微机继电保护实验报告

合集下载

微机保护实验报告

微机保护实验报告

微机保护实验报告The Standardization Office was revised on the afternoon of December 13, 2020微机继电保护实验报告项目名称:微机距离保护算法(1)姓名:陈发敏学号:K03134163班级:K0313416实验时间:实验地点:实验楼五楼实验成绩:一、 实验目的1.熟悉MATLAB 桌面和命令窗口;2.通过编写滤波程序、阻抗计算程序以及距离保护动作判据程序,了解微机保护工作原理。

3.定性分析各种算法的优缺点。

二、 实验内容1、用“load ”函数导入短路电流数据和短路电压数据,对其进行滤波处理,要求滤除直流分量和二次谐波分量。

注意观察数据的特征,数据第一列为时间,第二列为A 相值,第三列为B 相值,第三列为C 相值。

观察滤波前后的波形。

2、编写微机保护算法程序,包括短路阻抗算法和动作判据算法(判据为相间距离保护判据),阻抗继电器的动作特性采用方向圆特性。

并利用该程序对步骤1处理后的数据进行计算,观察保护的动作情况。

距离保护的整定值为:Z set =+ 。

三、 实验模型及程序1、 绘制滤波前后的电流、电压波形,并进行对比分析;电流波形滤波前,短路瞬间电流幅值变大,到短路后的稳态呈曲线变化;经过滤波后,短路后的稳态比较平稳。

