生物医用无机材料

合集下载

生物医用材料

生物医用材料

⽣物医⽤材料⽣物医⽤⾼分⼦材料课程总结⼀、⽣物医⽤材料定义⽣物医⽤材料:对⽣物系统的疾病进⾏诊断、治疗、外科修复、理疗康复、替换⽣物体组织或器官(⼈⼯器官),增进或恢复其功能,⽽对⼈体组织不会产⽣不良影响的材料。

⽣物医⽤材料本⾝并不必须是药物,⽽是通过与⽣物机体直接结合和相互作⽤来进⾏治疗;⽣物医⽤材料是⼀种植⼊躯体活系统内或与活系统相接触⽽设计的⼈⼯材料。

研究内容包括:各种器官的作⽤;⽣物医⽤材料的性能;组织器官与材料之间的相互作⽤分类⽅法:按材料的传统分类法分为:(1)合成⾼分⼦材料(如聚氨酯、聚酯、聚乳酸、聚⼄醇酸、)(2)天然⾼分⼦材料(如胶原、丝蛋⽩、纤维素、壳聚糖)(3)⾦属与合⾦材料(4)⽆机材料(5)复合材料按材料的医⽤功能分为:(1)⾎液相容性材料(2)软组织相容性材料(3)硬组织相容性材料(4)⽣物降解材料(5)⾼分⼦药物⼆、⽣物相容性与安全性⽣物相容性,是⽣物医⽤材料与⼈体之间相互作⽤产⽣各种复杂的⽣物、物理、化学反应的⼀种概念。

⽣物医⽤材料必须对⼈体⽆毒、⽆致敏、⽆刺激、⽆遗传毒性、⽆致癌性,对⼈体组织、⾎液、免疫等系统不产⽣不良反应。

主要包括:1.组织相容性:指材料⽤与⼼⾎管系统外的组织和器官接触。

要求医⽤材料植⼊体内后与组织、细胞接触⽆任何不良反应。

典型的例⼦表现在材料与炎症,材料与肿瘤⽅⾯。

影响组织相容性的因素:1)材料的化学成分;2)表⾯的化学成分;3)形状和表⾯的粗糙度:2.⾎液相容性:材料⽤于⼼⾎管系统与⾎液直接接触,主要考察与⾎液的相互作⽤材料,影响因素:材料的表⾯光洁度;表⾯亲⽔性;表⾯带电性,具体作⽤机理表现在:⾎⼩板激活、聚集、⾎栓形成;凝⾎系统和纤溶系统激活、凝⾎机能增强、凝⾎系统加快、凝⾎时间缩短;红细胞膜破坏、产⽣溶⾎;⽩细胞减少及功能变化;补体系统的激活或抑制;对⾎浆蛋⽩和细胞因⼦的影响。

主要发⽣在凝⾎过程,⽣物材料与⾎⼩板,⽣物材料与补体系统的作⽤过程。

浅析生物医学材料的应用

浅析生物医学材料的应用

浅析生物医学材料的应用摘要:生物医学材料是当今社会医疗保健的一种高新技术产业,由于生物医学材料较其他化学材料来说毒副作用比较小,而且生物相容性是非常好的,因此,人们对生物医学材料的使用越来越广泛。

