统计学教案(第6章抽样推断)

合集下载

统计学课件-6 抽样推断

统计学课件-6 抽样推断
• 抽样推断可以用于工业生产过程的质量控制。 • 利用抽样推断法还可以对于某种总体的假设进行检验,
判断其真伪,以作出正确的决策。
5
6.1.2 抽样推断的基本概念
全及总体和样本总体
全及总体也称母体,简称总体(Population), 是指所要研究对象的全体。
样本总体又称子样,简称样本(Sample)。它 是从全及总体中随机抽取出来的,用以代表全及 总体的部分单位的集合。
抽样误差有实际抽样误差、抽样平均误差和抽样 极限误差三个密切联系而又相互区别的概念
18
6.2 抽样误差总体总体参数样本样本统计量
4
抽样推断的特点
• 建立在随机取样的基础上 • 运用概率估计法 • 存在着可控性误差
统计推断的作用
• 对有些不可能或不必要进行全面调查, 但又需要了解 其全面数量情况的社会经济现象,可以运用抽样推断, 实现调查的目的。
• 抽样调查与全面调查同时进行,可以发挥互相补充和 检查调查质量的作用。
非概率抽样又称非随机抽样,是对总体中每一个 体都给予平等的抽取机会,即每一个体抽中或不 抽取完全由机遇规律来决定,排除人的主观因素 的选择。
10
抽样框与抽样单元
抽样框又称抽样结构,是指包括全部抽样单位的 名单框架 。
• 抽样框的主要形式
✓ 名单抽样框,即列出全部总体单位的名录一览表。 ✓ 区域抽样框,即按地理位置将总体范围划分为若干小区域,
《淮南子·说山训》 偶然的东西是没有根据的,因为它是偶然的; 但同样因为它是偶然的,它又是有根据的。
黑格尔
3
6.1 抽样推断概述
6.1.1 抽样推断的意义及特点
抽样推断的意义
抽样推断是在随机抽样基础上推论有关总体的情 况,即用样本对从中抽取样本的那个总体的数量 特征作出具有一定可靠程度的估计和判断。

统计学原理-第六章 抽样调查(复旦大学第六版)

统计学原理-第六章  抽样调查(复旦大学第六版)
全体。其单位数用N来表示。
2.样本总体:简称样本,是从全及总体中随机
抽取出来,代表全及总体部分单 位的集合体。单位数用n表示。
5
二.全及指标和抽样指标
(一)全及指标
X 总体平均数: X N 总体成数:P
2
XF 或X F Q=
2 2
N1 N N
(X-X) 总体方差: = 总体标准差:= (X-X)
(一)考虑顺序的不重复抽样数目
N! A N ( N 1)(N 2) ( N n 1) ( N n)! 4 3 2 1 2 例如A4 12 2 1
n N
(二)考虑顺序的重复抽样数目
B N
n N 2 4
n 2
例如 B 4 16
10
(三)不考虑顺序的不重复抽样数目
Ex X
28

2、一致性 当抽样单位数充分大时,抽样指标和未知 的总体指标之间的绝对离差为任意小的可能性 也趋于必然性。
x X 任意小
3、有效性
即用抽样指标估计总体指标,要求作为优良估 计量方差应该比其他估计量的方差小。

2
x X f
2
f

2
x X f
x
x E ( x)
2
18
说明:根据数理统计理论,在重复抽样条件下, 抽样平均误差与全及总体的标准差成正比例关系。 与抽样总体单位平方根成反比关系。
19
在不重复抽样情况下,抽样平均误差计算公式如下:
x x