电压波形滤波前,短路瞬间电压幅值急剧变小;经过滤波后,短路后的稳态比较平稳,且短路后电压波形变化没有电流波形变化大。

4444445555552、 设计编写保护算法程序,绘制阻抗幅值变化的波形,并分析保护的动作情况。

由阻抗幅值变化的波形和保护的动作情况可知:左图的B 相的阻抗值太低,所以致使B 相动作有明显的变化。

附MATLAB 程序如下:%实验3程序 clc; clear;%电压电流数据导入a=load('H:\To be completed\微机保护\jibao3_4\'); %导入电压量 b=load('H:\To be completed\微机保护\jibao3_4\'); %导入电流量 t=a(:,1)'; UA=a(:,2)'; UB=a(:,3)'; UC=a(:,4)'; IA=b(:,2)'; IB=b(:,3)'; IC=b(:,4)'; Ts=t(1,2)-t(1,1); N=Ts; m=size(t); %滤波处理 %%电流滤波 IIA=zeros(1,m(2)); IIB=zeros(1,m(2)); IIC=zeros(1,m(2)); for jj=101:m(2);IIA(jj)=(IA(jj)-IA(jj-100))/2; IIB(jj)=(IB(jj)-IB(jj-100))/2; IIC(jj)=(IC(jj)-IC(jj-100))/2; endsubplot(3,1,1); plot(t,IIA,'r') title('电流滤波') subplot(3,1,2);plot(t,IIB,'g')subplot(3,1,3);plot(t,IIC,'b')figuresubplot(3,1,1);plot(t,IA)title('电流波形')subplot(3,1,2);plot(t,IB)subplot(3,1,3);plot(t,IC)%%电压滤波UUA=zeros(1,m(2));UUB=zeros(1,m(2));UUC=zeros(1,m(2));for jj=101:m(2);UUA(jj)=(UA(jj)-UA(jj-100))/2;UUB(jj)=(UB(jj)-UB(jj-100))/2;UUC(jj)=(UC(jj)-UC(jj-100))/2;endfiguresubplot(3,1,1);plot(t,UUA,'r')title('电压滤波')subplot(3,1,2);plot(t,UUB,'g')subplot(3,1,3);plot(t,UUC,'b')%利用两点乘积算法计算%电压USA=zeros(1,m(2));USB=zeros(1,m(2));USC=zeros(1,m(2));for jj=N/4+1:m(2)USA(jj)=sqrt((UUA(jj)*UUA(jj)+UUA(jj-N/4)*UUA(jj-N/4))/2); USB(jj)=sqrt((UUB(jj)*UUB(jj)+UUB(jj-N/4)*UUB(jj-N/4))/2); USC(jj)=sqrt((UUC(jj)*UUC(jj)+UUC(jj-N/4)*UUC(jj-N/4))/2); end% %电流for jj=N/4+1:m(2)ISA(jj)=sqrt((IIA(jj)*IIA(jj)+IIA(jj-N/4)*IIA(jj-N/4))/2);ISB(jj)=sqrt((IIB(jj)*IIB(jj)+IIB(jj-N/4)*IIB(jj-N/4))/2);ISC(jj)=sqrt((IIC(jj)*IIC(jj)+IIC(jj-N/4)*IIC(jj-N/4))/2);end%定义测量电压和测量电流Um=UUA-UUB;Im=IIA-IIB;Um1=UUB-UUC;Im1=IIB-IIC;Um2=UUC-UUA;Im2=IIC-IIA;% %电阻、电抗、相角差for jj=N/4+1:m(2)R(jj)=(Um(jj)*Im(jj)+Um(jj-N/4)*Im(jj-N/4))/(Im(jj)*Im(jj)+Im(jj-N/4)*Im(jj-N/4));X(jj)=(Um(jj-N/4)*Im(jj)-Um(jj)*Im(jj-N/4))/(Im(jj)*Im(jj)+Im(jj-N/4)*Im(jj-N/4));O(jj)=180/pi*atan((Um(jj-N/4)*Im(jj)-Um(jj)*Im(jj-N/4))/(Um(jj)*Im(jj)+Um(jj-N/4)*Im(jj-N/4)));%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%R1(jj)=(Um1(jj)*Im1(jj)+Um1(jj-N/4)*Im1(jj-N/4))/(Im1(jj)*Im1(jj)+Im1(jj-N/4)*Im1(jj-N/4));X1(jj)=(Um1(jj-N/4)*Im1(jj)-Um1(jj)*Im1(jj-N/4))/(Im1(jj)*Im1(jj)+Im1(jj-N/4)*Im1(jj-N/4));O1(jj)=180/pi*atan((Um1(jj-N/4)*Im1(jj)-Um1(jj)*Im1(jj-N/4))/(Um1(jj)*Im1(jj)+Um1(jj-N/4)*Im1(jj-N/4)));%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%R2(jj)=(Um2(jj)*Im2(jj)+Um2(jj-N/4)*Im2(jj-N/4))/(Im2(jj)*Im2(jj)+Im2(jj-N/4)*Im2(jj-N/4));X2(jj)=(Um2(jj-N/4)*Im2(jj)-Um2(jj)*Im2(jj-N/4))/(Im2(jj)*Im2(jj)+Im2(jj-N/4)*Im2(jj-N/4));O2(jj)=180/pi*atan((Um2(jj-N/4)*Im2(jj)-Um2(jj)*Im2(jj-N/4))/(Um2(jj)*Im2(jj)+Um2(jj-N/4)*Im2(jj-N/4)));end%******动作判据*******%Zset=+i*;Zm=R+i.*X;Zm1=R1+i.*X1;Zm2=R2+i.*X2;flag=zeros(1,m(2));flag1=zeros(1,m(2));flag2=zeros(1,m(2));for jj=1:m(2)if abs(Zm(jj)*Zset)<=*abs(Zset)flag(jj)=1;endif abs(Zm1(jj)*Zset)<=*abs(Zset)flag1(jj)=1;endif abs(Zm2(jj)*Zset)<=*abs(Zset)flag2(jj)=1;endendfiguresubplot(221)plot(t,flag)title('动作判据')subplot(222)plot(t,flag1)subplot(223)plot(t,flag2)四、实验结果分析微机距离保护与线路参数和线路短路长度密切相关,微机距离保护算法中,给出线路参数及短路线路长度后,计算其短路阻抗根据整定原则确定其整定值。

继保实验实训总结报告

继保实验实训总结报告

一、前言随着电力系统的日益复杂化,继电保护作为电力系统安全稳定运行的重要保障,其重要性不言而喻。

为了提高继电保护专业人员的实际操作能力,我们进行了为期两周的继保实验实训。

通过本次实训,我们对继电保护的基本原理、设备操作、故障分析等方面有了更深入的了解。

以下是对本次实训的总结报告。

二、实训目的与内容1. 实训目的(1)掌握继电保护的基本原理和设备操作方法;(2)熟悉电力系统常见故障及继电保护的动作过程;(3)提高继电保护专业人员的实际操作能力和故障分析能力;(4)培养团队合作精神和严谨的工作态度。

2. 实训内容(1)继电保护基本原理:学习电流、电压、频率、功率等基本参数的测量方法,掌握继电保护的基本原理和动作特性;(2)继电保护设备操作:熟悉继电保护装置的结构、原理及操作方法,进行实际操作练习;(3)电力系统故障分析:分析电力系统常见故障,掌握故障处理方法;(4)继电保护整定计算:学习继电保护整定计算方法,进行实际整定计算;(5)实训报告撰写:对实训过程进行总结,撰写实训报告。