其在医学领域得到广泛应用,主要应用于各种外伤或疾病引起的组织器官破损修复,最为经典的就是假牙假皮移植,骨骼替换和神经修复。

本文将浅析生物医学材料各种分类及其应用。

关键词:医学材料;临床应用;器官修复生物医学材料是一种毒副作用较小,生物相容性比较好的具有特殊性能和特殊功能的一种医用材料,它对人的生命,组织器官是无害的。

它的发展是以提升人类卫生健康水品,疾病治疗,医疗保健为目的一种生物材料。

随着人口老龄化和中青年创伤的增长,人们对生物医学材料及成品的需求逐步增加。

过往陈旧的生物医学材料以及不足以满足人们的治疗需求,新型的生物医学材料如雨后春笋。

例如各类新型的假肢以及可以做到和人类原有的手臂相差无几,包括外形手感及功能。

下文便是对新型医学材料的介绍。

1新型医学材料的概述生物医学材料是与生物系统直接作用,用以诊断、医治或置换生物机体由疾病或外伤引起的组织器官破损以及增强组织细胞功效的材料。

1.1 医学材料的发展背景生物医学材料快速发展的原因主要有四个:人口老龄化加剧、人体组织器官寿命有限、中青年创伤增加、人民生活水平提高及健康意识的增强。

而国家政策有时也推动着产业的发展。

我国是拥有14亿人口的人口大国,人口老龄化及青年创伤高速增加,创伤住院人员已经成为仅次于恶性肿瘤即癌症的第二大住院人员。

生物医学材料存在庞大的潜在市场,特别是在国民经济的发展同时人民生活水平的不断提高,人民对生物医学材料的需求与日俱增。

以生物医学材料包裹药物,可以预测生物医学材料在癌症、白血病和老年痴呆等的治疗拥有着广阔的市场空间。

1.2 国内外发展现状我国与印度由于人口众多具有极大的市场潜力,国内的生物医学材料企业也是拔地而起,如乐普医疗、泰格医药等。

纳米羟基磷灰石生物复合材料

纳米羟基磷灰石生物复合材料

羟基磷灰石复合生物材料种类
1.纳米羟基磷灰石与甲壳素及其衍生物壳聚糖等多糖类 材料的复合; 2.纳米羟基磷灰石与聚酰胺的复合; 3.纳米羟基磷灰石与聚酯的复合; 4.纳米羟基磷灰石与聚乙烯醇的复合等。
Kikuchi等将纳米级羟基磷灰石材料和胶原按照 93:7,83:17,81:19比例混合,形成密度为 2.8g/cm3的复合物,体内实验表明,该材料可被破骨 细胞样细胞的吞噬作用降解,并可诱导成骨细胞形成 新的骨组织。弹性模量与自体松质骨相当,可以满足 骨缺损移植的需要。 Nukavarapu等设计了一种可生物降解的纳米羟 磷灰石 +多聚磷酸盐,有望应用于骨组织工程,它是 一种三维结构的球形微粒,具有合适的机械性能和细 胞兼容的特性。小鼠体内实验表明,与未涂纳米羟磷 灰石的钽相比,涂有纳米羟磷灰石的钽加速了骨的形 成。
羟基磷灰石复合生物材料主要种类
1.纳米羟基磷灰石与胶原蛋白的复合 胶原蛋白或称胶原,是人体内含量最丰富的蛋白质, 胶原 蛋白在体内以胶原纤维的形式存在。具有无抗原性、生物相容 性好, 可参与组织愈合过程, 在止血、促进伤口愈合、作为烧 伤创面敷料、骨移植替代材料、组织再生诱导物方面得到广泛 应用。 2.纳米羟基磷灰石与骨形态发生蛋白的复合 骨形态发生蛋白是一种存在于骨基质中的生物活性物质, 为小 分子酸性多肽类物质,具有高效骨诱导作用,并呈现非种属特 异性诱导骨形成的生物学特性,可以诱导血管周围未分化的间 充质细胞及骨髓细胞分化成软骨细胞和骨细胞。
骨是自然界中结构最复杂的生物矿化材料之一,由磷 酸钙盐晶体(主要以结晶羟基磷灰石的形式存在)弥散 分布在胶原蛋白以及其它生物聚合物中构成的连续多 相复合体。
骨骺线
纳米羟基磷灰石,why?
1.骨组织本就由大量纳米级的胶原分子和羟基磷灰石组 成,骨细胞外基质中其他的蛋白也都是纳米级别的。 2.研究表明,羟基磷灰石的生物活性与其粒度大小密切 相关。其纳米条件下表现出更强的生物活性。 3.纳米HA粉体不仅提供了优良的性能,而且在治疗癌症 方面表现出一些特异性能。

无机功能材料知识分享

无机功能材料知识分享

无机功能材料一、化学气相1.1.5 对原料、产物和反应类型的要求①反应原料是气态或易于挥发成蒸气的液态或固态物质②反应易于生成所需要的沉积物, 副产品保留在气相中排出或易于分离③整个操作较易于控制1.1.2 分类化学气相沉积Chemical Vapor Deposition,CVD物理气相沉积Physical Vapor Deposition,PVD1.3 化学气相沉积法的技术装置气源控制部件沉积反应室加热系统气体压强控制 =特点:沉积温度低,应用范围拓宽例通过化学转移反应的沉积……化学反应输运沉积1\在气相沉积输运过程中,沉积位置不同所形成的晶体颗粒大小不同,其反应如下:2HgS(s) 2Hg(g)+S2(g)2 原料物质本身不容易发生分解时,而需添加另一物质(称为输运剂)来促进输运中间气态产物的生成。

例如2ZnS(s)+2I2(g)2ZnI2(g)+S2(g)➢这类输运反应中通常是,T2>T1,即生成气态化合物的反应温度T2往往比重新反应沉积时的温度T1要高一些3 有时沉积反应反而在较高温度的地方发生。

