时,它是正方形 5.三角形内切圆的圆心为( ▲ )A .三条边的高的交点B .三个角的平分线的交点C .三条边的垂直平分线的交点D .三条边的中线的交点 6.如图,4个小正方形的边长均为1,则图中阴影部分三个小扇形的面积和为( ▲ ) A .π83B .π43C .π47D .π347.已知二次函数c bx ax y ++=2的图象如图所示,则下列结论:①042<-ac b ;②0>+-c b a ;③0>abc ;④ a b 2=中,正确结论的个数是( ▲ )A .1个B .2个C .3个D .4个 8+bχ+c =0(a ≠ O ,a 、b 、c 为常数)的一个解χ的范围是( ▲ )。

2012-2013学年九年级上期末数学试卷

2012-2013学年九年级上期末数学试卷

A.
B.
C.
D.
考点: 简单组合体的三视图. 分析: 找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 解答: 解:先细心观察原立体图形的位置, 从正面看去,是一个矩形,矩形左上角缺一个角, 从左面看,是一个正方形, 从上面看,也是一个正方形, 故选 A. 点评: 本题考查了三视图的知识,主视图是从物体的正面看得到的视图. 5.(3 分)如图,在平行四边形 ABCD 中,AB=2,BC=3,∠ABC、∠BCD 的平分线分别 交 AD 于点 E、F,则 EF 的长是( )
.
A. 3
B.2
C.1.5
D. 1
考点: 平行四边形的性质;角平分线的定义;等腰三角形的判定与性质. 专题: 数形结合. 分析: 根据平行四边形的性质可知∠DFC=∠FCB,又因为 CF 平分∠BCD,所以∠DCF=∠FCB ,则∠DFC=∠DCF,则 DF=DC,同理可证 AE=AB,那么 EF 就可表示为 AE+FD﹣BC=2AB﹣BC,继而可得出答案. 解答: 解:∵平行四边形 ABCD, ∴∠DFC=∠FCB, 又 CF 平分∠BCD, ∴∠DCF=∠FCB,
A.△ACE
B.△ADF
C.△ABD
D.四边形 BCED
考点: 视点、视角和盲区. 分析: 根据盲区的定义,视线覆盖不到的地方即为该视点的盲区,由图知,E 是视点,找到 在 E 点处看不到的区域即可. 解答: 解:由图片可知,E 视点的盲区应该在△ABD 的区域内. 故选:C. 点评: 此题主要考查了视点、视角和盲区,解答此类问题,首先要确定视点,然后再根据盲 区的定义进行判断. 8.(3 分)若反比例函数图象经过点(﹣1,6),则下列点也在此函数上的是( )

2012-2013年湘教版九年级上学期数学期末试题及答案

2012-2013年湘教版九年级上学期数学期末试题及答案

湖南省双峰县2012年九年级第一学期期末考试试卷数学考试时量:120分钟满分:120分考生注意:请将解答写在答题卡上,答案写在本试卷上无效。

一、精心选一选,旗开得胜(每小题3分,共30分,每小题只有一个选项是正确的)1、若5x 2=6x -8化为一元二次方程的一般形式后,二次项系数、一次项系数和常数项分别是A 、5,6,-8B 、5,-6,-8C 、5,-6,8D 、6,5,-82、现有一个测试距离为5m 的视力表(如图),根据这个视力表,小华想制作一个测试距离为3m 的视力表,则图中的a b的值为A .32B .23C .35D .533、经过调查研究,某工厂生产一种产品的总利润L (元)与产量X (件)的关系式为L=-x 2+2000x-10000(0<x <1900),要使总利润达到99万元,则这种产品应生产A.1000件 B.1200件 C. 2000件 D.10000件4、下列命题中错误的命题是A 2)3(的平方根是3B平行四边形是中心对称图形C 单项式yx 25与25xy是同类项 D 近似数31014.3有三个有效数字5、如图,在Rt △ABC 中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是A.sinA=32 B.tanA=12C.cosB= 32D.tanB=36、一个口袋中装有4个红球,3个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是A.B.C.D.7、如图,点A 是反比例函数(x <0)的图象上的一点,过点A 作平行四边形ABCD ,ab(第3题图)使点B 、C 在x 轴上,点D 在y 轴上,则平行四边形ABCD 的面积为A.1B.3C.6D.128、已知抛物线y=x 2﹣4x+3,则下列判断错误的是A. 对称轴x=2B.最小值y=-1 C. 在对称轴左侧y 随x 的增加而减小 D. 顶点坐标(-2,-1)9、已知a 、b 、c 分别是三角形的三边,则方程(a + b)x2+ 2cx + (a + b)=0的根的情况是A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根10、如果两个相似三角形的相似比是,那么它们的面积比是AB .C .D .二、精心填一填,一锤定音(每小题4分,共32分)11、已知x = 1是关于x 的一元二次方程2x 2+ kx -1 = 0的一个根,则实数k的值是。