三、实训过程1. 第一阶段:理论学习(1)学习继电保护的基本原理,了解各种继电保护装置的动作特性;(2)学习电力系统常见故障及继电保护的动作过程;(3)学习继电保护整定计算方法。

2. 第二阶段:实验操作(1)按照实验指导书的要求,进行继电保护装置的操作练习;(2)观察并记录实验现象,分析实验结果;(3)根据实验结果,分析故障原因,提出改进措施。

3. 第三阶段:故障分析(1)分析电力系统常见故障,掌握故障处理方法;(2)针对实际故障,提出解决方案,并进行模拟实验验证;(3)总结故障分析经验,提高故障处理能力。

四、实训成果1. 理论知识方面通过本次实训,我们对继电保护的基本原理、设备操作方法、电力系统故障分析等方面有了更深入的了解,为今后从事继电保护工作打下了坚实的基础。

2. 实践能力方面(1)掌握了继电保护装置的操作方法,能够熟练地进行实验操作;(2)提高了故障分析能力,能够迅速判断故障原因并提出解决方案;(3)培养了团队合作精神和严谨的工作态度。

继电保护实验报告

继电保护实验报告

继电保护实验报告
继电保护实验报告
一、实验目的
本实验的主要目的是了解继电保护的原理,运用继电保护系统,对电力系统中的电力设备进行有效的保护,保证电力系统的安全稳定运行。

二、实验内容
1. 综述继电保护的基本原理及功能。

2. 搭建、设置、测试继电保护实验仪器,分别熟练操作和应用它们。

3. 了解继电保护装置的种类、接线及作用原理,以及各种保护动作的原理。

4. 熟练掌握继电保护装置的作用及保护试验的实施方法,并且能够对电力系统中的电力设备进行有效的保护。

5. 熟练掌握继电保护装置的维护与检查,并能够找出系统中存在的负荷覆盖不足、响应时间过长等问题。

三、实验结果
1. 实验中熟练掌握了继电保护装置的作用及保护试验的实施方法,完成了对电力系统中的电力设备进行有效的保护的任务。

2. 熟悉了继电保护装置的维护与检查,了解了电力系统中存在的负荷覆盖不足、响应时间过长等问题,并可以采取相应的措施来解决。

四、结论
本次实验对继电保护的理论基础、原理及其应用有了更加深入的了解,掌握了电力系统中电力设备的保护原理,以及对继电保护的维护与检查等工作的熟练运用。

110KV微机线路保护实验报告

110KV微机线路保护实验报告

效验码:(2)开出检查:合格4.开入开出接点检查(1)开入检查3.绝缘摇测试验(使用1000V摇表对地摇测,单位为M Ω)(2)精度检查(电流单位为A,电压单位为V)模拟正常运行情况,所加电压57.74,电流为5A。

2.零漂及精度检查(1)零漂检查(电流单位为A,电压单位为V)(7)装置电源空开型号:B4DC 操作电源空开型号:B4DC交流电压空开型号:B2(1)装置面板无划痕、无损坏、机箱固定牢国可靠、无明显变形现象;(2)面板按键灵活,液晶显示完好,面板指示灯指示正确;(3)后排端子接线正确、无松脱,保护装置的背板接线无松脱、无断线;(4)各插件上的元器件外观完好,印刷电路无烧毁现象,芯片插紧可靠;(5)各插件位置正确,固定良好、无松动现象;(6)装置型号:软件版本:RCS-941AV2.004F69110KV微机线路保护实验报告回路名称:110KV代卫线151实验日期:2008.03.071.装置一般性检查5.保护定值校验(1)接地距离定值:ZZD1=2Ω,ZZDP2=4Ω,ZZDP3=6Ω,T2PZD=0.5S,T3PZD=1.5S。

(2)相间距离定值:ZZD1=2Ω,ZZDPP2=4Ω,ZZDPP3=6Ω,T2PPZD=0.5S,T3PPZD=1S(3)零序保护定值:I01=6A,I02=4A,I03=2A,I04=1.2,T02=0.5S,T03=1S,T04=2S。

(4)相电流过负荷相电流过负荷定值=5A,TGFH=5S。

(5)TV断线过流定值:IVTDX1=2A,TTVDX1=0.5S,ITVDX2=1.5A,TTVDX2=1S。

(6)重合闸及后加速定值:重合闸时间TCHZD=2S。

模拟C相永久性短路故障使零序Ⅲ段动作,重合闸及后 加速动作,开关跳闸后重合成功,再加速跳开。

动作时间如下:6.低电压跳合闸试验7.二次查线:正确8.整组传动试验(1)分别模拟A、B、C相永久性接地故障,保护动作正确,开关跳闸后重合成功,再加速跳开。

继电保护与自动化综合实验报告.(DOC)