例如碘钨灯(或溴钨灯)管工作时不断发生的化学输运过程就是由低温向高温方向进行的W(s)+3I2(g)1400℃约3000℃WI6(g)不断地循环工作巧妙地利用化学输运反应沉积原理,碘钨灯(或溴钨灯)的钨丝温度显著提高,寿命也大幅度地延长主要制备的材料:半导体单晶外延薄膜:单晶,各向同性多晶硅薄膜:沉积时间长,反复沉积半绝缘的掺氧多晶硅薄膜绝缘的二氧化硅氮化硅:耐高温,超硬抗磨损磷硅玻璃硼磷硅玻璃薄膜:膜的稳定性与可靠性金属钨薄膜:羰基钨的热分解,白色金属光泽,硬度大第二章通常的水溶液中,金属离子可能有三种配体:水(OH2)羟基(OH-1)氧基(=O)胶体工艺和聚合工艺主要区别:①反应的前驱体不同②反应介不同CeO2的晶粒大小与烧结温度和烧结时间钠米CeO2粒子为球型●250℃时生成的纳米粒子的平均粒径为8 nm●在250~800℃之间,均可生成单相的萤石型结构的CeO2纳米粒子材料第三章水热与溶剂热合成法➢两者相比较:水热合成反应是在水溶液中进行,溶剂热合成是在非水有机溶剂热条件下的合成高温加压下水热反应具有三个特征 1 使重要离子间的反应加速2使水解反应加剧3 使其氧化还原电势发生明显变化气体就电离成自由电子和正离子组成的电离气体,即等离子体第六章1 、超疏水的昆虫翅膀/眼睛与它们的纳米结构2 、骨材料是一族生物矿物材料的总称,主要发育于脊椎动物中骨主要成分:1 胶原纤维,65%、2 碳羟磷灰石,24%Ca10(PO4)6(OH)2 3水,10%研究内容分为两方面:一是采用生物矿化的原理制作优异的材料二是采用其他的方法制作类似生物矿物结构的材料第一章生物医用无机材料一、以材料的生物性能分四类1、生物惰性材料(bioinert material) 2、生物活性材料(bioactive material)3、生物降解材料(biodegradable material)4、生物复合材料(composite biomaterialb)二、生物医用材料的基本条件:生物相容性化学稳定性力学条件稳定性其它要求三、其基本特征1、具有促进细胞分化与增殖2、诱导组织再生3、参与生命活动等功能四、(3)生物降解材料(biodegradable material)生物降解材料是指那些被植人人体以后,能够不断发生降解,降解产物能够被生物体所吸收或排出体外的一类材料主要包括:①β-TCP生物降解陶瓷….修复良性骨肿瘤或瘤样病变手术刮除后所致缺损β-磷酸三钙,Ca3(PO4)2,简称为β-TCP,β-TCP的结构属于三方晶系。

生物医用人工骨修复材料研究现状

生物医用人工骨修复材料研究现状

生物医用人工骨修复材料研究现状1.研究背景人体骨组织本身有一定的再生和自修复能力,但只限于小面积的骨缺损,并且随着年龄的增长、疾病、其他因素,这种能力会有所衰退。

其中,软骨是一种致密的结缔组织。

关节软骨缺乏血供以及受伤后未分化的细胞难以迁移到受伤部位,所以其自身修复的能力较差。

因此对于创伤、感染、肿瘤以及发育异常的个原因引起较大的骨缺损,单纯依靠骨组织自身的修复自然无法自然自愈,需要进行骨移植手术治疗。

常用人工骨修复材料分为四类,为金属材料、有机高分子材料、无机非金属材料、复合材料[1]。

1.人工骨修复材料分类及特点2.1 金属材料用于人工骨的金属材料主要材料为不锈钢、钛合金、钴基合金,此外还有贵金属、纯金属钽、铌、锆。

金属材料的优点是力学强度高,缺点是可能有毒性、易腐蚀,应力遮挡效应,易造成骨质疏松[2]。

2.2 无机非金属材料无机非金属材料具有与天然骨良好的亲和性,可在人体内稳定存在,适合用作人体硬组织部位的替换材料。

磷酸钙、生物活性玻璃是骨修复研究中常用的无机非金属材料[3]。

磷酸钙有良好的生物降解性、理想的生物相容性和骨传导性。

磷酸钙表面能形成磷灰石层,与骨组织通过化学键稳定结合,进而提高与受损骨间的整合效果。

2.3 有机高分子材料骨组织工程研究中常用的有机高分子材料,根据来源可分为天然高分子与人工合成高分子两类。

其中,天然高分子包括胶原、纤维蛋白、丝素蛋白、甲壳素、透明质酸、海藻酸钠和壳聚糖等;人工合成高分子包括聚羟基乙酸(PGA)、聚乳酸(PLA)、羟基乙酸-乳酸共聚物(PLGA)和聚已内酯[4]。

