小升初奥数公式大全

合集下载

(完整版)小升初奥数行程问题--流水行船

(完整版)小升初奥数行程问题--流水行船
第十六讲 行程问题--流水行船
知识点梳理
(一)基本概念 船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情 况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。 古语:“逆水行舟不进则退”
船速:是指船本身的速度,也就是在静水中单位时间里所走过的路程 。 水速:是指水在单位时间里流过的路程 。 顺水速度和逆水速度:分别指顺流航行时和逆流航行时船在单位时间里所行的路程。
水上追及问题
车辆同向:路程差=速度差×时间
如果两船逆向追赶时,也有:
两船同向:路程差=船速差×时间
甲船逆水速度-乙船逆水速度
推导:甲船顺水速度-乙船顺水速度
=(甲船速-水速)-(乙船速-水速)
=甲船速-乙船速。
=(甲船速+水速)-(乙船速+水速)
=甲船速-乙船速。
结论:水中追及问题与在静水中追及问题及两车在陆地上追及问题一样。
例6.一只小船从A地到B地往返一 次共用2小时,回来时顺水,比 去时的速度每小时多行驶8千米, 因此第二小时比第一小时多行 驶6千米,求AB两地间的距离。
看图解析
水速=(顺-逆)÷2=8÷2=4千米

A
B
每小时多行8千米

第二小时比第一小时多行6千米
解析
顺水比逆水每小时多行驶8千米,可知水流速度每小时4千米,
T逆=9÷(1+5)×5=7.5小时, 8/3× 7.5=20千米 答:甲乙两港相距20km。
例8. 有甲、乙两船,甲船和漂流物 同时从河西向东而行,乙船也同 时从河东向西而行。甲船行4小 时后与漂流物相距100千米,乙 船行12小时后与漂流物相遇, 两船的划速相同,河长多少千米?
船速:(26+16)÷2=21(千米/小时) 水速:(26—16)÷2=5(千米/小时)

小学生奥数经典数学公式大全,值得收藏!

小学生奥数经典数学公式大全,值得收藏!

小学生奥数经典数学公式大全,值得收藏!【导语】数学公式是人们在研究自然界物与物之间时发现的一些联系,并通过一定的方式表达出来的一种表达方法。

是表征自然界不同事物之数量之间的或等或不等的联系,它确切的反映了事物内部和外部的关系,是我们从一种事物到达另一种事物的依据,使我们更好的理解事物的本质和内涵。

以下是整理的小学生奥数经典数学公式大全,希望对您有所帮助!数量关系式:1,每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2,1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3,速度×时间=路程路程÷速度=时间路程÷时间=速度4,单价×数量=总价总价÷单价=数量总价÷数量=单价5,工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6,加数+加数=和和-一个加数=另一个加数7,被减数-减数=差被减数-差=减数差+减数=被减数8,因数×因数=积积÷一个因数=另一个因数9,被除数÷除数=商被除数÷商=除数商×除数=被除数和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数+1)=大数小数×倍数=大数(或小数+差=大数)平均数问题公式总数量÷总份数=平均数。

植树问题:1、非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距+1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2、封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题公式(1)一次有余(盈),一次不够(亏),可用公式:(盈+亏)÷(两次每人分配数的差)=人数。

(完整版)小学奥数数学公式集汇总

(完整版)小学奥数数学公式集汇总

小学奥数知识总结手册年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量。

小升初奥数:牛吃草问题

小升初奥数:牛吃草问题

小升初奥数:牛吃草问题牛吃草问题概念及公式牛吃草问题又称为消长问题或牛顿牧场,牛吃草问题的历史起源是17世纪英国伟大的科学家牛顿1642—1727)提出来的。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

解决牛吃草问题常用到四个基本公式,分别是︰五大基本公式:1) 设定一头牛一天吃草量为“1”2)草的生长速度=草量差÷时间差;3)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`4)吃的天数=原有草量÷(牛头数-草的生长速度);5)牛头数=原有草量÷吃的天数+草的生长速度。

这五个公式是解决牛吃草问题的基础。

首先一般假设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

求天数例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。

问:这片牧草可供25头牛吃多少天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(200-150)÷(20-10)=5份10×20=200份=原草量+20天的生长量原草量:200-20×5=100份或15×10=150份=原草量+10天的生长量原草量:150-10×5=100份100÷(25-5)=5天答:这片牧草可供25头牛吃5天?练习(求时间)1.有一片草地,草每天生长的速度相同。