继电保护与自动化综合实验报告.(DOC)

华北电力大学继电保护与自动化综合实验报告院系电气学院班级姓名学号同组人姓名日期2016 年 1 月20 日教师肖仕武成绩Ⅰ. 微机线路保护认识实验一、实验目的通过微机线路保护简单故障实验,掌握微机保护的接线、动作特性和动作报文。

二、实验项目1、三相短路实验投入距离保护、零序电流保护,记录保护装置的动作报文。

2、单相接地短路实验投入距离保护、零序电流保护,记录保护装置的动作报文。

三、实验方法12、三相短路实验1) 实验接线2) 实验中短路故障参数设置短路参数:KR=2.30,KX=0.60;短路电流I k=5A,故障前时间5s,故障时间5s3) 保护动作情况记录4) 报文及保护动作结果分析二次侧:,一次侧:,则有:二次侧短路阻抗为1Ω时,理论测距L=9.17*1/0.4=22.93(km)二次侧短路阻抗为4Ω时,理论测距L=9.17*4/0.4=91.70(km)二次侧短路阻抗为7Ω时,理论测距L=9.17*7/0.4=160.48(km)相间距离保护基本能正确动作,但无法正确反映三相短路故障,出现选相错误。

故障发生地距离越远,测距误差越小,I段测距误差较大。

实验中发生永久性故障时,无后加速时间,据说明书,理论上只要是永久性故障,重合闸失败后,都由III段保护再次切除,III段没有动作是因为电脑模拟系统永久性故障时,故障持续时间(5s)设置得过短,III段动作时间大于故障时间,即未断开而故障已消失,从而没有测出二次动作时间(表中的后加速时间)的情况。

3、单相接地短路实验1) 实验接线与三相短路实验一致2) 实验中短路故障参数设置与三相短路实验一致3) 保护动作情况记录4) 报文及保护动作结果分析二次侧:,一次侧:,则有:二次侧短路阻抗为1Ω时,理论测距L=9.17*1/0.4=22.93(km)二次侧短路阻抗为4Ω时,理论测距L=9.17*4/0.4=91.70(km)二次侧短路阻抗为7Ω时,理论测距L=9.17*7/0.4=160.48(km)相间距离保护基本能正确动作,能正确反映单相接地短路故障。

继电保护实验报告(完整版)

继电保护实验报告(完整版)

报告编号:YT-FS-8685-31继电保护实验报告(完整版)After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas.互惠互利共同繁荣Mutual Benefit And Common Prosperity继电保护实验报告(完整版)备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。

文档可根据实际情况进行修改和使用。

电流方向继电器特性实验一、实验目的1、了解继电器的結构及工作原理。

2、掌握继电器的调试方法。

二、构造原理及用途继电器由电磁铁、线圈、Z型舌片、弹簧、动触点、静触点、整定把手、刻度盘、轴承、限制螺杆等组成。

继电器动作的原理:当继电器线圈中的电流增加到一定值时,该电流产生的电磁力矩能够克服弹簧反作用力矩和摩擦力矩,使Z型舌片沿顺时针方向转动,动静接点接通,继电器动作。

当线圈的电流中断或减小到一定值时,弹簧的反作用力矩使继电器返回。

利用连接片可将继电器的线圈串联或并联,再加上改变调整把手的位置可使其动作值的调整范围变更四倍。

继电器的内部接线图如下:图一为动合触点,图二为动断触点,图三为一动合一动断触点。

电流继电器用于发电机、变压器、线路及电动机等的过负荷和短路保护装置。

三、实验内容1. 外部检查2. 内部及机械部分的检查3. 绝缘检查4. 刻度值检查5. 接点工作可靠性检查四、实验仪器1、微机保护综合测试仪2、功率方向继电器3、DL-31 型电流继电器4、电脑、导线若干。

五、实验步骤1、外部检查检查外壳与底座间的接合应牢固、紧密;外罩应完好,继电器端子接线应牢固可靠。

微机保护实验报告

电气信息学院微机保护实验报告实验内容:实验七:微机线路相间方向距离保护实验实验八:微机接地方向距离保护特性实验实验九:微机零序方向距离保护特性实验实验十:微机线路保护屏整组特性实验专业:电气工程及其自动化班级:姓名:学号:指导教师:阻抗特性搜索五、微机保护与传统模拟保护区别:微机可靠性更高,满足各种运行条件微机更灵活,更能适应现在电力系统的需要微机保护性能比传统模拟保护更高微机保护功能容易获得扩充微机保护维护调试方便,工作量小微机保护利于实现综合自动化微机保护的成本相比传统模拟保护来说更小微机保护基于传统保护的理论基础之上,结合现在较为普遍的计算机技术,实现更多更复杂传统保护所达不到的要求和功能,更加适用于自动化程度越来越高的现代电力系统。