胶原是天然骨中有机质的主要组成成分,具有良好的生物相容性。

它能为钙盐沉积提供位点,同时还能与调控细胞矿化的蛋白相结合,促进骨基质矿化。

但存在机械强度较低、降解过快等不可调控的缺陷。

2.4 复合材料复合材料是根据材料的优缺点,将两种或以上的不同材料进行复合制得,不仅兼具组分材料的性质,还可以得到单组分材料不具备的新性能。

生物医用材料汇总

生物医用材料汇总

(1)血液相容性材料
对于与人体血液接触的材料,要求不可以引起血栓,不可与血液 发生相互作用。例如肝素化材料,尿酶固定化材料,骨胶原材料, 聚氨酯,聚苯乙烯的聚合物
(2)软组织相容性材料
对于与组织非结合性的材料,要求必须对周围 组织无刺激,无毒副作用。例如聚硅氧烷,聚酯,聚 氨基酸改性甲壳酸。
(3)硬组织相容性材料
学 科
材料科学与物理学、化学、生物学及临床科学越来越紧密地 结合,并突破旧有科学的狭小范围,诞生了另一个新兴的产业-生物医学材料产业。生物医学材料已经成为生物医学工程的4大 支柱产业之一,它为医学、药物学及生物学等学科的发展提供了 丰富的物质基础。
生物医用材料的分类
结构蛋白 天然生物医用材料 结构多糖 生物复合纤维 生物矿物 合成生物医用材料
4
生物医学复合材料(biomedical composites)
生物医学复合材料是由两种或两种以上不 同材料复合而成的生物医学材料,主要用于修 复或替换人体组织、器官或增进其功能以及人 工器官的制造。其中钻合金和聚乙烯组织的假 体常用作关节材料;碳-钛合成材料是临床应 用良好的人工股骨头;高分子材料与生物高分 子(如酶、抗源、抗体和激素等)结合可以作 为生物传感器。
(一)
生物医用材料 材料属性
人工合成的生物材料较多,大致可以分为以下几类
1 生物医学金属材料(biomedical metallic materials)
医用金属材料是作为生物医学材料的金属 或合金,具有很高的机械强度和抗疲劳特性, 是临床应用最广泛的承力植入材料,主要有 钴合金(co-cr-ni)、钛合金(ti-6a1-4v)和 不锈钢的人工关节和人工骨。镍钛形状记忆 合金具有形状记忆的智能特性,能够用于矫 形外科、心血管外科。

生物医用敏感材料


03
生物医用敏感材料的制备方法与技术
物理制备方法
物理制备方法包括机械研磨法、热 蒸发法、激光脉冲法等。这些方法 利用物理手段将原材料制备成具有 特定性能和结构的敏感材料。
VS
机械研磨法是一种常用的制备方法 ,通过研磨、压制成粉末,再进行 烧结或热压制成敏感材料。该方法 操作简单,适用于大批量生产,但 制得的材料的性能可能不够稳定。
力学性能
材料的硬度、弹性、耐磨性等机械 性能。
稳定性
材料在体内或体外的化学稳定性, 如降解速率、抗氧化性能等。
生物学性能测试与评价
细胞黏附性
细胞增殖与分化
评估材料对细胞黏附特性的影响及其与细胞 间的作用机制。
分析材料对细胞增殖、分化及功能发挥的影 响。
生物活性因子释放
体内生物学效应
研究材料对生物活性因子的吸附与释放性能 。
THANK YOU.
随着科学技术的发展,生物医用敏感材料的研发和应用将更加精细化、智能 化和个性化
02
生物医用敏感材料的分类及性能
生物医用金属敏感材料
生物安全性
生物医用金属材料在体内应具 有良好的生物相容性和耐腐蚀 性,避免引起严重的免疫反应
和炎症反应。
机械性能
金属材料的机械性能应与人体 硬组织相近,以保持长期植入
2023
《生物医用敏感材料》
目 录
• 生物医用敏感材料简介 • 生物医用敏感材料的分类及性能 • 生物医用敏感材料的制备方法与技术 • 生物医用敏感材料的性能测试与评价 • 生物医用敏感材料的应用案例与前景展望
01
生物医用敏感材料简介
定义与特点
生物医用敏感材料
指在生物医学领域中,用于检测、诊断或治疗疾病的一类材 料