N n 250 4-2 ( )= ( ) =9.13(件) n N 1 2 4-1
2
N
X X F 或 F X X F 或 F

统计学 第 6 章 抽样与参数估计

统计学  第 6 章   抽样与参数估计

第6章抽样与参数估计第6章抽样与参数估计6.1抽样与抽样分布6.2参数估计的基本方法6.3总体均值的区间估计6.4总体比例的区间估计6.5样本容量的确定学习目标理解抽样方法与抽样分布估计量与估计值的概念点估计与区间估计的区别评价估计量优良性的标准总体均值的区间估计方法总体比例的区间估计方法样本容量的确定方法参数估计在统计方法中的地位统计推断的过程6.1抽样与抽样分布什么是抽样推断概率捕样方法抽样分布抽样方法抽样方法概率抽样(probabilitysampling)也称随机抽样特点按一定的概率以随机原则抽取样本抽取样本时使每个单位都有一定的机会被抽中每个单位被抽中的概率是已知的,或是可以计算出来的当用样本对总体目标量进行估计时,要考虑到每个样本单位被抽中的概率简单随机抽样(simplerandomsampling)从总体N个单位中随机地抽取n个单位作为样本,每个单位入抽样本的概率是相等的最基本的抽样方法,是其它抽样方法的基础特点简单、直观,在抽样框完整时,可直接从中抽取样本用样本统计量对目标量进行估计比较方便局限性当N很大时,不易构造抽样框抽出的单位很分散,给实施调查增加了困难没有利用其它辅助信息以提高估计的效率分层抽样(stratifiedsampling)将抽样单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本优点保证样本的结构与总体的结构比较相近,从而提高估计的精度组织实施调查方便既可以对总体参数进行估计,也可以对各层的目标量进行估计系统抽样(systematicsainplmg)将总体中的所有单位(抽样单位)按一定顺序排列,在规定的范闱内随机地抽取一个单位作为初始单位,然后按爭先规定好的规则确定其它样本单位先从数字1到k之间随机抽取一个数字r作为初始单位,以后依次取r+k,r+2k…等单位优点:操作简便,可提高估计的精度缺点:对估计量方差的估计比较困难整群抽样(clustersampling)将总体中若干个单位合并为组(群),抽样时直接抽取群,然后对中选群中的所有单位全部实施调查特点抽样时只需群的抽样框,可简化工作量调查的地点相对集中,节省调查费用,方便调查的实施缺点是估计的精度较差抽样分布总体中各元素的观察值所形成的分布分布通常是未知的可以假定它服从某种分布总体分布(populationdistribution)一个样本中各观察值的分布也称经验分布当样本容屋n逐渐增大时,样本分布逐渐接近总体的分布样本分布(sampledistribution)抽样分布的概念(samplingdistribution)抽样分布是指样本统计屋的分布,即把某种样本统计量看作一个随机变量,这个随机变屋的全部可能值构成的新的总体所形成的分布即为某种统计量的抽样分布.统计量:样本均值,样本比例,样本方差等样本统计量的概率分布是一种理论概率分布随机变量是样本统计量样本均值,样本比例,样本方差等结果来自容量相同的所有可能样本提供了样本统计量长远稳定的信息,是进行推断的理论基础,也是抽样推断科学性的重要依据对抽样分布的理解抽样分布:即不是总体分布,也不是样本分布,是根据所有可能样本计算的统计量的全部可能取值形成的分布样本均值的抽样分布容量相同的所有町能样本的样本均值的概率分布一种理论概率分布进行推断总体均值的理论基础样本均值的抽样分布样本均值的抽样分布(例题分析)【例】设一个总体,含有4个元素(个体),即总体单位数N=4。

统计学—抽样推断

统计学—抽样推断

解:已知样本的合格率= 3006 0.98 300
重复抽样: P (1 P )0 .9 8 (1 0 .9)8 0 .00 8 0 .80 % 0
p
n
300
不重复抽样:
P(1P)(1n) 0.980.02(1 300)0.80% 6
p
n
N
300 60,000
21
第六章 抽样推断
STAT
(二)分层(类型)抽样形式下
样本成数近似服从于以总体成数为P,方差为P(1-P)/n的正态12 分布。
第六章 抽样推断
STAT
第二节、抽样误差的计算
一、抽样误差的概念
登记性误差
调查误差 代表性误差
系统性误差
实际抽样误差
抽样误差 抽样平均误差
代表性误差是指 由于样本的结构不能完全代表总体的结构 所引起的误差。
系统性误差是指由于抽样调查违反随机原则引起的误差;
p
n N 1
nN
注:(1)可用样本成数方差代替总体成数方差;
(2)可用样本成数 p^ 代替总体成数P;
(3)有若干个P值时,取最接近0.5的P值;
(4)无P值时,取P=0.5 (此时方差最大)
20
第六章 抽样推断
STAT
例:一批食品罐头60,000桶,随机抽查300桶,发现有6桶不合 格,求合格率的抽样平均误差。
统计上讲的抽样一般都是指概率抽样。 二、抽样推断的特点
1、是非全面调查 与普查的区别;
2、按随机原则抽取样本 与典型调查和重点调查的区别; 3、根据样本指标推断总体指标 与重点调查的区别; 4、抽样误差可以事先计算与控制 与典型调查的区别。
3
第六章 抽样推断