六、实验心得:通过这次微机保护实验及老师的讲解,跟同学们在实验过程中的交流,使我对微机保护、继电保护这两门门课都有了新的认识。

之前觉得这微机保护很抽象,甚至有点无聊。

但是在实验中改变了我一直以来的认识。

自身的动手操作,发现理论跟实际操作部是那么简单的样子,很多适用操作都不会,都得请教实验指导老师,操作过程中也会遇到很多问题,跟同学们交流、跟老师请教后发现微机保护对现代电力系统有着很重要的作用和很高的地位。

在现代化、自动化程度越来越高的电力系统中,传统的继电保护作用在微机保护的配合下,性能越来越好,也越来越重要。

这次的实验使我对真正的微机保护有了新的认识,对它的作用和重要性也有了重新的认识。

虽然这次实验的内容都是很自动化的,操作都是在电脑上进行,与传统意义上的实验有些不同,不过实验的目的已经达到:对理论知识有了新的理解,增强了自己的动手能力,对现代电力系统中最为重要的继电保护模块有了大体上的感知,也指导把使理论知识与实际相结合起来是很重要。

微机保护 功能实验报告

微机保护功能实验报告引言随着计算机应用的普及和发展,我们越来越依赖于计算机进行工作和生活。

然而,计算机作为一种电子设备,也存在各种潜在的风险,如病毒和黑客攻击等。

为了保护计算机的安全和正常运行,我们进行了一系列微机保护功能的实验。

本报告旨在总结和分享这些实验的过程和结果。

实验目的1. 了解计算机系统的基本架构和工作原理;2. 学习常见的微机保护功能并掌握其原理和使用方法;3. 分析和评估各类微机保护功能的效果和局限性。

实验内容实验一:防病毒程序的安装和使用1. 了解病毒的分类和感染方式;2. 下载并安装主流的防病毒软件;3. 进行病毒扫描并清除感染的文件。

实验二:防火墙的配置和使用1. 了解防火墙的原理和分类;2. 配置操作系统内置的防火墙或使用第三方防火墙软件;3. 模拟攻击并测试防火墙的效果。

实验三:网络安全认证1. 学习网络安全认证的概念和原理;2. 配置和使用无线网络的加密认证功能;3. 进行无线网络攻击和抵抗的测试。

实验四:数据备份与恢复1. 了解数据备份和恢复的方法和工具;2. 配置自动或手动定期备份重要数据;3. 模拟数据丢失并进行恢复操作。

实验五:密码管理与安全使用习惯1. 学习创建强密码的原则和方法;2. 应用密码管理工具进行账户和密码的管理;3. 养成良好的密码安全使用习惯。

实验结果通过以上实验,我们获得了以下结果和收获:1. 防病毒程序的安装和使用可以有效提升计算机的安全性,及时清除病毒并保护系统;2. 配置和使用防火墙可以阻止外部攻击并控制程序的网络访问权限;3. 网络安全认证可以保护无线网络的安全,防止未经授权的设备接入;4. 数据备份与恢复是防止数据丢失的重要手段,及时备份可以最大程度减少数据损失;5. 密码管理和安全使用习惯是保护个人账户安全的基础,创建强密码和定期更换密码是必要的。

