液压柱塞泵马达常见故障分析

液压柱塞泵马达常见故障分析
液压柱塞泵马达常见故障分析

液压柱塞泵马达常见故障分析

一、密封问题

1、密封耐压带来的问题

液压泵马达制造技术发展到今天,其设计和制造还远远不够完美,虽然制造商的工程师每天致力于改进产品和发展新技术,但是现有的产品已经有很多突出的问题了。我们先来说说液压泵的密封问题:

液压泵在工作的时候,主轴与壳体之间必然有相对运动,二者之间必须使用密封件来封住壳体里面的油,使之不会外漏,从而污染环境并破坏液压系统的平衡。在早期的机械密封被淘汰过程中,钢骨架油封技术也得到了长足的发展并被广泛地使用于各种液压泵上,今天的骨架密封由于材料优异,结构优化,已经能够承受较高的回油压力,保证液压泵工作时无外泄。

钢骨架橡胶密封一般是用于回转密封,使用在液压泵上主要是为了使壳体回油不外泄并能够保证壳体回油压力的稳定,例如,对于一般的液压柱塞泵来讲,样本上都有规定回油(壳体)压力的参数,一般正常压力为3bar,冷启动为5bar,但是现代加工技术制造出来的油封,常用的压力一般是0.1bar~10bar,特殊设计的轴封压力可达80bar,这样,我的选择油封余地就非常大。

对于某些特定的工况,我们在设计的时候就必须考虑到系统回油压力发生变化后的相关情况,例如,当一台工程机械设计完成并投入使用后,其液压系统的回油形式也基本确定了,这时我们就需要分析工况来了解此台机械的液压系统回油压力。

当系统在高温的情况下,我们将发动机的转速开到最大,设备的负荷也加到最大,再将液压泵的排量开到最大,这时,如果系统有内泄的话,则系统压力就会下降,同时液压系统的回油量增大,因为回油管路的状态是设定了的,所以,系统的回油压力也是随着内泄量的增大而增大。如果在系统正常工作的过程中,液压泵的内部突然出现故障而产生大量内泄的时候,回油量会陡然增高,回油压力更大。

是不是选择高耐压的油封,以保证泵在任何状态下都不漏油就高枕无忧了呢?回答是否定的。

图一,普通骨架密封剖面图

见图一,对于普通骨架密封来讲,由于其设计的特点,其耐压比较低,一般在5BAR 以下,对于正常回油的液压泵可能还可以使用,但是,如果回油压力稍微有波动的话,则骨架密封的唇口就会被冲开,导致外泄。

图二,短唇口骨架密封剖面图

见图二,这种设计的骨架密封,其耐压已经可以达到5BAR以上,使用起来比较可靠,而且在系统出现故障时,压力突然升高,密封又可以被冲开,可以保护液压柱塞泵

的元件不至于受损坏。

图三,特殊设计的骨架密封

见图三,有的骨架密封设计成双层钢骨架,其耐压程度非常高,破坏压力可以达到50-60BAR。如果油封耐压很高,壳体回油不畅的时候或者回油量陡然增加,壳体压力会迅速上升,高于补油压力时候,将会导致柱塞滑靴在回程盘上移位,在高速旋转并回程的时候导致偏磨或卡死柱塞滑靴,以致打碎回程盘及滑靴酿成大事故。

使用了这种特殊设计的骨架密封,可以保证壳体回油的不外泄,但是,随之带来的后遗症也是不容忽视的。例如,有的液压泵制造者,为了追求元件的重量轻,使用了轻金属或者壳体设计得非常薄。当壳体内压在短时很高的时候,主轴骨架密封虽然会发生变形,却仍然保持压力油不外泄,则泵壳体在高压的作用下会出现“炸壳”现象——壳体的裂缝总是在同一处,就是最薄弱的一处,通过我们拆解观察,在裂缝所在端面的内端面,没有任何撞击或摩擦的痕迹,这说明壳体炸裂不是由于机械力所致。而且,同时伴随主轴油封变形,压力经过实验,可以达到60BAR,说明壳体局部开裂的主要原因是内压过高。见图四。

图四,钢骨架变形以前和变形以后比较其实,壳体设计簿以减轻整泵的重量是件好事,但是,不应该将油封设计很过好。如果油封耐压正常的话,在壳体压力陡升的时候,油封被冲开,便保护柱塞、壳体等重要元件。