《统计学》第六章抽样调查

《统计学》第六章抽样调查

《统计学》第六章抽样调查第六章抽样调查§1抽样调查的意义§2抽样调查的基本概念和理论依据§3抽样平均误差§4抽样推断§5必要抽样单位数的确定§1、抽样调查的意义一、抽样调查的概念、特点(一)、概念:抽样调查是按照随机原则从全部研究对象中抽取一部分单位进行观察,并依据所获得的数据对全部研究对象的数量特征做出具有一定可靠性的估计判断,从而达到对全部研究对象的认识的一种统计方法。

抽样推断的抽样误差可以事先计算并且加以控制。

二、抽样调查的作用:对某些不可能进行全面调查而又要了解其全面情况的社会经济现象,必须应用抽样调查。

对某些社会经济现象虽然可以进行全面调查,但抽样调查可以节约时间、费用,提高调查的时效性。

抽样调查和全面调查同时进行,可以发挥相互补充和检查质量的作用。

抽样调查可以用于工业生产过程的质量控制。

利用抽样调查原理,还可以对某种总体的假设进行检验,来判断这种假设的真伪,以决定行动的取舍。

§2、抽样调查的基本概念及理论依据一、总体与样本(一)、总体与总体指标总体:是根据研究目的确定的所要研究的同类事物的全体。

总体单位数称为总体容量,一般用N表示。

总体指标:用来反映总体数量特征的指标,也称为参数。

一般来说总体指标有:总体平均数、总体成数、总体平均数标准差、总体平均数方差、总体成数标准差、总体成数方差。

参数参数:指反映总体数量特征的综合指标,它是确定的、唯一的。

某F某总体平均数F研究总体中(某某)2F的数量标志某总体标准差F 总体成数研究总体中的品质标志成数平均数成数标准差N1PN某PPPP(1P)未分组情况下的全及指标总体平均数总体成数具备某种特征的单位数PN总体方差2某i1Ni某2N总体标准差某i1Ni某2N总体指标:某FF某或某FF某i某F2FN1某PPNPP1P,也称统计量。

一般来说样本指标有:样本平均数、样本成数、样本平均数标准差、样本平均数方差、样本成数标准差、样本成数方差。

统计学第六章抽样调查

统计学第六章抽样调查

n
N
例题2
xf
x
f
8400 200
42
s (x x)2 f 12200 7.81
f
200
2 (1 n ) 7.812 (1 200 ) 0.55
x
n
N
200
2000
例题3
❖某冷库的10万只冻鸡合格率为97%, 如果按重复抽样与不重复抽样各抽 取1000只和2000只,分别计算抽样 平均误差。
A
B
较小的样本容量
X
成数
❖ 总体成数
每个总体单位标志值设为0或1 1:具有某种属性的总体单位标志值 0:不具有某种属性的总体单位标志值 总体中具有某种特征的单位占全部总体单位
数的比例称为总体成数,记作P 成数总体方差:P(1-P)
总体成数和样本成数
❖ 样本成数
从成数总体中抽取样本容量为n的样本 样本中具有此种特征的单位占全部样本单位
从1、2 、3、4中随机抽取2个的样本数
重复抽样考虑顺序
16
1、1 2、1 3、1 4、1
1、2 2、2 3、2 4、2
1、3 2、3 3、3 4、3
1、4 2、4 3、4 4、4
从1、2 、3、4中随机抽取2个的样本数
不重复抽样考虑顺序 12
2、1 3、1 4、1
1、2
3、2 4、2
1、3 2、3
- 2.58x
-1.65 x
+1.65x + 2.58x
x
-1.96 x
+1.96x
90%的样本
95% 的样本
99% 的样本
区间估计
❖ 根据一个样本的观察值给出总体参数的估计范围 ❖ 给出总体参数落在这一区间的概率 ❖ 例如: 总体均值落在50~70之间,置信度为 95%