实验总结通过完成以上实验,我们深入了解了计算机保护功能的原理和使用方法。

同时,我们也发现了一些局限性,如病毒无法完全杜绝、防火墙可能导致误拦截、密码管理仍然面临被猜测等。

微机保护实验报告3_4

微机继电保护实验报告
项目名称:微机距离保护算法(1) 姓 学 班 名:陈发敏 号:K03134163 级:K0313416
实验时间:2016.6.7 实验地点:实验楼五楼 实验成绩:
一、 实验目的
1.熟悉 MATLAB 桌面和命令窗口; 2.通过编写滤波程序、阻抗计算程序以及距离保护动作判据程序,了解微机保护工作 原理。 3.定性分析各种算法的优缺点。
Um=UUA-UUB; Im=IIA-IIB; Um1=UUB-UUC; Im1=IIB-IIC; Um2=UUC-UUA; Im2=IIC-IIA; % %电阻、电抗、相角差 for jj=N/4+1:m(2) R(jj)=(Um(jj)*Im(jj)+Um(jj-N/4)*Im(jj-N/4))/(Im(jj)*Im(jj)+Im(jj-N/4)*Im(jj-N/4)); X(jj)=(Um(jj-N/4)*Im(jj)-Um(jj)*Im(jj-N/4))/(Im(jj)*Im(jj)+Im(jj-N/4)*Im(jj-N/4)); O(jj)=180/pi*atan((Um(jj-N/4)*Im(jj)-Um(jj)*Im(jj-N/4))/(Um(jj)*Im(jj)+Um(jj-N/4)*Im(jj-N/4))); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%% R1(jj)=(Um1(jj)*Im1(jj)+Um1(jj-N/4)*Im1(jj-N/4))/(Im1(jj)*Im1(jj)+Im1(jj-N/4)*Im1(jj-N/4)); X1(jj)=(Um1(jj-N/4)*Im1(jj)-Um1(jj)*Im1(jj-N/4))/(Im1(jj)*Im1(jj)+Im1(jj-N/4)*Im1(jj-N/4)); O1(jj)=180/pi*atan((Um1(jj-N/4)*Im1(jj)-Um1(jj)*Im1(jj-N/4))/(Um1(jj)*Im1(jj)+Um1(jj-N/4)*Im1(j j-N/4))); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%% R2(jj)=(Um2(jj)*Im2(jj)+Um2(jj-N/4)*Im2(jj-N/4))/(Im2(jj)*Im2(jj)+Im2(jj-N/4)*Im2(jj-N/4)); X2(jj)=(Um2(jj-N/4)*Im2(jj)-Um2(jj)*Im2(jj-N/4))/(Im2(jj)*Im2(jj)+Im2(jj-N/4)*Im2(jj-N/4)); O2(jj)=180/pi*atan((Um2(jj-N/4)*Im2(jj)-Um2(jj)*Im2(jj-N/4))/(Um2(jj)*Im2(jj)+Um2(jj-N/4)*Im2(j j-N/4))); end %******动作判据*******% Zset=1.0821+i*24.9205; Zm=R+i.*X; Zm1=R1+i.*X1; Zm2=R2+i.*X2; flag=zeros(1,m(2)); flag1=zeros(1,m(2)); flag2=zeros(1,m(2)); for jj=1:m(2) if end if abs(Zm1(jj)-0.5*Zset)<=0.5*abs(Zset) abs(Zm(jj)-0.5*Zset)<=0.5*abs(Zset) flag(jj)=1;

南昌大学继电保护实验报告

本科生实验报告课程名称:继电保护原理实验专业班级:电力系统124 班姓名:学号:所在学期: 2014-2015-22015年06月20日目录实验一继电器特性试验实验二功率方向继电器特性试验实验三微机保护实验1实验四微机保护实验2南昌大学实验报告学生姓名:学号:专业班级:电力系统124班实验类型:□验证□综合□设计□创新实验日期: 2015.5.14 实验成绩:一、实验项目名称电磁型电流继电器和电压继电器实验二、实验目的1.熟悉DL型电流继电器和DY型电压继电器的实际结构,工作原理,基本特性。

2.掌握动作电流,动作电压参数的整定。

三、实验基本原理DL-20G系列电流继电器和DY-20C系列电压继电器为电磁式继电器。

由电磁系统,整定装置,接触点系统组成。

当线圈导通时,衔铁克服游丝的反作用力矩而作用,使动合触点闭合.转动刻度盘上的指针,可改变游丝的力矩,从而改变继电器的动作值。

改变线圈的串联并联,可获得不同的额定值。

DL-20C系列电流继电器铭牌刻度值,为线圈并联时的额定值。

继电器用于反映发电机,变压器及输电线短路和过负荷的继电器保护装置中。

DY-20C系列电压继电器铭牌刻度值,为线圈串联时的额定值。

继电器用于反映发电机,变压器及输电线路的电压升高(过压保护)或电压降低(低电压起动)的继电保护装置中。

四、主要仪器设备及耗材DL-20G系列电流继电器和DY-20C系列电压继电器为电磁式继电器。

五、实验步骤1.整定点的动作值,返回值及返回系数测试实验接线图1-2,图1-4分别为过流继电器及低压继电器的实验接线.(1)电流继电器的动作电流和返回电流测试:a.选择EPL-04组件的DL-21C过流继电器(额定电流为6A),确定动作值并进行整定.本实验整定值为2.7A及5.4A两种工作状态.注意:本继电器在出厂时已把转动刻度盘上的指针调整到2.7A,学生也可以拆下玻璃罩子自行调整电流整定值.b.根据整定值要求对继电器线圈确定接线方式:注意:(1)过流继电器线圈可采用串联或并联接法,如右图所示.其中串联接法电流动作值可由转动刻度盘上的指针所对应的电流读出,并联接法电流动作值则为串联接法的2倍.(2)串并联接线时需注意线圈的极性,应按照要求接线,否则就得不到预期的动作电流值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微机继电保护实验报告 本科实验报告 课程名称: 微机继电保护 实验项目: 电力系统继电保护仿真实验 实验地点: 电力系统仿真实验室 专业班级: 电气1200 学号:0000000000 学生姓名: 000000 指导教师: 000000