二、摇盘支承的问题

现在主流的液压柱塞泵多数使用滚针式的摇盘支承,其特点是,滚动阻尼小,摇盘转动灵活,往复运动速度快,可以频繁转动。但因其结构特点,在高压的作用下,支承上受到的正压力非常大。例如,一个排量50CC/REV左右的泵,柱塞直径为17毫米,额定压力为345BAR。那么,在额定压力下,单个柱塞受力为:

F0=345×1.72 ×3.14/4=783.4公斤力

工作时,高压侧有4只柱塞,则

F1=F0×4=3130公斤力

当斜盘开到最大时,摆角为 180,则有:

柱塞下滑的分力F H= F1×Sin180=976公斤力

柱塞作用于斜盘的正压力F S= F1×Cos 180=2163公斤力

这样大的压力作用于若干个支承滚针上,滚针与支承轨道和摇盘轨道的接触为线接触,接触表面的正压力非常大,结果在斜盘长期工作的位置就会被压出一些沟线,沟线的深度根据我

们的了解,一般在元件工作1000小时左右,达到0.1—0.2毫米,所以,在此后继续使用,摇盘转动时就会不平滑或有跳动,而且,定排量工作可能会不稳定。

其实,这类液压柱塞泵在使用过程中,变动排量和换向的时间远比稳定排量工作的时间少得多,所以,滚针支承的优点体现的不明显,相反,在维修和使用过程中表现和很多的缺点:

(1)配件数量多,元件成本高;

(2)结构复杂,装配成本高;

(3)故障点多,容易损坏;

(4)维修成本高;

(5)工作时不够稳定;

相对于滚动支承,滑动支承应用在摇盘上则显示了很大的优点:(1)配件数量少,结构简单,加工成本低;(2)装配成本低;(3)故障点少,故障率低;(4)配件便宜,维修成本低;(5)支承摇盘稳定性好;(6)体积小,占用空间小,结构紧凑,重量轻。

液压泵液压缸液压马达的型号及参数以及

液压、气动 一、液压传动 1、理解:液压传动是以流体为工作介质进行能量传递的传动方式。 2、组成原件 1、把机械能变换为液体(主要是油)能量(主要是压力能)的液压泵 2 、调节、控制压力能的液压控制阀 3、把压力能转换为机械能的液压执行器(液压马达、液压缸、液压摆动马达) 4 、传递压力能和液体本身调整所必需的液压辅件 液压系统的形式 3、部分元件规格及参数 衡力,磨损严重,泄漏较大。 叶片泵:分为双作用叶片泵和单作用叶片泵。这种泵流量均匀、运转平稳、噪音小、作压力和容积效率比齿轮泵高、结构比齿轮泵复杂。 柱塞泵:容积效率高、泄漏小、可在高压下工作、大多用於大功率液压系统;但结构复杂,材料和加工精度要求高、价格贵、对油的清洁度要求高。 一般在齿轮泵和叶片泵不能满足要求时才用柱塞泵。还有一些其他形式的液压泵,如螺杆泵等,

但应用不如上述3种普遍。 适用工况和应用举例

【KCB/2CY型齿轮油泵】工作原理: 2CY、KCB齿轮式输油泵在泵体中装有一对回转齿轮,一个主动,一个被动,依靠两齿轮的相互啮合,把泵内的整个工作腔分两个独立的部分。A为入吸腔,B为排出腔。泵运转时主动齿轮带动被动齿轮旋转,当齿化从啮合到脱开时在吸入侧(A)就形成局部真空,液体被吸入。被吸入的液体充满齿轮的各个齿谷而带到排出侧(B),齿轮进入啮合时液体被挤出,形成高压液体并经泵的排出口排出泵外。 KCB/2Y型齿轮油泵型号参数和安装尺寸如下: 【KCB/2CY型齿轮油泵】性能参数:

【KCB/2CY型齿轮油泵】安装尺寸图:KCB18.3~83.3与2CY1.1~5安装尺寸图 电动机 KCB200~960与2CY8~150安装尺寸图

液压系统故障诊断技术的现状与发展趋势

液压系统故障诊断技术的现状与发展趋势 发表时间:2019-05-19T14:53:35.567Z 来源:《防护工程》2019年第1期作者: 1曹晓宁 2马海舰 3赵静思 [导读] 就会出现系统诊断开展难度较大的尴尬局面,因此对液压系统故障诊断技术及其应用展开研究,具有一定现实意义。1天津格特斯检测设备技术开发有限公司天津 300380;2天津格特斯检测设备技术开发有限公司天津 300380;3天津格特斯检测设备技术开发有限公司天津 300380 摘要:现阶段,随着社会的发展,我国的科学技术的发展也有了很大的进步。液压系统重量轻、功率强、运行平稳,而且还能够采取大范围的无极调速,因此被普遍运用到了机械设备当中,同时液压系统一般都运用于控制和自动化这两种系统当中,并且液压系统还可以当做传输动力设备来运用。液压系统的运行能力以及安全性,能够对关键系统形成决定性的影响,要是液压系统出现问题,那么关键系统就会发生停滞的情况,从而让企业的经济收益受到影响,因此相关工作人员一定要掌握合理的液压系统故障诊断技术,从而让液压系统得到安全的运行。 关键词:液压系统;故障诊断技术;现状;发展趋势 引言 液压系统会通过对自身作用力的运用,对压强作用力进行增强。整体液压系统由液压油、动力元件以及执行元件等几部分内容组成,主要分为液压控制系统以及液压传动系统两类。由于其构成零件种类相对较为复杂,且安装位置较为隐蔽,所以一旦系统出现故障,就会出现系统诊断开展难度较大的尴尬局面,因此对液压系统故障诊断技术及其应用展开研究,具有一定现实意义。 1现状 早在上世纪60年代的的时候,我国就已经开始对液压系统故障诊断技术进行研究,主要是利用测量系统的流量、振动等参数,和处理与系统对应的信号,来给液压系统采取诊断。此项技术到了上世纪八十年代以后,因为液压系统具有很多的类型,而且结构也比较的繁杂,导致诊断技术无法给液压系统采取完善的诊断,这给液压系统故障诊断技术的发展造成了很大的影响。根据这些问题,我国的相关专家在经过了长时间的研究和改进以后,让诊断技术的水平得到了一定程度的提高,不但能够确保液压故障诊断的完善性,另外也能够给故障信息进行保存,这样的话就可以让液压系统得到更加完善的运维管理,从而进一步加强了液压系统的工作效率。 2液压系统故障诊断技术应用分析 2.1仪表测量技术 该项技术主要会通过对测试仪的运用,完成对系统故障的诊断。此设备主要由流量计、压力表以及安全阀等部件所组成,在具体测试过程中,技术人员会通过串联的方式将测试仪接连在相应回路之中,并会通过断开原主油路的方式,确保压力油可以经由测试仪流回到油箱之中,以便利用逐渐加载的方式完成相应诊断。所以该测试仪能够同时完成对系统监测点的流量以及压力测试工作,可以对执行元件、动力元件以及控制元件的工况与性能进行明确,以确保可以在短时间内完成故障位置查找。 2.2智能诊断技术 智能诊断技术种类相对较多,现阶段较为常用的技术主要有以下几种:1)专家系统。该项技术主要用于复杂系统诊断,是以信号处理以及传感技术为依托研发得到的。在具体应用过程中,技术人员会将故障现象经由用户接口输入到电脑终端,而电脑会按照数据库内信息对现象产生原因进行推理与分析,进而找出故障原因并会提供相应预防措施与维修方案,以供技术人员进行使用[2]。2)人工神经网络。此种诊断技术有效利用了神经网络所具有的计算、非线性以及自学习等方面能力,能够对系统故障进行准确判断,诊断效果较为理想。就某一角度而言,此项技术主要分为知识处理以及模式识别两种,其中在实施模式识别诊断时,会将神经网络作为分类器完成相应系统故障识别。 2.3四觉诊断技术 所谓“四觉”,就是利用嗅觉、触觉等较为直观的方式对系统故障进行获取。此种方式相对较为简单,技术人员会通过用手直接触摸的方式,明确液压泵表面是否存在过热问题或管路以及元件振动情况;会通过仔细观察的方式,对油温计、测点压力表以及真空表等设备数值合理性进行检查,以便及时发生异常数值,并准确找到数据产生原因等。与其他诊断技术相比,此种技术受技术人员自身能力以及感觉灵敏度的影响相对较大,只能作为定性判断,还需要展开后续检测,才可以查明故障产生真正原因。 3液压故障诊断技术的发展趋势 3.1经验知识和原理知识要紧密融合 若想加强液压故障智能诊断系统的能力,有关工作者要在研究液压系统故障诊断系统期间,掌握有关的专业知识,另外,还要掌握液压系统的结构和主要功能,要是在研究液压系统故障诊断期间,不重视对某一方面的研究的话,那么就会降低诊断效果。所以,相关工作者要把专业知识和诊断技能有效的融合到一起,然后再把两者结合到故障诊断系统里,安排合理的分析形式,还要保证所有的分析形式都可以单独运行,如此一来就可以慢慢的把液压系统故障诊断的系统的性能进行加强,让它能够变成具备专家级知识的诊断系统。 3.2多种智能故障诊断方法的混合 目前,液压系统故障诊断系统都在朝着技术融合的方向发展,也就是说把多种技术融合到一起,构成混合诊断系统。在智能技术进行融合期间,包括把专家诊断系统与神经网络采取有机融合,然后在里面加进模糊逻辑等。混合智能诊断方式的发展方向,就是要把传统的诊断系统转化为混合系统,把专家传播的知识转化成系统自主学习以及分析的系统,把单纯的推理转换为混合推理系统等。智能液压系统诊断系统在自主学习和诊断等方面都取得了突破性进展,所以目前受到了普遍的青睐。 3.3虚拟现实技术会得到重视和应用 在多媒体技术之后,虚拟现实技术开始得到人们普遍的关注,此项技术的存在感、感知性等都比较强。从表面进行分析,虚拟现实技术以及多媒体技术具有很多共同特征,所以人们能够更快的接受虚拟现实技术,不过虚拟现实技术可以让人们使用计算机来对很多的信息可视化,其属于交互性技术方式,和传统的人机界面采取对比的话能够发现,虚拟现实技术具有更好的应用价值。