统计学基础 第六章 指数分析讲解

统计学基础第六章指数分析【教学目的】1.深刻理解指数的意义及指数编制原理2.熟练掌握综合指数的计算方法3.运用指数体系进行两因素分析【教学重点】1.统计指数的概念2.数量指标综合指数;质量指标综合指数;综合指数变形——加权算数指数、调和指数和固定权数指数;平均指标指数的编制原则和方法3.应用指数体系进行两因素分析、计算【教学难点】1.同度量因素概念2.各种指数编制原理及相互区别与联系3.运用指数体系进行因素分析的方法【教学时数】教学学时为10课时【教学内容参考】第一节指数的意义一、指数的含义指数的含义有广义和狭义之分。

广义的指数泛指所有反映社会经济现象数量变动或差异程度的相对数。

如第四章所讲的动态相对数、计划完成程度相对数、比较相对数等都属于广义指数;狭义的指数是指用来综合反映那些不能直接相加的复杂社会经济现象总体在不同时间上数量变动的相对数,这是一种特殊的动态相对数。

如零售物价指数,是反映所有零售商品价格总变动的动态相对数;工业产品产量指数,是表明在某一范围内全部工业产品实物量总变动的动态相对数,等等。

统计中所讲的指数,主要是指狭义的指数。

二、指数的种类(一)个体指数和总指数指数按研究对象范围不同分为个体指数和总指数。

个体指数是反映个别现象数量变动的动态相对数。

例如,研究个别商品的销售量指数、个别产品的单位成本指数等。

个体指数是在简单现象总体的条件下计算的。

总指数是综合反映复杂现象总体数量变动的动态相对数。

例如,研究使用价值不同的商品销售量总指数、商品价格总指数等。

总指数是在复杂现象总体的条件下计算的。

总指数的计算形式有综合指数和平均指数。

(二)数量指标指数和质量指标指数指数按所表明现象的性质不同分为数量指标指数和质量指标指数。

数量指标指数是反映数量指标变动的动态相对数。

例如,产量指数、销售量指数等。

质量指标指数是反映质量指标变动的动态相对数。

例如,劳动生产率指数、单位成本指数、商品价格指数等。

第6章 统计推断


第六章 统计推断
原假设和备择假设
什么是备择假设?
与原假设对立的假设,也称“研究假设” 研究者想收集证据予以支持的假设
提出假设 作出决策
拒绝假设! 别无选择.
总体
我认为人口的平 均年龄是70岁


抽取随机样本
第六章 统计推断
均值 X = 50
原假设和备择假设
什么是原假设?
研究者想收集证据予以反对的假设,又称
“0假设”
总是有等号( , 或) 表示为 H0
第六章 统计推断
2、臵信区间
设 是总体 的一个参数, X

是 的 2 1 和



两个估计量,且1 ,对给定的常数 2
,有 (0 1)
随机区间 1 ,是臵信度(臵信水平)为 2
P(1 ,则称 2 ) 1


1
的臵信区间(区间估计)。其中1 和 分别 2
为臵信下限和臵信上限。
第六章 统计推断
3、臵信度(臵信系数/臵信水平),是指臵信区 间中包含总体参数真值的可能性大小,也就 是人们可以信赖的程度,通常用 1 表示。 置信度也可以指重复抽样条件下,在构 造的所有置信区间中包含参数真值的区间所 占的比例,也就是说构造的所有置信区间中 有1 区间包含总体参数真值。
青少年上网比例的95%的臵信区间。
第六章 统计推断
解:已知n 500 ,根据抽样结果 , z 2 1.96 样本比例为: p 225 45% 500
p(1 p) p z 2 , p z 2 n p(1 p) n
45% 55% 45% 55% (40.64%,49.36%) 45% 1.96 ,45% 1.96 500 500