2012-2013海淀区九年级第一学期期末练习练习数学答案

2012-2013海淀区九年级第一学期期末练习练习数学答案

2012-2013海淀区九年级第一学期期末练习数学试卷答案及评分参考一、选择题(本题共32分,每小题4分) 题 号 1 2 3 4 5 6 7 8 答 案 B A D A B DC B二、填空题(本题共16分,每小题4分) 题 号 9 101112答 案332- > 232F (答案不唯一)、b - 三、解答题(本题共30分,每小题5分) 13. 计算:20112()(3)83π--+---.解:原式=219122-+-- …………………………………………4分=72-. …………………………………………5分14. 解方程:2280x x +-= .解法一:(4)(2)0x x +-=. …………………………………………3分40x +=或20x -=.∴ 124,2x x =-=. …………………………………………5分解法二: 1,2,8a b c ===-, …………………………………1分2241(8)360∆=-⨯⨯-=>. ……………………………………2分∴ 23621x -±=⨯. …………………………………………3分∴ 124,2x x =-=. …………………………………………5分15.解法一:∵3a b +=,∴ 22285a b a b -+++=()()285a b a b a b +-+++ ………………………2分 =3()285a b a b -+++ ………………………3分 =5()5a b ++ ………………………4分 =535⨯+=20. ………………………5分 解法二:∵3a b +=,∴3b a =-. .…………………………1分原式= 22(3)28(3)5a a a a --++-+.…………………………2分=22(96)22485a a a a a --+++-+ .…………………………3分 =582426922+-++-+-a a a a a .…………………………4分=20. ………………………5分16.例如:∴△111A B C 、△222A B C 为所求.(注:第(1)问2分;第(2)问3分,画出一个正确的即可.) 17. 解:∵12∠=∠,∴C A B E A D ∠=∠. ………………………1分∵C E ∠=∠,∴△C A B ∽△EAD . ………………………3分 ∴A BA CA D A E=. ………………………4分∵AC AD =2AB ==6,∴=3A B . ∴36=6A E.∴12A E =. ………………………5分18. 解法一:依题意,可得223y x x =-++=214x --+(). ∴顶点(1,4)D . ……………1分令0y =,可得3x =或1x =-.∴A (1,0)-、B (3,0). ……………2分令0x =,可得3y =.∴(0,3)C . ……………3分∴直线C D 的解析式为3y x =+. 设直线C D 交x 轴于E . ∴(3,0)E -.∴6B E =. …….………….…………4分 ∴3BC D BED BC E S S S =-= .∴△BCD 的面积为3. …….………….…………5分解法二:同解法一,可得A (1,0)-、B (3,0)、(0,3)C 、(1,4)D . ……………3分∴直线B C 的解析式为3y x =-+. 过点D 作D E ∥B C 交x 轴于E ,连接C E . ∴设过D 、E 两点的直线的解析式为y x b =-+.∵(1,4)D ,∴直线D E 的解析式为5y x =-+. ∴(5,0)E .∴2B E =. ….…………4分 ∵D E ∥B C , ∴132B C D B C E S S B E O C ==⨯⨯= .∴△BCD 的面积为3. . .………….………………5分 四、解答题(本题共20分,每小题5分) 19.解:(1)∵关于x 的方程04332=++m x x有两个不相等的实数根,∴∆930m =->. …………………………1分∴3m <. .…………………………2分 (2)∵m 为符合条件的最大整数, ∴2m =. .…………………………3分 ∴23302x x ++=.2223333()()222x x ++=-+.233()24x +=.2331-=x ,2332--=x .∴方程的根为2331-=x ,2332--=x . .…………………………5分20.解:(1)m 的值为3; .…………………………1分 (2) ∵二次函数的图象经过点(1,0),(3,0),∴设二次函数的解析式为(1)(3)y a x x =--. .…………………………2分 ∵图象经过点(0,3),∴1a =. .…………………………3分∴这个二次函数的解析式为243y x x =-+. .…………………………4分 (3) 当03x <<时,则y 的取值范围为 1-≤3<y . .