这片草地可供5头牛吃40天,或6供头牛吃30天。

如果4头牛吃了30天后,又增加2头牛一起吃,这片草地还可以再吃几天?2.牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?求牛的数量例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。

[精]小升初奥数-分段计费问题常见应用题公式,附练习及答案

[精]小升初奥数-分段计费问题常见应用题公式,附练习及答案

小升初奥数-分段计费问题常见应用题公式,附练习及答案知识点牛吃草问题在小学这类问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。

一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

例1. 一片牧场南面一块15公顷的牧场上长满牧草,牧草每天都在匀速生长,这片牧场可供12头牛吃25天,或者供24头牛吃10天。

在东升牧场的西侧有一块60公顷的牧场,20天中可供多少头牛吃草【解析】设1头牛1天的吃草量为"1",摘录条件,将它们转化为如下形式方便分析12头牛25天12×25=300 :原有草量+25天自然减少的草量24头牛10天24×10=240 :原有草量+10天自然减少的草量从上易发现:15公顷的牧场上25-10=15天生长草量=300-240=60,即1天生长草量=60÷15=4;那么15公顷的牧场上原有草量:300-25×4=200;则60公顷的牧场1天生长草量=4×(60÷15)=16;原有草量:200×(60÷15)=800. 20天里,共草场共提供草800+16×20=1120,可以让1120÷20=56(头)牛吃20天。

例2.一片均匀生长的草地,可以供18头牛吃40天,或者供12头牛与36只羊吃25天,如果1头牛每天的吃草量相当于3只羊每天的吃草量。

小升初必考奥数30个知识点大汇总

小升初必考奥数30个知识点大汇总

小学奥数30个知识点大汇总1.和差倍问题2.年龄问题的三个基本特征:3.归一问题4.植树问题5.鸡兔同笼问题6.盈亏问题7.牛吃草问题8.周期循环与数表规律9.平均数10.抽屉原理11.定义新运算12.数列求和13.二进制及其应用14.加法乘法原理和几何计数15.质数与合数16.约数与倍数17.数的整除18.余数及其应用19.余数、同余与周期20.分数与百分数的应用21.分数大小的比较22.分数拆分23.完全平方数24.比和比例25.综合行程26.工程问题27.逻辑推理28.几何面积29.立体图形30.时钟问题—快慢表问题1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数小学奥数很简单,就这30个知识点和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

奥数小升初必备公式

鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

.盈亏问题:基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量。

基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量。

基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

.牛吃草问题:基本思路:假设每头牛吃草的速度为“”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量。

基本公式:生长量(较长时间×长时间牛头数较短时间×短时间牛头数)÷(长时间短时间);总草量较长时间×长时间牛头数较长时间×生长量;.周期循环与数表规律:周期现象:事物在运动变化的过程中,某些特征有规律循环出现。

(完整版)小升初奥数知识点汇总

(完整版)小升初奥数知识点汇总-CAL-FENGHAI.-(YICAI)-Company One1小升初数学(奥数)知识点汇总一、质数、倍数、倍数、约数、整除问题1、质数(素数)① 只有1和它本身两个约数的整数称为质数;② 100以内质数共25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97;③ 最小的偶合数是4,最小的奇合数是9;④ 0、1既不是质数也不是合数。

⑤ 每一个合数分解质因数形式是唯一的。

⑥ 公因数只有1的两个非零自然数,叫做互质数。

2、倍数、约数性质①一个数最小的倍数是这个数本身,没有最大的倍数;② “0”没有约数和倍数,一般认为“1”只有约数“1”;③假如几个数都是某一个数的倍数,那么这几个数的组合也是某个数的倍数。

例如:26、39是13的倍数,则2639也是13的倍数。

④一般的数字的约数的个数都是偶数个,但是平方数的约数个数是奇数个。

例如:“9”有3个约数(1、3、9),“16”有5个约数(1、二、4、8、16)。

⑤约数和倍数必须强调出是哪个数字的约数和倍数。

⑥一个数既是它本身的倍数又是它本身的约数。

⑦一个数如果有偶约数,则这个数必为偶数。

3、整除性质①能被“2”整除的数的特点:末尾数字是“0、2、4、6、8”;②能被“3(9)”整除的数的特点:各位上数字和能被“3(9)”整除;③能被“4(25)”整除的数的特点:末尾两位能被“4(25)”整除;④能被“5”整除的数的特点:末尾数字是“0或5”;⑤能被“8(125)”整除的数的特点:这个数末三位能被“8(125)”整除;⑥能被“7、11、13”整除的数的特点:这个数从右向左每三位分成一节,用奇数节的和减去偶数节的和,所得到的差能被“7、11、13”整除。