电机故障诊断综合实验讲解

电机故障诊断综合实验 课程名称:电气设备故障诊断技术 实验组员;张笑庆(信电09-8) 丁慧慧(信电09-8) 王喜乐(信电09-8) 朱星奎(信电09-8)

目录 一、实验目的 (3) 二、实验内容 (3) 三、实验原理 (3) 四、实验步骤 (3) 五、数据采集与分析步骤 (4) 六、数据处理 (5) 1、傅里叶变换法 (5) 2、PARK 矢量法 (8) 3、小波变换法 (13) 七、实验总结 (15)

一、实验目的 1、初步了解故障诊断的过程; 2、了解并初步掌握电机转子断条和气隙偏心故障的定子电流频谱分析方法; 3、认识不同的数据处理与故障诊断方法在故障诊断的敏感性和准确性等方面的差异。 二、实验内容 分别采集状态良好的和存在转子断条,气隙偏心,匝间短路故障的三相异步电动机、在不同负载工况下的三相电流数据;然后运用已编制好软件或运用MATLAB自行编程,对测试数据进行频谱分析,根据相应的故障诊断特征频谱分量,判断电机的故障状态。 三、实验原理 当三相电机出现转子断条故障时,电流频谱中会出现特征分量=(1±2ks)*f1,通常k=1时的特征最为明显;当出现气隙偏心故障时,电流频谱中会出现特征分量=f1±mfr,其中fr为转子频率,m为正整数。当三相电动机出现定子匝间短路故障时,通过对三相定子电流运用Park矢量模平方函数进行变换,电流中除了直流分量外还出现了两倍的基频分量。电机稳态运行时,转速相对稳定,故障特征频率也相对稳定,因此,可根据频谱分析结果判断电机有无对应故障。 四、实验步骤 转子断条故障 注意:严格按照实验步骤,同时在调节整定时间时注意安全! (1)时间继电器的调整。

液压泵液压马达功率计算

液压泵液压马达功率计算 This model paper was revised by the Standardization Office on December 10, 2020