…………………5分 21. 解:如图所示,建立平面直角坐标系.设二次函数的解析式为2y ax =(0)a ≠. .…………………1分 ∵图象经过点(2,2)-, .…………………2分∴24a -=,12a =-.∴212y x =-. .…………………3分当3y =-时,6x =±. .…………………4分答:当水面高度下降1米时,水面宽度为26米. .…………………5分 22.(1)如图,连接,OD BD . ………………1分∵在⊙O 中,O D O B =,∴∠1=∠2.∵A B 是⊙O 的直径, ∴90AD B C D B ∠=∠=︒. ∵E 为BC 中点, ∴12E D B C E B ==.∴∠3=∠4.∵BC 切⊙O 于点B ,∴90E B A∠=︒.∴132490∠+∠=∠+∠=︒,即90O D E∠=︒.∴O D⊥D E.∵点D在⊙O上,∴D E是⊙O的切线. ……………2分(2)∵O D⊥D E,∴90F D O∠=︒.设O A O D r==.∵222OF FD OD=+, DF=4,AF=2,∴222(2)4r r+=+.解得3r=. ……………………………………3分∴3,8OA OD FB===.∵,90F F FDO FBE∠=∠∠=∠=︒,∴△F D O∽△FBE. ……………………………………4分∴F D O DF B B E=.∴ 6.B E=∵E为BC中点,∴212.B C B E==……………………………………5分五、解答题(本题共22分,第23题7分,第24题8分,第25题7分)23. 解:(1)……………………2分(注:直接等分不给分,在等距平行线上有正确痕迹的给分,作出一个给1分.)(2)①②……………………4分……………………7分24.解:(1)解法一:∵抛物线2(3)3(0)y m x m x m =+-->与y 轴交于点C ,∴(0,3)C -. ……………………1分 ∵抛物线与x 轴交于A 、B 两点,OB=OC , ∴B (3,0)或B (-3,0).∵点A 在点B 的左侧,0m >,∴抛物线经过点B (3,0). ……………………2分 ∴093(3)3m m =+--. ∴1m =.∴抛物线的解析式为322--=x x y . ……………………3分 解法二:令0y =, ∴2(3)3=0m x m x +--. ∴(1)(3)0x mx +-=. ∴31,=x x m=-.0m > ,点A 在点B 的左侧,∴3(1,0),(,0)A B m-. ……………………1分令0x =,可得3y =-. ∴(0,3)C -.∴3O C =. ……………………2分 O B O C = , ∴33m =.∴1m =.∴322--=x x y . ……………………3分(2)①由抛物线322--=x x y 可知对称轴为1x =. ……………4分∵点P 1(,)x b 与点Q 2(,)x b 在这条抛物线上,且12x x <,PQ n =, ∴121,122n n x x =-=+. ……………………5分∴1222,22x n x n =-=+.∴原式=736)2()2(2=+++--n n n n . ……………………6分②42b -<<-或0b =. ……………………8分 (注:答对一部分给1分.) 25.解:(1)①1;……………………1分②2k ;……………………2分(2)解:连接AE .∵ABC DEF ∆∆,均为等腰直角三角形,2,1DE AB ==,∴2,1,90,4545.EF BC DEF ==∠=︒∠=∠=︒ ∴22,2,90.D F AC EFB ==∠=︒ ∴2, 2.D F AC AD ==∴点A 为C D 的中点. ……………………3分 ∴,.EA DF EA DEF ⊥∠平分 ∴90,45MAE AEF ∠=︒∠=︒, 2.AE =∵45,BEM ∠=︒ ∴1+2=3+2=45∠∠∠∠︒. ∴1= 3.∠∠∴A E M ∆∽F E B ∆. ∴.A M A E B FE F= ……………………4分∴22A M =.∴22222D M AD AM =-=-=.∴1A M D M=. ……………………5分(3) 过B 作B E 的垂线交直线EM 于点G ,连接A G 、B G . ∴90E B G ∠=︒. ∵45B E M ∠=︒,∴45EG B BEM ∠=∠=︒. ∴B E B G =.∵△A B C 为等腰直角三角形, ∴90.BA BC ABC =∠=︒, ∴12∠=∠.∴△ABG ≌△C B E . ……………………6分 ∴34AG EC k ==∠=∠,.∵3+65+4=45∠∠=∠∠︒, ∴65∠=∠. ∴A G ∥D E .∴△A G M ∽△D EM . ∴.2A M A G k D MD E== ……………………7分(注:本卷中许多问题解法不唯一,请老师根据评分标准酌情给分.)。