生物医用材料的研究

提高 踺康 水平 其方 法是:将 特 定组 织 细胞 “ 植 于一 种生物 相容性 良 种
速 成 形 工 艺 ;研 制 了具 有 与天 然 人骨 材 料类似 的纳 米 片层结 构 的纳米 晶羟 基
磷灰石 胶原 ( NHAC) 自组 装材料 在 NHAC材 料 中 ,加 八增 强 材料 和溶
当代生物材 料的发 展不 仅强调 自身 理化 性能和 生物 安全性 可靠性 的改善 , 而且更强调赋予其
生物结构和生物功 能 , 以便其在 俸内调 动并发挥 机体 自我修复和完善的能力 , 重建豌康复曼 损的人 体 组织或器 官
下面几个方面反映了当亭生物医用材料的发展动态
组织 工程材料
组 织 工 程是 应 用 生 命科 学 与工 程 的 原理 和 方 浩 .构 建 一 个生 物 装
来 阻 止
是 冠纳 米之 名 ,行 欺 骗之 实 ,这 是应
该 严 厉杜 绝 的 。
通过具 有 不同性能 材料 的复 合 ,可 以达
到 取 长 补短 的 效果 ,可 以有效 解决
血液净化材料
采 用滤 过沉 淀 或吸 附 的原 理 ,将
材 料 的 强 度 、韧性 及 生物 相 容性 问盟 , 是生物 材料 新 品种 开发 的有 效手段 。提 高复合材料界面之间的相容性是 复合材料 研 究的 主要 课 盟 。根据 使 用方 式 不 同 ,
剂 、纳米膜 材料 、纳米孔材料 等产 品。 生物 医 用 纳米 材料 现 在 已初 见端 睨 ,产 品正 在不 断涌现 。但 少数 产 品
复合生铂材料
作为 硬组织修 复材料 的 主体 ,复合 生 物 材料 受 到 广 泛 重 视 ,它 具 有 强 度
高 、韧 性好 特 点 , 目前 已广 泛干 临 床 。

生物医用材料简介

生物医用材料简介
生物医用材料市场
按国际约定和惯例,生物医用材料归类于医疗器械范畴. 生物医用材料和制品产业特点:技术附加值高,研究开发周期 长,多学科交叉,产品更新换代周期短,引导性的市场开发, 企业规模小。 1996年我国注册生产的生物医用材料及制品仅 49种,产品质量大多居中低档。共有医疗器械生产企业2800家。 1995年世界医疗器械市场已达1200亿美元,其中美国占510亿 美元,年增长率一直保持在20%左右。 我国生物材料和制品所占世界市场份额不足1.5%。 1998年美国仅骨缺损病例即达123万,其中80%需使用生物医用 材料治疗,花费在骨骼-肌肉系统损伤和疾患修复及治疗方面 的费用达1280亿美元,植入6以下动脉假肢的患者达10万例。
羟基磷灰石Ca(PO)(OH), hydroxyapatite(HAP,HA)和TCP都是生物相容性良好的骨 修复材料。
羟基磷灰石(HAP)是人体和动物骨骼、牙齿的主要无机成分,具有良好的生物活性 和生物相容性,被认为是一种最具潜力的人体硬组织替换材料。但其易碎、强度低、 韧性差,降解较慢,限制了它的临床应用。人体内天然HAP为65—80nm的针状结 晶体,且均匀地分布在胶原基质中,形成自然的无机/有机纳米复合材料。由于纳 米级的HAP与人体硬组织的无机成分相似,因此是骨和牙齿种植中很具潜力的生物 材料。由于纯羟基磷灰石脆性较大,强度较低,所以人们都在通过各种途径对它进 行改性制成复合材料 。
注:生物材料 不是药物,其治疗途 径是以生物机体直接 结合和相互作用为基 本特征的。
人造关节
人造心脏
人造关节 人工心脏瓣膜
人工肾脏
对生物医用材料的要求
生物医用材料除了基本的物理性能和生物相容性要求外,还有其它更重 要、更关键的要求: (1)要求材料无毒、不致癌、不致畸、不引起人体细胞的突变和组织反应; (2)对人体呈惰性,不会引起急性中毒、溶血、凝血、发热和过敏等现象; (3)化学性质稳定,抗体液、血液及酶的体内生物老化作用; (4)具有与天然组织相适应的物理机械性能; (5)针对不同的使用目的而具有特定的功能。

生物医用材料

生物医用材料 The manuscript was revised on the evening of 2021生物医学材料指的是一类具有特殊性能、特种功能,用于人工器官、外科修复、理疗康复、诊断、治疗疾患,而对人体组织不会产生不良影响的材料。

现在各种合成材料和天然高分子材料、金属和合金材料、陶瓷和碳素材料以及各种复合材料,其制成产品已经被广泛地应用于临床和科研。

生物医用材料是用来对于生物体进行诊断、治疗、修复或替换其病损组织、器官或增进其功能的新型高技术材料,它是研究人工器官和医疗器械的基础,己成为材料学科的重要分支,尤其是随着生物技术的莲勃发展和重大突破,生物材料己成为各国科学家竞相进行研究和开发的热点。