应用:(1)已知液压泵的排量是为136毫升/ 120kgf/cm 2,计Q=qn=136(毫升/转)×970转/分 =131920(毫升/分) =131.92(升/分) 系统所需功率 考虑到泵的效率,电机功率一般为所需功率的1.05~1.25倍 N D =()N=28.5~32.4(kW ) 查有关电机手册,所选电机的功率为30kW 时比较适合。 (2)已知现有液压泵的排量是为136毫升/转,所配套的电机为22kW ,计算系统能达到 的最高工作压力。 解:已知Q=qn=131.92(升/分),N D =22kW 将公式变形 考虑到泵的效率,系统能达到的最高工作压力不能超过90kgf/cm 2。 液压泵全自动测试台 液压泵全自动测试台是根据各国对液压泵出厂试验的标准设计制造,可测 试液压叶片泵(单联泵、双联泵、多联泵)、齿轮泵、柱塞泵等的动静态性能。测试范围、测试项目、测试要求符合JB/T7039-2006、JB/T7041-2006、JB/T7043-2006等有关国家标准,试验测试和控制精度:B 或C 级。液压泵全自动测试台是液压泵生产和维修企业的最重要检测设备。 液压泵全自动测试台:主要由驱动电动机、控制和测试阀组、检测计量装 置、油箱冷却、数据处理和记录输出部分等组成,驱动电动机选用了先进的变频电机,转速可在0—3000rpm 内进行无级调速,满足各类不同转速的液压泵的试验条件,也可测试各类液压泵在不同转速下的性能指标。控制阀选用了目前先进的比例控制装置,同时配置手动控制装置,因此测试时可以采用计算机自动控制和检测,也可以切换为手动控制和检测。压力、流量、转速和扭矩的测量采用数字和模拟两种方法,数字便于用计算机采集、整理和记录,模拟便于现场观察控制。油箱的散热是由水冷却装置完成,可以满足液压泵的满功率运行要求。测试台还可根据客户要求进行设计和开发,满足不同用户的特殊的个性要求。 功率回收式液压泵全自动测试台:功率回收式液压泵性能测试台是目前最 先进的节能试验方式,它解决了被压加载方式使油温上升过快,不能做连续试验和疲劳寿命试验的缺点。这种新型测试台最高可节省70%的能耗,可直接为用户带来可观的经)(9.2561292.131120612kW Q P N =?=?=

液压系统常见故障分析及处理

液压系统常见故障分析及处理 液压传动是以液体为工作介质,通过能量转换来实行执行机构所需运动的一种传动方式。首先,液压泵将电动机(或其它原动机)的机械能转换为液体的压力能,然后,通过液压缸(或液压马达)将以液体的压力能再转化为机械能带动负载运动。文中概括介绍了液压系统在日常使用中常见故障分析以及处理方法。 一.工作原理 液压传动是以液体为工作介质,通过能量转换来实行执行机构所需运动的一种传动方式。首先,液压泵将电动机(或其它原动机)的机械能转换为液体的压力能,然后,通过液压缸(或液压马达)将以液体的压力能再转化为机械能带动负载运动。 二.液压系统的组成 液压传动系统通常由以下五部分组成。 1.动力装置部分。其作用是将电动机(或其它原动机)提供的机械能转换为液体的压力能。简单地说,就是向系统提供压力油的装置。如各类液压泵。 2.控制调节装置部分。包括压力、流量、方向控制阀,是用以控制和调节液压系统中液流的压力、流量和流动方向,以满足工作部件所需力(或力矩)、速度(或转速)和运动方向(或运动循环)的要求。 3.执行机构部分。其作用是将液体的压力能转化为机械能以带动工作部件运动。包括液压缸和液压马达。 4.自动控制部分。主要是指电气控制装置。 5.辅助装置部分。除上述四大部分以外的油箱、油管、集成块、滤油器、蓄能器、压力表、加热器、冷却器等等。它们对于保证液压系统工作的可靠性和稳定性是不可缺少的,具有重要的作用。 三.液压缸 液压缸是把液压能转换为机械能的执行元件。液压缸常见故障有:液压缸爬行、液压外泄漏、液压缸机械别劲、液压缸进气、液压缸冲击等。 1.液压缸爬行故障分析及处理 (1)缸或管道内存有空气,处理方法:设置排气装置;若无排气装置,可开动液压系统以最大行程往复数次,强迫排除空气;对系统及管道进行密封。 (2)缸某处形成负压,处理方法:找出液压缸形成负压处加以密封;并排气。 (3)密封圈压得太紧,处理方法:调整密封圈,使其不松不紧,保证活塞杆能来回用手拉动。 (4)活塞与活塞杆不同轴,处理方法:两者装在一起,放在V形块上校正,使同度误差在0.04mm以内;换新活塞。 (5)活塞杆不直(有弯曲),处理方法:单个或连同活塞放在V形块上,用压力机控直和用千分表校正调直。