2012-2013从化九年级上数学期末试卷

2012学年第一学期期末测试试卷九 年 级 数 学1.答卷前,考生务必在密封线用钢笔或圆珠笔填写自己的学校、姓名、班级和学号。

2.选择题每小题选出答案后,要把答案填在指定的表格中。

3.所有的题目必须用钢笔或圆珠笔作答(作图题可用铅笔),答案必须写在各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不按以上要求作答的答案无效. 4.考生可以..使用计算器. 一、选择题:(本大题10个小题,每题3分,共30分,在每小题给出的四个选择项中,,请将答案填在下列表格中)1.一元二次方程21x =的解是( * )A. 1x = B . 1x =- C. 1x =±, D. 0x =, 2.下面计算正确的是( * )A. 3+= B.3= C.=D.3=±3.下列图形中,既是中心对称又是轴对称的图形是( * )A B C D4.下列事件:①明天会出太阳;②掷一枚硬币,正面向上;③地球绕着太阳转;④打开电视机,正在播足球赛.其中随机事件是( * )A. ①②B. ①③C. ①④D. ①②④5. 如图1,AB 为⊙O 的直径,点C 在⊙O 上,若∠C=25°,则∠BOC 的度数是( * ) A.25° B.50° C.65° D.75°6. 下列对抛物线22(3)1y x =-+-描述不正确的是( * ) A. 开口向下 B. y 有最大值 C.对称轴是3x =- D.顶点坐标为(3,1)- 7.一元二次方程220x x +-=的根的情况是( * )图1A.有两个不相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根 8. 如图2,两个同心圆的半径分别为3cm 和5cm ,弦AB 与小圆相切于点C ,则AB =( * ) A .4cm B .5cm C .6cm D .8cm 9. 如图3,正方形O A B C 的边长为4,则该正方形绕点O 顺时针旋转45 后,B 点的坐标为( * ). A. (4,4) B.(0,C. 0)D.(4,0)10. 如图4为二次函数y=ax 2+bx+c (a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x <3时,y >0其中正确的个数为( * ) A.1 B.2 C.3 D.4二、填空题(本题共6小题,每小题3分,共18分,请把正确答案填在试卷的空格上) 11.函数3-=x y 中自变量x 的取值范围是 .12.已知1x 、2x 是一元二次方程2560x x --=的两个根,则12x x += .13. 有长度分别为2cm ,3cm ,4cm ,7cm 的四条线段,任取其中三条能组成三角形的概率是 .14. 如图5所示的五角星绕中心点旋转一定的角度后能与自身完全重合,则其旋转的角度至少为 .15.抛物线22y x =-向上平移3个单位,再向右平移1个单位后的解析式是 . 16.如图6,R t ABC 中AC=4,BC=3,绕其中一条线段旋转一周,所得图形的最小表面积是 .三、解答题(本题有9个小题, 共102分。

2012-2013北师大版九年级数学上期期末检测试卷

2012-2013学年度上期期末调研测试九年级数学试题注意事项:1、全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟。