二关键词:生物,医学,材料,医疗器械,创伤,组织,植入biomedical material, new materials三文献综述1生物医用材料定义生物医用材料(biomedical material)是用于对生物体进行诊断、治疗、修复或替换其病损组织、器官或增进其功能的新型高技术材料。

它是研究人工器官和医疗器械的基础,己成为材料学科的重要分支,尤其是随着生物技术的莲勃发展和重大突破,己成为各国科学家竞相进行研究和开发的热点。

当代生物材料已处于实现重大突破的边缘,不远的将来,科学家有可能借助于生物材料设计和制造整个人体器官,生物医用材料和制品产业将发展成为本世纪世界经济的一个支柱产业.由生物分子构成生物材料,再由生物材料构成生物部件。

生物体内各种材料和部件有各自的生物功能。

它们是“活”的,也是被整体生物控制的。

生物材料中有的是结构材料,包括骨、牙等硬组织材料和肌肉、腱、皮肤等软组织;还有许多功能材料所构成的功能部件,如眼球晶状体是由晶状体蛋白包在上皮细胞组成的薄膜内而形成的无散射、无吸收、可连续变焦的广角透镜。

在生物体内生长有不同功能的材料和部件,材料科学的发展方向之一是模拟这些生物材料制造人工材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

类骨纳米磷酸钙矿物的合成目录第一章综述 (1)1.1生物医用无机材料的发展概况 (1)1.2生物医用无机材料的基本条件与要求 (1)第二章类骨纳米磷酸钙矿物仿真合成 (3)2.1类骨纳米磷酸钙粉体的模板法 (3)2.2微纳米生物活性玻璃的模板法 (4)2.3 微生物模板法制备磷灰石中空微球 (5)第三章结语 (6)第一章综述生物医用无机材料是生物医用材料的重要组成部分,人体硬组织的缺损修复及重建已丧失的生理功能方面起着重要的作用。

尽管此类材料的研究起步较晚,且仍然存在着这样或那样的问题,但由于其良好的物理、化学及生物学相容性能、在短短的二十几年间已取得了大量的研究成果,但是,迄今为止仍没有一种材料能完全满足人体的生理功能要求。

本章重点介绍研究比较成熟和临床使用比较广泛的生物医用天机材料,目的是通过对前人工作的了解进而开拓新的思路,开发出新型的生物医用无机材料,以满足人们生活水平不断提高的需要。

1.1生物医用无机材料的发展概况无机材料很早就用于人体,近年以来、由于世界各国认识到研究开发生物医用无机材料的重要性,加大资金投入,使更多的材料应用于临床。

上世纪60年代和70年代是生物陶瓷材料研究比较活跃的—个时期。

多孔氧化铝陶瓷,玻璃碳和热解碳,羟基磷灰石陶瓷,以及单晶氧化铝陶瓷等的出现和临床应用取得了良好的效果。

针对临床应用中提出的很多问题,加大部分材料是生物惰性材料,与人体骨组织完全不同,不能与骨组织结合等,1969年美国Florida大学的L.Hench教授,成功地研究了一种生物玻璃,可用于人体硬组织的修复,能与生物体内的骨组织发生化学结合,从而开创了一个崭新的生物医用材料研究领域——生物活性材料,它具有良好的生物相容性,人体组织可长入并同其发生牢固的键合。

目前,随着纳米材料与技术的发展,又一类生物医用材料——纳米生物医用无机材料正引起人们的重视。

从无机医用材料与金属、高分子医用材料的不同特性可以看出,尽管无机材料有自身的缺点,但也明显表现出许多优良特性。

生物陶瓷材料的研究与临床应用,已从短期的替换和境充,发展成为永久性牢固植入,从生物惰性材料发展到生物活性材料、生物可降解材料及多相复合材料。

现在生物医用无机材料已广泛用于人工牙齿(根)、人工骨、人工关节、固定骨折用的器具、人工眼等。

生物医用无机材料的研究方兴未艾,它在未来的生物医用材料中必将占有重要位置。

1.2生物医用无机材料的基本条件与要求(一)良好的生物相容性由于植入材料的化学组分、分子及其部分结构在生物环境下被释放进入生物组织,因此在材料选取和设计时就要考虑到材料与人体组织化学、力学、电学系统的反应要相吻合,对人体组织无不利的影响。