统计学课件:抽样推断


3.当总体X~N(, 2),从中抽取容量为n的样本,则
n
2
(n 1)s2
2
~
(2 n-1); 2
(xi x)2
i 1
2
~
(2 n-1)
4. 2—分布的性质 (1)分布可加性 若X ~ 2(n1),Y~ 2(n2 ), X,Y独立,则 X +Y ~ 2(n1+n2 ) (2)期望与方差 若X~ 2(n),则 E(X)= n,D(X)=2n
3、进行产品质量检验 4、进行假设检验
(一)总体和样本 1、总体 总体也称全及总体,指所有认识的研究对象全体,它是
有所研究范围内具有某种共同性质的全体单位所组成的 集合体。 一般用英文字母大写N来表示总体的单位数。 2、样本 样本又称子样,它是从全及总体中随机抽取出来,作为 代表这一总体的那部分单位组成的集合体。 一般用英文小写字母n来表示样本的单位数。
5. 分位点 设X ~ 2(n),若对于:0<<1,
存在 2 (n) 0 满足
P{X 2 (n)} ,
则称 2 (n) 为 2 (n) 分布的上分位点。
2
(n
)
(二)t 分布
若X 服从N (0,1),Y 服从自由度为n的 2分布, 且X 和Y 独立,则 X
Y /n 服从自由度为n的 t分布。
1、全及指标 根据各单位的标志值或标志属性计算的,反映总体
数量特征的综合指标称为全及指标,又称为参数。
设总体变量 X 为: X1, X 2 ,X N 则有:
X X XF N F
2 X X 2 X X 2 F
N
F
设总体 N 个单位,有 N1 个单位具有某种性质, N0 个单位不具有某种性质,

统计学 第6章 统计推断(3节)

第六章
统计 推 断
第一节 统计推断及其特点
第二节 总体参数估计 第三节 假设检验
第三节
假设检验
一、 基本概念、原理及步骤
二、总体平均数的检验 三、总体比例的检验
四、总体方差的检验
一、基本概念、原理与步骤
1.基本概念 2.原理 3.步骤
3
引例:某企业生产一种零件,过去的大量资 料表明,零件的平均长度为4CM,标准差为 0.1CM.改革工艺后,抽查了100个零件,测得 样本平均长度为3.95CM。
有证据表明这批灯泡的使用 寿命有显著提高
0
1.645
Z
32
2 未知小样本均值的检验
(例题分析)
【例】某机器制造出的肥 皂厚度为5cm,今欲了解 机器性能是否良好,随机 抽取10块肥皂为样本,测 得平均厚度为5.3cm,标 准 差 为 0.3cm , 试 以 0.05 的显著性水平检验机器性 能良好的假设。
2 已知均值的检验
(小样本例题分析)
H0: 1020 检验统计量: x 0 1080 1020 H1: > 1020 z 2.4 n 100 16 = 0.05 n = 16 决策: 临界值(s): 在 = 0.05的水平上拒绝H
拒绝域 0.05
0
结论:
结论:
t
不能认为制造商的产品同他所 说的标准不相符
37
-1.7291 0
H0 检验 实际情况 H0为真 1- H0为假
有罪
错误
正确
拒绝H0
第二类 错误() 第一类 功效(1) 错误()
11
假设检验中的两类错误
3. 错误和 错误的关系 和的关系就像翘翘 板,小就大, 大 就小
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计学 授课题目 第6章 抽样推断 课次 第8-9次

授课方式 讲授 课时安排 第8教学周-第9教学周,共4课时

教学目的: 通过本章的学习,要求掌握利用样本统计资料来推断总体数量特征的原理及方法;深刻理解抽样推断的概念及特点;了解抽样误差产生的原因,并对抽样误差、抽样平均误差、抽样极限误差加以区别,掌握抽样平均误差、抽样极限误差的计算;掌握点估计和区间估计的方法;掌握必要样本单位数的确定方法。

教学重点及难点提示: 重点:区间估计 难点:抽样平均误差的计算 案例导入:大学生消费调查:一个月你花多少? 第一节 抽样推断概述 一、抽样推断的概念及特点 (一)概念 按随机原则从总体中抽取部分单位,根据这部分单位的信息对总体的数量特征进行科学估计与推断的方法。