2、考生必须在答题卷上作答,答在试卷上、草稿纸上无效。

3、试卷中横线上及方框内注有“▲”的地方,是需要考生在答题卷上作答的内容或问题。

请按照题号在答题卷上各题目对应的答题区域内作答,超出答题区域书写的答案无效。

A卷(100分)一、选择题(每小题3分,共30分)下列各小题给出的四个选项中,只有一个符合题目要求,请将正确选项前的字母填在答题卷上对应的表格内。

1. 方程的解是(▲)A.B.,C.,D.2. 下列函数中,图象经过点的反比例函数解析式是(▲)A. B. C. D.3.等腰三角形的底角为15°,腰长为,则腰上的高是(▲)A. B. C. D.4.如图所示,该几何体的左视图是(▲)A B C D5. 方程的根的情况是(▲)A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D.方程的根的情况与的取值有关6. 如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AB的长是(▲)A.2 B.4C. D. 6题图7. 在Rt△ABC中,∠C=90°,AC=5,AB=13,则cosB等于(▲)A. B. C. D.8.将抛物线先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是(▲)A. B.C. D.9. 顺次连接菱形四边的中点,得到的四边形是(▲)A.矩形 B.平行四边形 C.正方形 D.菱形10.如图,一次函数y=ax+b与二次函数y=ax2+bx+c的大致图象是(▲)A B C D二、填空题(每小题4分,共16分)11. 关于的一元二次方程的一个根是3,则= ▲12.如图,光源P在横杆AB的上方,CD在AB的下面,AB∥CD,若PA=2cm,PC=6cm,AB=3cm,那么CD= ▲ cm.12题图14题图13. 某口袋中有红色、黄色和蓝色的玻璃球共有72个.小明通过多次摸球试验后,发现摸到红球和蓝球的频率分别是35%和40%,那么估计口袋中黄色玻璃球的数目是 ▲ 个.14. 如图,点A是反比例函数图象的一点,自点A向y轴作垂线,垂足为T,已知S△AOT=4,则此函数的表达式为 ▲三、解答题(每小题6分,共18分)15.(1)(2)16.如图,某同学在楼房的A处测得荷塘的一端B处的俯角为30°,荷塘另一端D与点C、B在同一直线上,已知AC=32米,CD=16米,求荷塘宽BD为多少米?(取≈1.73,结果保留整数)四、解答题(每题8分,共16分)17.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)已知CD=4cm,求AC的长;(2)求证:AB=AC+CD.18.假期,某市教育局组织部分教师分别到A、B、C、D四个地方进行新课程培训,教育局按定额购买了前往四地的车票.如图1是未制作完成的车票种类和数量的条形统计图,请根据统计图回答下列问题:(1)若去C地的车票占全部车票的30%,则去C地的车票数量是 ▲ 张,补全统计图.(2)若有一张去A地的车票,张老师和李老师都想要,决定采取旋转转盘的方式来确定.其中甲转盘被分成四等份且标有数字1、2、3、4,乙转盘分成三等份且标有数字7、8、9,如图2所示.具体规定是:同时转动两个转盘,当指针指向的两个数字之和是偶数时,票给李老师,否则票给张老师(指针指在线上重转).试用“列表法”或“树状图”的方法分析这个规定对双方是否公平.五、解答题(每小题10分,共20分)19.如图,已知A(-2,1)、B(n,-2)是一次函数y=kx+b的图象与反比例函数的图象的两个交点;(1)求此反比例函数和一次函数的解析式;(2)求△AOB的面积.20.已知:如图,梯形ABCD中,AB∥DC,E是BC的中点,AE、DC的延长线相交于点F,连接AC、BF.(1)求证:AB=CF;(2)若将梯形沿对角线AC折叠恰好D点与E点重合,梯形ABCD应满足什么条件,能使四边形ABFC为菱形?并加以证明;(3)在(2)的条件下求sin∠CAF的值.B卷(50分)一、填空题(每小题4分,共20分)21.设是一元二次方程的两个根,则= ▲22.如图是二次函数的部分图象,由图象可知不等式的解集是 ▲23.如图,在△ABC中,AD⊥BC于D,如果BD=9,DC=5,cosB=,E为AC的中点,那么sin∠EDC的值为 ▲22题图 23题图 24题图 25题图24. 如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3.点D是BC边上的一动点(不与点B、C重合),过点D作DE⊥BC交AB于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处.当△AEF为直角三角形时,BD的长为 ▲25.如图,分别过反比例函数图象上的点P1(1,y1),P2(2,y2),…,P n(n,P n)….