如材料对人体无毒、无刺激、无致敏、无致畸、无免疫排斥、无致癌性等,对于降解材料,还需要考虑到降解产物对人体的影响。

(二)杂质元素及溶出物含量低必须注意所选用的原料杂质含量以及成品的杂质含量。

另外,无机材料虽然不像高分子材料能够溶出单体和中间体,但是在体液的长期作用下膨胀浸析,对于凝血作用和致癌作用会产生某些影响。

需要指出的是可降解生物医用无机材料,长期植入后会不断降解溶出,因此,必须考虑溶出物对人体的影响。

(三)有效性不同使用目的的材料有不同的要求。

人体不同的生理系统具有不同的生理功能,我们所研究的生物医用材料都与材料在人体中的特种生理功能有关,为了能有效地发挥这种功能,就必须很好地研究材料的特殊功能。

另外,材料在体内植入是一个长期的过程,在体液及生理环境的影响下会产生变性。

一种好的生物医用无机材料在人体内能参与入体的物质交换,并能与机体组织产生良好的生理性结合,能长期保持稳定,具有良好的生理功能。

(四)成型加工性能材料制备成功后,还必须通过各种专门的加工技术,才能得到所要求形状、尺寸的医用装置。

有些材料虽然性能很好,但由于加工成型困难而限制了它的使用。

有些材料甚至因为加工困难而不能用于临床。

如氧化铝陶瓷用于制作人工关节时,由于脆性、加工困难,只能使用模具成型,对于不同尺寸和形状的关节,就必须设计不同的模具,这一方面限制了临床应用。

另一方面也降低了制作效率。

因此,如何调整材料的成分,使其易于加工成型,提高临床操作性,对于生物医用无机材料的研究和开发具有重要的作用。

(五)良好的耐消毒灭菌性对于无机材料,常规采用的是高压蒸汽消毒、环氧乙烷灭菌及辐射灭菌。

一般来说,无机材料能经受住高压蒸汽的作用,不会发生大的变化,但有些材料在高压蒸汽作用下会引起表面组成和结构的变化,从而影响临床应用效果。

辐射法穿运力强,效果好,可以在材料包装之后再进行灭菌,常温下即可进行,可以大批量生产。

但是辐射后有些材料如羟基磷灰石陶瓷会变黄,这种方法不适用,而是采用环氧乙烷灭菌。

因此生物医用无机材料在临床应用前必须充分考虑到灭菌消毒对材料性能的影响以及可能带来的生物学危害。

第二章类骨纳米磷酸钙矿物仿真合成骨缺损修复材料是临床需求量最大的生物医用材料之一,人口老龄化及工业、交通和体育运动事故造成的创伤骨折,骨组织坏死和骨肿瘤等疾病引起的骨组织缺损病患每年达数百人且有日益增多的趋势,骨修复材料市场巨大,寻找更好的骨组织再生修复材料,为患者再造健康,是生物医用材料研究的前沿和热点,尽管骨组织本身具有较强的再生能力,但其自我修复只能在缺损较小的情形下进行,对于无法自我修复的缺损,疗效最好的方式是采用自体骨移植( 从病人自身的非承重健康骨组织取材修补缺损组织) 但是,自体骨移植会对患者造成二次损伤、且不可能大量取骨同种异体骨和动物源性的异种骨移植具有天然骨或类骨特性,但无法完全避免疾病传播和免疫排斥的风险、应用受限。

因此,研发对病损或缺失的骨组织进行有效修复和功能重建的人工骨修复材料具有广泛的临床需求和重要的意义。

近年来国内外人工骨修复材料研究的一个热点是模仿天然骨本身的成分,结构特性及矿化过程,对材料的组成!结构进行设计与调控,获得新型仿生人工骨修复材料或者对传统材料进行仿生功能化修饰,这类新型仿生材料已成为生物材料发展的主要趋势之一,天然骨的基本组分包括水,以磷灰石为主的磷酸钙系矿物以及以胶原纤维为主的有机基质,骨中纳米尺度磷酸钙矿物的形核、生长、晶型。

取向、大小、形状有序排列等受到有机基质模板的调控,具有独特性质,胶原纤维的直径在50~500nm之间,这种纳米纤维构成的有机基质不仅对矿化过程起到调控作用,而且通过与细胞之间的相互作用影响细胞粘附、增殖、迁移、分化等行为,以这些纳米尺度的结构单元为基础,骨组织形成了从微观、介观直到宏观尺度的复杂分级结构在体外实现与天然骨中生物矿物类似的高活性磷酸钙粉体的精确调控合成,构建类细胞外基质的纳米纤维支架,以及获得类骨多级孔结构都是仿生人工骨修复材料研发中的重要课题。