如果求余数时,则奇数节和小于偶数节和时,需要将奇数节和加上若干个“7、11、13”,再相减。

小升初奥数知识点奥数必考30个知识点大全

小升初奥数知识点—奥数必考30个知识点大全1.和差倍问题和差问题和倍问题差倍问题条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围两个数的和 ,差 ,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个根本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的根本特点:问题中有一个不变的量 ,一般是那个“单一量〞 ,题目一般用“照这样的速度〞……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题根本类型在直线或者不封闭的曲线上植树 ,两端都植树在直线或者不封闭的曲线上植树 ,两端都不植树在直线或者不封闭的曲线上植树 ,只有一端植树封闭曲线上植树根本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型 ,从而确定棵数与段数的关系5.鸡兔同笼问题根本概念:鸡兔同笼问题又称为置换问题、假设问题 ,就是把假设错的那局部置换出来;根本思路:①假设 ,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后 ,发生了和题目条件不同的差 ,找出这个差是多少;③每个事物造成的差是固定的 ,从而找出出现这个差的原因;④再根据这两个差作适当的调整 ,消去出现的差。

根本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

小升初奥数知识点奥数必考30个知识点大全

小升初奥数知识点—奥数必考30个知识点大全1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

34个小学奥数必考公式 1、和差倍问题: 和差问题和倍问题差倍问题 已知条件几个数的和与差几个数的和与倍数几个数的差与倍数 公式适用范围已知两个数的和,差,倍数关系 公式①和-差÷2=较小数 较小数+差=较大数 和-较小数=较大数 ②和+差÷2=较大数 较大数-差=较小数 和-较大数=较小数和÷倍数+1=小数 小数×倍数=大数 和-小数=大数差÷倍数-1=小数 小数×倍数=大数 小数+差=大数 关键问题求出同一条件下的 和与差和与倍数差与倍数 2、年龄问题的三个基本特征: ①两个人的年龄差是不变的; ②两个人的年龄是同时增加或者同时减少的; ③两个人的年龄的倍数是发生变化的; 3、归一问题的基本特点: 问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示; 关键问题: 根据题目中的条件确定并求出单一量; 4、植树问题: 基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树 基本公式棵数=段数+1 棵距×段数=总长棵数=段数-1 棵距×段数=总长棵数=段数 棵距×段数=总长 关键问题确定所属类型,从而确定棵数与段数的关系 5、鸡兔同笼问题: 基本概念: 鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来; 基本思路: ①假设,即假设某种现象存在甲和乙一样或者乙和甲一样: ②假设后,发生了和题目条件不同的差,找出这个差是多少; ③每个事物造成的差是固定的,从而找出出现这个差的原因; ④再根据这两个差作适当的调整,消去出现的差; 基本公式: ①把所有鸡假设成兔子:鸡数=兔脚数×总头数-总脚数÷兔脚数-鸡脚数 ②把所有兔子假设成鸡:兔数=总脚数一鸡脚数×总头数÷兔脚数一鸡脚数 关键问题:找出总量的差与单位量的差; 6、盈亏问题: 基本概念: 一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量; 基本思路: 先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量; 基本题型: ①一次有余数,另一次不足; 基本公式:总份数=余数+不足数÷两次每份数的差 ②当两次都有余数; 基本公式:总份数=较大余数一较小余数÷两次每份数的差 ③当两次都不足; 基本公式:总份数=较大不足数一较小不足数÷两次每份数的差 基本特点: 对象总量和总的组数是不变的; 关键问题: 确定对象总量和总的组数; 7、牛吃草问题: 基本思路: 假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量; 基本特点: 原草量和新草生长速度是不变的; 关键问题: 确定两个不变的量; 基本公式: 生长量=较长时间×长时间牛头数-较短时间×短时间牛头数÷长时间-短时间; 总草量=较长时间×长时间牛头数-较长时间×生长量; 8、周期循环与数表规律: 周期现象: 事物在运动变化的过程中,某些特征有规律循环出现; 周期: 我们把连续两次出现所经过的时间叫周期; 关键问题: 确定循环周期; 闰年:一年有366天; ①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;