作x轴的垂线,垂足分别为A1,A2…A n …,连接A1P2,A2P3,…,A n-1P n,…,再以A1P1,A1P2为一组邻边画一个平行四边形A1P1B1P2,以A2P2,A2P3为一组邻边画一个平行四边形A2P2B2P3,依此类推,则点B n的纵坐标是 ▲ .(结果用含n代数式表示)二、解答题(本题满分10分)26.已知关于的一元二次方程.(1)求证:该方程必有两个实数根;(2)设方程的两个实数根分别是,,若是关于的函数,且,其中,求这个函数的解析式;(3)设,若该一元二次方程只有整数根,且k是小于0的整数.结合函数的图象回答:当自变量x满足什么条件时,y2>y1?三、解答题(本题满分10分)27.已知:如图,O正方形ABCD的对角线BD的中点,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G,连接OG.(1)求证:△BCE≌△DCF;(2)OG与BF有什么数量关系?证明你的结论;(3)若GE•GB=,求正方形ABCD的面积.四、解答题(本题满分10分)28. 在平面直角坐标系中,已知抛物线经过点A,0)、B(0,3)、C(1,0)三点.(1) 求抛物线的解析式和顶点D的坐标;(2) 如图1,将抛物线的对称轴绕抛物线的顶点D顺时针旋转,与直线交于点N.在直线DN上是否存在点M,使得∠MON=.若存在,求出点M的坐标;若不存在,请说明理由;(3) 点P、Q分别是抛物线和直线上的点,当四边形OBPQ是直角梯形时,直接写出点Q的坐标.2012-2013学年度上期期末调研测试九年级数学试题参考答案及评分标准1—5:CBBCA 6—10:CBBAC11. 1 12. 9 13. 18 14.15.解:(1) -----2分∴ -----5分∴, ----------6分(2)原式= ----------5分= -----------6分16.解:由题意知:∠CAB=60°,△ABC是直角三角形,在Rt△ABC中,tan60°=,即------------2分∴BC= -----4分∴BD=-16≈39 ---------5分答:荷塘宽BD为39米.-------------(6分)17.解:∵AD是△ABC的角平分线,DC⊥AC,DE⊥AB,∴DE=CD=4cm --------1分∵AC=BC,∴∠B=∠BA C,∵∠C=90°,∴∠B=90°=45°∴∠BDE=90°-45°=45°,∴ BE=DE -------------2分在等腰直角三角形BDE中,BD=cm --------3分∴AC=BC=CD+BD=cm -------4分(2)证明:由(1)的求解过程易知:≌,∴AC=AE -------6分∵BE=DE=CD,∴AB=AE+BE=AC+CD -------------------8分18.解:(1)30 ---------------2分---------3分(2)根据题意列表如下:------------6分因为两个数字之和是偶数时的概率是,所以票给李老师的概率是,所以这个规定对双方公平. --------------8分19.解:(1)把A(-2,1)代入得:m=xy=-2,∴, --------------2分把B(n,-2)代入上式得:-2=-,∴n=1,∴B(1,-2), --------------3分把A(-2,1),B(1,-2)代入y=kx+b得:,解得:,∴y=-x-1 --------------5分(2)y=kx+b与图象的两个交点是A(-2,1),B(1,-2) ------------7分设一次函数y=-x-1交y轴于D,把x=0代入y=-x-1得:y=-1,∴OD=|-1|=1, --------------8分∴S△AOB=S△AOD+S△BOD=×1×|-2|+×1×1=1,即△AOB的面积是1. ---------------10分20.(1)证明:∵AB∥DC,∴∠FCE=∠ABE,∠CFE=∠BAE.------------1分又E是BC的中点,∴△ABE≌△FCE. --------------------2分∴AB=CF. ---------------------3分(2)梯形ABCD应满足∠ADC=90°,CD=BC. ---------------------5分理由如下:∵AB∥CF,AB=CF,∴四边形ABFC是平行四边形. --------------------6分要使它成为菱形,只需AF⊥BC.根据将梯形沿对角线AC折叠恰好D点与E点重合,得∠ADC=90°,CD=BC. ----------------------7分(3)解:∵四边形ABFC为菱形,∴AC=CF.∴∠CAF=∠AFC.-----------8分∴∠ACD=∠CAF+∠AFC=2∠CAF.由于是折叠,得∠CAD=∠CAF.∴∠ACD=2∠CAD. ---------------------9分又∠ADC=90°,∴∠CAF=∠CAD=30°.∴sin∠CAF=. ------------------10分21. 