2015年 12 月 2 日 一、实验背景 微机继电保护指的是以数字式计算机(包括微型机)为基础而构成的继电保护。众所周知,传统的继电器是由硬件实现的,直接将模拟信号引入保护装置,实现幅值、相位、比率的判断,从而实现保护功能。而微机保护则是由硬件和软件共同实现,将模拟信号转换为数字信号,经过某种运算求出电流、电压的幅值、相位、比值等,并与整定值进行比较,以决定是否发出跳闸命令。 继电保护的种类很多,按保护对象分有元件保护、线路保护等;按保护原理分有差动保护、距离保护和电压、电流保护等。然而,不管哪一类保护的算法,其核心问题归根结底不外乎是算出可表征被保护对象运行特点的物理量,如电压、电流等的有效值和相位以及视在阻抗等,或者算出它们的序分量、或基波分量、或某次谐波分量的大小和相位等。有了这些基本电气量的计算值,就可以很容易地构成各种不同原理的保护。基本上可以说,只要找出任何能够区分正常与短路的特征量,微机保护就可以予以实现。 由此,微机保护算法就成为了电力系统微机保护研究的重点,微机保护不同功能的实现,主要依靠其软件算法来完成。微机保护的其中一个基本问题便是寻找适当的算法,对采集的电气量进行运算,得到跳闸信号,实现微机保护的功能。微机保护算法众多,但各种算法间存在着差异,对微机保护算法的综合性能进行分析,确定特定场合下如何合理的进行选择,并在此基础上对其进行补偿与改进,对进一步提高微机保护的选择性、速动性、灵敏性和可靠性,满足电网安全稳定运行的要求具有现实指导意义。 目前已提出的算法有很多种,本次实验将着重讨论基本电气量的算法,主要介绍突变量电流算法、半周期积分算法、傅里叶级数算法。

二、实验目的 1. 了解目前电力系统微机保护的研究现状、发展前景以及一些电力系统微机保护装置。 2. 具体分析几种典型的微机保护算法的基本原理。 3. 针对线路保护的保护原理和保护配置,选择典型的电力系统模型,在MATLAB软件搭建仿真模型,对微机保护算法进行程序编写。 4. 对仿真结果进行总结分析。

三、实验内容 1、采用MATLAB软件搭建电力系统仿真模型 2、采用MATLAB软件编写突变量电流算法 3、采用MATLAB软件编写半周积分算法 4、采用MATLAB软件编写傅里叶级数算法算法 四、实验步骤 1.突变量电流算法、半周积分算法、傅里叶级数算法简介 1.1突变量电流算法 继电保护装置的启动元件用于反应电力系统中的扰动或故障。微机保护装置中的启动元件是由软件来实现的。它的工作原理目前一般采用反映两相电流差的突变量,其公式为

()()(2)()()(2)()()(2)ababnabnNabnNabnNbcbcnbcnNbcnNbcnNcacancanNcanNcanNIiiiiIiiiiIiiii

 (1)

其中 abnanbnbcnbncncancnan

iiiiiiiii (2)

公式中 N—一个工频周期内的采样点数

ani、bni、cni—当前时刻的采样值

()abnNi、()bcnNi、()canNi—一周前对应时刻的采样值

(2)abnNi、(2)bcnNi、(2)canNi—两周前对应时刻的采样值

以abI为例,正常运行时ani、()anNi、(2)anNi的值近似相等,所以0abI,启动元件不动作,如图1所示。 图1 系统正常运行时采样值比较 电力系统正常运行但频率发生变化偏离50Hz时,则ani、()anNi、(2)anNi的值将不相等,。这是因为采样时按时间间隔进行的,频率变化时,ani和()anNi两采样值将不是相差一个周期的采样值,于是ani-()anNi、()anNi-(2)anNi将出现差值,且差值接近相等。此时abI仍然为零或很小。 系统发生故障时,由于故障电流增大,于是ani将增大,()anNi为故障前电流,故ani-()anNi