平年:一年有365天; ①年份不能被4整除;②如果年份能被100整除,但不能被400整除; 9、平均数: 基本公式: ①平均数=总数量÷总份数 总数量=平均数×总份数 总份数=总数量÷平均数 ②平均数=基准数+每一个数与基准数差的和÷总份数 基本算法: ①求出总数量以及总份数,利用基本公式①进行计算. ②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式② 10、抽屉原理: 抽屉原则一: 如果把n+1个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体; 例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况: ①4=4+0+0②4=3+1+0③4=2+2+0④4=2+1+1 观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体; 抽屉原则二: 如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有: ①k=n/m+1个物体:当n不能被m整除时; ②k=n/m个物体:当n能被m整除时; 理解知识点: X表示不超过X的最大整数; 例=4;=0;=2; 关键问题: 构造物体和抽屉;也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算; 11、定义新运算: 基本概念: 定义一种新的运算符号,这个新的运算符号包含有多种基本混合运算; 基本思路: 严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算; 关键问题: 正确理解定义的运算符号的意义; 注意事项: ①新的运算不一定符合运算规律,特别注意运算顺序; ②每个新定义的运算符号只能在本题中使用; 12、数列求和: 等差数列: 在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列; 基本概念: 首项:等差数列的第一个数,一般用a1表示; 项数:等差数列的所有数的个数,一般用n表示; 公差:数列中任意相邻两个数的差,一般用d表示; 通项:表示数列中每一个数的公式,一般用an表示; 数列的和:这一数列全部数字的和,一般用Sn表示. 基本思路: 等差数列中涉及五个量:a1,an,d,n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个; 基本公式: 通项公式:an=a1+n-1d; 通项=首项+项数一1×公差; 数列和公式:sn,=a1+an×n÷2; 数列和=首项+末项×项数÷2; 项数公式:n=an+a1÷d+1; 项数=末项-首项÷公差+1; 公差公式:d=an-a1÷n-1; 公差=末项-首项÷项数-1; 关键问题: 确定已知量和未知量,确定使用的公式; 13、二进制及其应用: 十进制: 用0~9十个数字表示,逢10进1;不同数位上的数字表示不同的含义,十位上的2表示20,百位上的2表示200;所以234=200+30+4=2×102+3×10+4; =An×10n-1+An-1×10n-2+An-2×10n-3+An-3×10n-4+An-4×10n-5+An-6×10n-7+……+A3×102+A2×101+A1×100 注意:N0=1;N1=N其中N是任意自然数 二进制: 用0~1两个数字表示,逢2进1;不同数位上的数字表示不同的含义; 2=An×2n-1+An-1×2n-2+An-2×2n-3+An-3×2n-4+An-4×2n-5+An-6×2n-7 +……+A3×22+A2×21+A1×20 注意:An不是0就是1; 十进制化成二进制: ①根据二进制满2进1的特点,用2连续去除这个数,直到商为0,然后把每次所得的余数按自下而上依次写出即可; ②先找出不大于该数的2的n次方,再求它们的差,再找不大于这个差的2的n次方,依此方法一直找到差为0,按照二进制展开式特点即可写出; 14、加法乘法原理和几何计数: 加法原理: 如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+m2.......+mn种不同的方法; 关键问题: 确定工作的分类方法; 基本特征: 每一种方法都可完成任务; 乘法原理: 如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1×m2.......×mn种不同的方法; 关键问题: 确定工作的完成步骤; 基本特征: 每一步只能完成任务的一部分; 直线: 一点在直线或空间沿一定方向或相反方向运动,形成的轨迹; 直线特点: 没有端点,没有长度; 线段: 直线上任意两点间的距离;这两点叫端点; 线段特点: 有两个端点,有长度; 射线: 把直线的一端无限延长; 射线特点: 只有一个端点;没有长度; ①数线段规律:总数=1+2+3+…+点数一1; ②数角规律=1+2+3+…+射线数一1; ③数长方形规律:个数=长的线段数×宽的线段数: ④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数 15、质数与合数: 质数: 一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数; 合数: 一个数除了1和它本身之外,还有别的约数,这个数叫做合数; 质因数: 如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数; 分解质因数: 把一个数用质数相乘的形式表示出来,叫做分解质因数;通常用短除法分解质因数;任何一个合数分解质因数的结果是唯一的; 分解质因数的标准表示形式: N=,其中a1、a2、a3……an都是合数N的质因数,且a1P=r1+1×r2+1×r3+1×……×rn+1 互质数: 如果两个数的最大公约数是1,这两个数叫做互质数;

相关文档
最新文档