2.1类骨纳米磷酸钙粉体的模板法骨中的天然磷酸钙为纳米尺度的矿物,不少研究者探索了采用湿法化学合成纳米磷酸钙粉体的技术,但仅能获得不规则形状的颗粒及尺寸分布较宽的混合物,对骨和牙齿等磷酸钙系生物矿化组织的研究表明,天然磷酸钙矿物( 形貌和尺寸可控,典型的形态形成和有序组装是在有机基质模板的精确调控下完成,用有机小分子有序模板对磷酸钙矿物的体外仿生矿化进行调控,实现了对纳米磷酸钙粉体材料的颗粒尺寸分布及形貌的精确控制对十二烷胺体系中的仿生矿化研究表明,十二烷胺自组装构成的有序模板能够介导磷灰石纳米棒沿晶体轴定向生长,通过在模板与溶液界面处限定局部有序的反应空间,并规范相邻晶体的共取向,使矿物相采用取向附着机制发生自组装而形成高级有序结构以表面活性剂十六烷基三甲基溴化铵为模板,在水热合成中控制晶体生长,可制备球形颗粒或长柱型纳米羟基磷灰石。

通过添加助模板剂,建立阳离子型四组分反相胶束体系,利用阳离子型模板剂在溶液中形成反胶团,使钙磷超细颗粒在反胶团的水核中生长,从而复制模板空间形态,通过优化配置模板剂和助模板剂的分子比、温度、反应时间等技术参数,控制模板剂胶团形变,形成不同的模板空间和析晶位点,可调控形成多种形态的钙磷材料,系统研究了通过受限反应空间中的有序模板调控多种形貌与均匀尺寸的磷灰石纳米材料的机理,包括利用无定形前驱体在反相胶束内静电场作用下的定向不可逆融合,实现晶体在一维方向的定向生长,通过这种机制获得了尺寸均匀并具有较大长径比的磷灰石纳米线。

通过研究该体系中纳米磷酸钙的成核动力学,建立了反胶团溶液中磷酸钙纳米颗粒的形核速率方程,确定了若干临界参数( 如临界形核数目,临界晶核尺寸及临界晶核自由能) ,为阐明多种因素( 如表面活性剂模板、助模板剂、温度和熟化时间) 对多种结构与形貌的纳米磷酸钙形成的影响及相转变规律提供了理论。

依据,以磷酸酯为表面活性剂,在水、磷酸酯、乙醇体系中制备了层状结构的纳米羟基磷灰石材料,该层状结构呈规则的周期性排列,层间距约为模板仿生技术在体外环境下模仿了天然矿化组织中磷酸钙矿物的可控形成过程,所制备的生物活性材料具有形貌可控,比表面积大,具有微纳米精细结构等优点,对于新型骨修复材料的研究和开发具有重要的意义。

2.2微纳米生物活性玻璃的模板法CaO-SiO2-P2O5系统的生物活性玻璃可与人体的硬组织和软组织形成良好的结合,在临床牙科、骨科中具有广泛的应用前景,其表面结构和形貌显著影响其生物活性,因而对细胞的粘附,增殖和分化及组织再生修复具有重要的作用,将模板法合成技术与溶胶凝胶技术相结合,制备出了不同形貌的纳米级生物活性玻璃粉体如采用微乳液模板可以获得球形颗粒,而采用吐温-80 作为模板可成功制备生物活性玻璃纳米纤维簇,微乳液模板由表面活性剂、醇类助剂、碳氢化合物和电解质水溶液按照一定比例组成各向同性,热力学稳定的水包油或油包水的透明体系,提供均匀的纳米级空间,并在一定条件下具有保持稳定尺寸的能力,因此微乳液提供了制备均匀尺寸纳米粒子的理想微环境: 采用非离子型表面活性剂,选择合适的助剂和油相组分,可以得到粒度分布窄且分散良好的生物活性玻璃纳米粉体: 纳米纤维簇是由规则排列的纳米纤维堆积形成,其中的纳米纤维宽度约为模板剂吐温-80 在溶胶液中可以形成棒状胶束结构,羟基化作用和基团的亲水作用是形成纳米纤维簇的主要动力。

研究表明,生物活性玻璃的微纳米形态受控于模板剂的形态以及模板剂与生物玻璃颗粒表面硅羟基的相互作用,具有生物相容性的小分子有机物(如乳酸、柠檬酸、醋酸等羟基羧基酸) 与生物玻璃中硅羟基之间的分子氢键作用可以参与控制生物活性玻璃颗粒的微纳米结构,利用乳酸和柠檬酸可以控制生物玻璃溶胶凝胶颗粒表面微纳米结构的形成,而醋酸则可以控制生物玻璃颗粒表面微纳米有序介孔的形成,以生物相容性良好的聚乙二醇为模板剂,成功地制备了球形、棒状、空心球形、多孔球形等不同形态的生物活性玻璃材料。

相关文档
最新文档