反映出由于故障电流产生的突变量电流,()anNi-(2)anNi仍接近为零,从而abI反映了故障电流的突变量,如图2所示。

图2 故障后电流的突变 1.2半周积分法 半周积分算法的依据是一个正弦量在任意半个周期内绝对值的积分为一个常数S,即 T2

0S=2Isin(t+)dt

(3)

T2

022

2Isin(t)Idt

积分值S与积分起点的初相角无关,因为画有断面线的两块面积显然是相等的,如图3所示。式(3)的积分可以用梯形法则近似求出:

20N121122NkskSiiiT







 (4)

式中 ki:第k次采样值

N:每个周期的采样点数

0i:0k时的采样值

2Ni:

2N

k时的采样值

sT:采样间隔

图4所示,只要采样率足够高,用梯形法则近似积分的误差可以做到很小。 S

S



0k

2

N

图3 半周期积分法原理示意图 图4 用梯形法近似半周期积分示意图 求出S值后,应用式(3)即可求得有效值 I=S22

1.3傅里叶级数算法 傅里叶级数算法(简称傅氏算法)的基本思路来自傅里叶级数,算法本身具有滤波作用。它假定被采样的模拟信号是一个周期性的时间函数,除基波外还含有不衰减的直流分量和各次谐波,可表示为

11100()sin()[(sin)cos(sin)sin]nnnnnnnnxtXntXntXnt



110[cossin]nnnbntant



(0,1,2....)n (5)

式中na、nb分别为直流、基波和各次谐波的正弦项和余弦相得振幅,其中sinnnnbX、cosnnnaX。

由于各次谐波的相位可能是任意值的,所以,把它们分解成有任意振幅的正弦项和余弦 项之和。1a、1b分别为基波分量的正、余弦项的振幅,0b为直流分量的值。 根据傅氏级数的原理,可以求出1a、1b分别为

110

2()sin()TaxttdtT (6)

110

2()cos()TbxttdtT (7)

由积分过程可以知道,基波分量正、余弦项的振幅1a、1b已经消除了直流分量和整次谐波分量的影响。于是()xt中的基波分量为

11111()sincosxtatbt (8)

合并正弦、余弦项,可写为

1111()2sin()xtXt (9)

式中 1X:基波分量的有效值

1:t0时基波分量的相角

将11sin()t用角公式展开可得:

1112cosaX (10) 1112sinbX (11)

用复数表示为 .1111

()2Xajb (12)

因此,可根据1a、1b,求出有效值和相角为 2221112Xab

(13)

11

1

btga (14)

用微机处理时,式(13)和式(14)的积分可以用梯形法则求得: 11112[2sin()]NkKaxkNN (15)

110112[2cos()]NknKbxxkxNN (16)

式中 N:基波信号的一周期采样点数;

kx:第k次采样点数;

0x、Nx:分别为0k和kN时的采样值。

2.使用MATLAB软件搭建电力系统仿真模型 2.1MATLAB/Simulink仿真软件在电力系统中的应用介绍 MATLAB/Simulink软件是由美国Math Works 公司开发的著名的动态仿真系统,它是MATLAB的一个附加组件,为用户提供了一个建模与仿真的工作平台。它能够实现动态系统建模与仿真的模块集成,而且可以根据设计和使用的要求对系统进行优化,提高建模与仿真的效率。 MATLAB/Simulink软件提供了多个学科的仿真系统工具箱,和一些常用工具箱模块,用户可以根据需要方便地选用合适的工具箱进行系统的建模与仿真分析。对于电力系统而言就有专门的工具箱模块库SimPowerSystem供用户使用,其功能强大,包含的电气元件种类多,处理函数模块丰富,为电力系统的仿真与研究提供了很大的便利,是电气工程专业必不可少的研发工具。 在SimPowerSystem模块库中,包括10类模块库,即电源元件库(Electrical Sources)、线路元件库(Element)、电力电子元件库(Power Electronics)、电机元件库(Machines)、连接器元件库(Connctors)、电路测量模块元件库(Measurements)、附加元件库(Extras)、演示教程(Demos)、电力图形用户分析界面(Powergui)、电力系统元件库(Powerlip-modles)。正是这些丰富的模块库使得电力系统的仿真变得方便、快捷,并且科学精确。 本实验选用MATLAB/Simulink软件作为电力系统微机保护仿真的平台。 2.2使用MATLAB软件搭建电力系统故障暂态仿真模型 图5给出了一个实际简单电力系统模型,以此来建立电力系统暂态仿真模型。

相关文档
最新文档