包括抽样调查和统计推断 抽样调查:一种非全面调查,按随机原则从总体中抽取部分单位进行调查以获得相 关资料,以推断总体 统计推断:根据抽样调查所获得的信息,对总体的数量特征作出具有一定程度的估 计和推断。 (二)特点 1.按随机原则(等可能性原则)抽取调查单位.随机抽样的目的是为了排除人的主观

教法提示: 多媒体教学 案例教学 列举法 影响,使每个样本都有系统的可能性被抽中,使样本对总体具有充分的代表性。随机性原则是保证抽样推断正确性的一个重要前提条件。随机抽样不是随便抽样。

2.根据部分推断总体的数量特征 3.抽样推断的结果具有一定的可靠性和准确性,抽样误差可以事先计算和控制 其他特点有经济性、时效性、准确性、灵活性等 (三)抽样推断的应用 1.不可能进行全面调查时 2.不必要进行全面调查时 3.检查生产过程正常与否 4.对全面调查资料进行补充修正时 二、抽样的几个基本概念 1.样本容量与样本个数 (1)样本容量:样本是从总体中抽出的部分单位的集合,这个集合的大小称为样本容量,一般用n表示,它表明一个样本中所包含的单位数。一般地,样本单位数大于30个的样本称为大样本,不超过30个的样本称为小样本。

(2)样本个数:又称样本可能数目,它是指从一个总体中可能抽取多少个样本。样本个数的多少与抽样方法有关。

2.总体参数与样本统计量 (1)总体参数:总体分布的数量特征就是总体参数,也是抽样统计推断的对象。常见的总

体参数有:总体的平均数指标,总体成数(比重)指标,总体分布的方差、标准差等等。 (2)样本统计量:与总体参数对应的是样本统计量。

设(12,,nXXXL)是总体X容量为n的样本,若样本函数 TT(12,,nXXXL)

中不含任何未知参数,则称T为一个统计量。 例如 11niiXXn 就是一个统计量,称为样本均值(Sample mean), 2211()niiSXXn

也是统计量,称为样本方差(Sample variance), 3.重复抽样与不重复抽样 (1)重复抽样:是指从总体中抽出一个样本单位,记录其标志值后,又将其放回总体中继续参加下一次样本单位的抽取。

(2)不重复抽样:即每次从总体中抽取一个单位,登记后不放回原总体,不参加下一次抽样。

第二节 抽样推断的方法 一、点估计 (一)点估计的概念及特点 参数估计:以样本统计量对总体参数进行估计,有点估计和区间估计两种。 点估计:直接以样本统计量作为相应的总体参数的估计量。 优点:直接给出了总体参数的具体数值 缺点:未能反映误差的大小 参数点估计有: (1)样本均值估计总体均值

(2)样本成数估计总体成数 xˆ

pPˆ22ˆ

S (3)样本方差估计总体方差 (二)估计的评价标准: (1)无偏性:

设ˆT12(,,,)nXXXL是未知参数的一个点估计量,若ˆ满足ˆE 即估计量的数学期望等于被估计参数则称ˆ是的无偏估计量,否则称为有偏估计量。

需要注意的是,由于估计量ˆ是样本12(,,,)nXXXL的函数,样本量是n维随机变量,所以对ˆ求平均是按样本12(,,,)nXXXL的概率分布求平均。 无偏性是我们衡量点估计量好坏的一个评价标准,这个评价标准的直观意义如下:由于样本的出现带有随机性,所以基于一次具体抽样所得的参数估计值未必等于参数真值,这是由样本的随机性造成的。我们希望当大量使用这个估计量对参数进行估计时,一系列估计值的平均值应该与待估参数真值相等。这就从平均效果上对估计量的优劣给出一个评价标准。

(2)有效性:

设11ˆT12(,,,)nXXXL,22ˆT12(,,,)nXXXL均为未知参数的无偏估计量,如果对参数的一切可能取值有)ˆ()ˆ(2212,则称无偏估计量1ˆ比2ˆ有效 一个无偏估计量并不意味着他就非常接近被估计的参数,他还必须与总体参数的离散程度比较小。对同一总体参数的两个无偏点估计量,方差小者更有效。