4 22. x<-1或x>5 23. 24. 1或2 25.26.(1)证明:∵a=k,b=3k+1,c=2k+1,∴△=b2-4ac=9k2+6k+1-4k(2k+1)=9k2+6k+1-8k2-4k=k2+2k+1=(k+1)2≥0∴方程必有两个实数根; ------------3分(2)∵方程的两个实数根分别是x1,x2,∴x1x2=2+, -------------4分而m=x1x2,y1=mx-1,∴y1=(2+)x-1 --------------6分(3)∵方程两根为:, ---------7分方程只有整数根且k是小于0的整数,∴x2=-2-要为整数,只能为整数,∴k=-1, -------------8分∴y2=-x2-2x-1,y1=x-1,∴y1与y2的交点坐标为A(-3,-4)B(0,-1), -------------9分∴在坐标系中画出两函数的图象如图所示,由图象可知:当-3<x<0时,y2>y1. ------------------10分27.(1)证明:在正方形ABCD中,BC=CD,∠BCD=90°.∵∠DCF=∠BCD=90°,CF=CE,∴△BCE≌△DCF. ------------3分(2)解:OG=BF. --------------------- 4分事实上:由△BCE≌△DCF,得到∠EBC=∠FDC.∵∠BEC=∠DEG,∴∠DGE=∠BCE=90°,即BG⊥DF.∵BE平分∠DBC,BG=BG,∴△BGF≌△BGD.∴BD=BF ,G为DF的中点.∵O为正方形ABCD的对角线BD的中点,∴OG=BF. -----------------------7分(3)解:设BC=x,则DC=x,BD=x.由(2),得BF= BD=x.∴CF=BF-BC=(-1)x.在Rt△DCF中,(第27题)ABCDOEFGDF2=DC2+CF2= x2+(-1)2x2.……①∵∠GDE=∠GBC=∠GBD,∠DGE=∠BGD=90°,∴△DGE∽△BGD.∴,即DG2=GE·GB=4-2.∵DF=2DG,∴DF2=4DG2=4(4-2).……②由①,②两式,得x2+(-1)2x2=4(4-2).解得x2=4.∴正方形ABCD的面积为4个平方单位. -----------------10分28.(1)解:由题意把A(-3,0)、B(0,3)、C(1,0)代入列方程组得,解得.-----------------1分∴抛物线的解析式是. -----------------2分∵,∴抛物线的顶点D的坐标为(-1,4).------------------ 3分(2)存在.理由:方法(一):由旋转得∠EDF=60°,在Rt△DEF中,∵∠EDF=60°,DE=4,EF=DE×tan60°=4.∴OF=OE+EF=1+4.F点的坐标为(,0). ------------4分设过点D、F的直线解析式是,把D(-1,4),F(,0)代入求得.------------5分分两种情况:①当点M在射线ND上时,MON=75°,∠BON=45°,∴∠MOB=∠MON﹣∠BON=30°.∴∠MOC=60°.∴直线OM的解析式为y =x ------------6分点M的坐标为方程组.的解,解方程组得,.点M的坐标为(,).--------------7分②当点M在射线NF上时,不存在点M使得∠MON=75°理由:∵∠MON=75°,∠FON=45°,∴∠FOM=∠MON-∠FON=30°.DFE=30°,∴∠FOM=∠DFE.∴OM∥FN.∴不存在-------8分综上所述,存在点M ,且点M的坐标为(,).方法(二)①M在射线ND上,过点M作MP ⊥x轴于点P,由旋转得∠EDF=60°,在Rt△DEF中,∵∠EDF=60°,DE=4EF=DE×tan60°=4.∴OF=OE﹢EF=1+4.----------5分MON=75°,∠BON=45°,∴∠MOB=∠MON﹣∠BON=30°.∴∠MOC=60°.在Rt△MOP中,∴MP=OP.△MPF中,∵tan∠MFP=,∴.----------6分∴OP=2﹢.∴MP=6﹢.∴M点坐标为(2﹢,6﹢).------------7分M在射线NF上,,不存在点M使得∠MON=75°理由:∵∠MON=75°,∠FON=45°,∴∠FOM=∠MON﹣∠FON=30°.DFE=30°.∴∠FOM=∠DFE.∴OM∥DN.∴不存在.------------8分综上所述,存在点M ,且点M的坐标为(,).(3)符合条件的点Q有两个,坐标分别为:(-2,2),(-,).------------10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年秋季九年级期末跟踪测试数学试题
参考答案及评分标准
一、选择题(每小题3分,共21分)
1.B 2.C 3.D 4.C 5.A 6.D 7.B
二、填空题(每小题4分,共40分)