(3)一致性: 指随着样本单位数n的增大,样本估计量将在概率意义下越来越接近于总体真实值 若对于任意ε>0,有

二、区间估计法 在参数估计中,虽然点估计可以给出未知参数的一个估计,但不能给出估计的精度。

1ˆ limP

n为此人们希望利用样本给出一个范围,要求它以足够大的概率包含待估参数真值。这就是导致区间估计问题。

所谓区间估计,就是估计总体参数的区间范围,并要求给出区间估计成立的概率值。

设是未知参数,12(,,,)nXXXL是来自总体的样本,构造两个统计量11ˆT12(,,,)nXXXL,22ˆT

12(,,,)nXXXL

,对于给定的(0<<1),若1ˆ、

2ˆ满足

1ˆ

P 

 1

则称随机区间[1ˆ,2ˆ]是参数的置信水平为1的置信区间, 1称为[1ˆ,2ˆ]的置信度,1ˆ,2ˆ称为置信限。

这里有几点需要说明: (1)区间[1ˆ,2ˆ]的端点1ˆ,2ˆ及长度2ˆ-1ˆ都是样本的函数,从而都是随机变量,因此[1ˆ,2ˆ]是一个随机区间。

(2)1ˆP 2ˆ 1是说随机区间[1ˆ,2ˆ]以1的概率包含未知参数真值,区间长度2ˆ-1ˆ描述估计的精度,置信水平1描述了估计的可靠度。

(3)因为未知参数是非随机变量,所以不能说落入区间[1ˆ,2ˆ]的概率是1,而应是随机区间[1ˆ,2ˆ]包含的概率是1。

通俗地说,在点估计的基础上,给出总体参数的一个范围称为区间估计。 (二)总体均值的区间估计 1.正态总体且方差已知;或非正态总体、方差未知、大样本情况下 在这种情况下,样本均值的抽样分布呈正态分布,其数学期望为总体均值,方差

为2n。则2XZn称为总体均值在1置信水平下的置信区间。  区间估计步骤: 1.计算样本统计量

2.计算抽样平均误差

3.计算极限误差 4.确定置信区间 5.估计总量指标  注意抽样方法的不同 [例]保险公司从投保人中随机抽取36人,计算得36人的平均年龄39.5X岁,已知投保人平均年龄近似服从正态分布,标准差为7.2岁,试求全体投保人平均年龄的置信水平为99%的置信区间。

解:10.99,0.01,查(0,1)N表得22.575Z

27.239.52.57536.4136XZn

27.239.52.57542.5936XZn

故全体投保人平均年龄的置信水平为99%的置信区间为[36.41,42.59]

px,nppnpx)1(,

ppxx

22





ppxx

ppxx,,

NPXN 若总体方差2

未知,可用样本方差S2代替

即39.5±2.13=(37.37,41.63),投保人平均年龄在90%的置信水平下的置信区间为37.37岁~41.63岁。

2.正态总体、方差未知、小样本情况下 如果总体服从正态分布,无论样本容量大小,样本均值的抽样分布都服从正态分布。只要总体方差已知,即使在小样本情况下,也可以计算总体均值的置信区间。如果总体

方差2未知,需用样本方差S2代替,在小样本情况下,应用t分布来建立总体均值的置信区间。 t分布是类似正态分布的一种对称分布,他通常要比正态分布平坦和分散。随着自由

度的增大,t分布逐渐趋于正态分布。

正态总体、方差未知、小样本情况下,总体均值在1置信水平下的置信区间为:

2sXtn (重复抽样条件下) (6.18)

21sNnXtNn (不重复抽样条件下) (6.19) 其中2(1)tn为t分布临界值,可以查t分布临界值表得到 (三)成数的区间估计 在大样本(一般经验规则:5(1)5npnp和)条件下,样本比例的抽样分布可用正态分布近似。在这种情况下,数理统计已经证明如下结论: 置信水平为1的置信区间为:

2(1)pppZn (重复抽样)

2(1)()1ppNnpZnN

 (不重复抽样)

相关文档
最新文档