8.x≥2 9.6 10.3x 11.15 12.32 13.30

14.9 15.2,)2,2( 16. m6.5
17.(1)(2分)310 (2)(2分) 5.135.4或
三、解答题(共89分)
18.(9分)解:原式=2223 ……………………6分

=2 ……………………9分
19.(9分)解:842xx……………………2分
222
)2(8)2(4xx

12)2(2x
……………………6分

322x
322x
即3221x,3222x ……………………9分
20.(9分)解:原式=22344xxx……………………4分
=74x……………………6分
当2x时,

原式=7)2(4
=78
=1……………………9分

21.(9分)解:(1)41…………………3分
(2)他们制定的游戏规则是公平的.理由如下:
法一: 画树状图

…………………6分
由树状图可知,共有12种机会均等的情况,其中满足yx的有6种,

P(小明获胜)=21126,P
(小强获胜)=21211

P(小明获胜)= P
(小强获胜)

故他们制定的游戏规则是公平的…………………9分
法二:列表

231
124134432
4
32
1
…………………6分
由列表可知,共有12种机会均等的情况,其中满足yx的有6种,

P(小明获胜)=21126,P
(小强获胜)=21211

P(小明获胜)= P
(小强获胜)

故他们制定的游戏规则是公平的…………………9分

22.(9分)解:
(1)如图,△A1B1C1就是所求画的三角形, …………………3分

点1A的坐标为(-1,3);………………5分

(2)由画图可知:四边形BBAA11为等腰梯形,其中,21AA,61BB,高为5.

BBAA
S

11
=205)62(21 …………………9分

23.(9分)
解:设平均每次下调的百分率为x,………1分
依题意得

405)1(5002x
……………5分

解得1.01x,9.12x……………8分
因为下调的百分率不可能大于1,所以9.12x不合题意舍去,故只取%101.0x.
答:平均每次下调的百分率为10%. ……………………9分

24.(9分)解:过点O作ABOD于点D,…………………1分
∵OBOA
∴BDAD
∵ABOC//
∴59AOCOAD…………………3分
在AODRt中,

OA
AD
OADcos

OADOAADcos
…………………6分

3.11252.0108259cos22OAADAB
…………………8分

答:支架两个着地点之间的距离AB约为cm3.112.…………………9分

25.(13分)
解:(1)

四边形ABCD是矩形


90ADEBCE,ADBC

又CEDE

BCEADE


AEBE

…………………3分

(2)当点E为CD中点时,21BADE

∵四边形ABCD为矩形
∴CDAB//
∴21,43
∴PDE∽PBA ……………5分

D
O
C

AB

A1B1CC1()A
B

21BADEPAPEPB

PD

由21PAPE可得31EAPE ……………6分
由(1)知EAEB
在PBERt中,90BPE

31sinEAPEEB
PE
DBE
……………8分

(3)设AD=a
在BADRt中,90BAD


22222
6aABADBD
①……………………9分

在EADRt中,90EDA

22222
3aDEADAE
②……………………10分

①、②联立可得452222aAEBD
由(2)知:21PAPEPBPD

PDBD3,PEAE3

……………………11分


452)(9222aPEPD

在PDERt中,90DPE,则有9222DEPEPD
994522a
解得23a(舍去负值)
23AD
……………………12分

182SABAD
……………………13分

26.(13分)
解:(1))0,8(A,)34,0(D;……………………3分
(2)过点E作ODEG于点G,如图①所示:
∵OAB为等边三角形,
ABOC

∴OC平分AOB,∴30AOC,
∴903060EOG……………4分

tEOGOEEG23sin
…………………5分

又EGOFSOEF21,tDFODOF34
由题意可得:43323)34(21tt
解得332t.……………………8分
(3)因为FOPBOD,所以应分两种情况讨论:
①当90BDOFPO时,如图②,
OPF∽ODB,此时OFOE

G
P
F
E

D

C

B

A
O

图①

P
F
E

D
C

B

A
O

图②

P
F
E

D
C

B

A
O

图③

A
B

C
D
E
P
1
3

4
2

tt34

解得:32t.…………………………10分

②当90ODBOFP时,OPF∽OBD,
如图③,此时,OEOF21,

∴1(43)2tt,

解得:833t.……………………12分
综上所述,当32t秒或833t秒时,OPF与OBD相似.…………13分

相关文档
最新文档