柱塞泵的常见故障及日常维护

柱塞泵的常见故障及日常维护 柱塞泵是利用柱塞在泵缸体内往复运动,使柱塞与泵壁间形成容积改变,反复吸入和排出液体并增高其压力的泵。柱塞泵是液压系统的一个重要装置。它依靠柱塞在缸体中往复运动,使密封工作容腔的容积发生变化来实现吸油、压油。据泵阀英才网专家称,柱塞泵具有额定压力高、结构紧凑、效率高和流量调节方便等优点,被广泛应用于高压、大流量和流量需要调节的场合,诸如液压机、工程机械和船舶中。 柱塞泵常见故障的维修方法: 1.液压泵输出流量不足或不输出油液 (1)吸入量不足。原因是吸油管路上的阻力过大或补油量不足。如泵的转速过大,油箱中液面过低,进油管漏气,滤油器堵塞等。 (2)泄漏量过大。原因是泵的间隙过大,密封不良造成。如配油盘被金属碎片、铁屑等划伤,端面漏油;变量机构中的单向阀密封面配合不好,泵体和配油盘的支承面有砂眼或研痕等。可以通过检查泵体内液压油中混杂的异物判别泵被损坏的部位。 (3)倾斜盘倾角太小,泵的排量少,这需要调节变量活塞,增加斜盘倾角。 2.中位时排油量不为零 变量式轴向柱塞泵的斜盘倾角为零时称为中位,此时泵的输出流量应为零。但有时会出现中位偏离调整机构中点的现象,在中点时仍有流量输出。其原因是控制器的位置偏离、松动或损伤,需要重新调

零、紧固或更换。泵的角度维持力不够、倾斜角耳轴磨损也会产生这种现象。 3.输出流量波动 输出流量波动与很多因素有关。对变量泵可以认为是变量机构的控制不佳造成,如异物进入变量机构,在控制活塞上划出阶痕、磨痕、伤痕等,造成控制活塞运动不稳定。由于放大器能量不足或零件损坏、含有弹簧的控制活塞的阻尼器效能差,都会造成控制活塞运动不稳定。流量不稳定又往往伴随着压力波动。这类故障一般要拆开液压泵,更换受损零部件,加大阻尼,提高弹簧刚度和控制压力等。 4、柱塞泵最重要的部件是轴承 如果轴承出现游隙,则不能保证液压泵内部三对磨擦副的正常间隙,同时也会破坏各磨擦副的静液压支承油膜厚度,降低柱塞泵轴承的使用寿命。据液压泵制造厂提供的资料,轴承的平均使用寿命为10000h,超过此值就需要更换新口。拆卸下来的轴承,没有专业检测仪器是无法检测出轴承的游隙的,只能采用目测,如发现滚柱表面有划痕或变色,就必须更换。 在更换轴承时,应注意原轴承的英文字母和型号,柱塞泵轴承大都采用大载荷容量轴承,最好购买原厂家,原规格的产品,如果更换另一种品牌,应请教对轴承有经验的人员查表对换,目的是保持轴承的精度等级和载荷容量。柱塞泵使用寿命的长短,与平时的维护保养,液压油的数量和质量,油液清洁度等有关。避免油液中的颗粒对柱塞泵磨擦副造成磨损等,也是延长柱塞泵寿命的有效途径。在

液压系统故障原因分析

液压系统故障原因分析 一、液压系统好长时间没有用,这次开机后,震动、噪音大。 可能是长时间放置,蓄能器氮气泄露,没起到减少脉动的作用。检查氮气的压力,补压或者更换皮囊。噪音是由于振动太大而产生的,没有了震动,就会消除。 二、油缸工作不正常,只能出不能回。 检查油缸的另一端是否出油,电磁阀是否换向,油缸内泄是不是特别严重。回油管路是否被异物堵死。 三、油缸启动压力高。 油缸启动压力高和油缸的制造质量(如活塞杆弯曲、缸筒弯曲等)、密封的形式和安装等因素有关。对于伺服油缸,启动压力高会影响其的动态特性。 对于普通油缸,启动压力的要求没有伺服油缸那样严格,但是也不能太高。一旦发现启动压力高,需要认真对油缸的零件进行尺寸复测,并检查密封的安装质量。 1、内部阻力过大。 2、外部执行部分有机械故障。 油缸的启动压力与油缸的设计结构有关,油口与活塞接触的受力面积,如油口的大小即活塞初始启动的受力面积,启动压力就高,油口与活塞接触间加工受力面积腔(启动压力腔)启动压力就很小。 四、液压系统油缸要求同步。 在支管路上加单向节流阀,价格比较便宜。要求比较高就加个分流节流阀,造价高,但效果较好。 五、液压系统维修率特别高。 主要原因是环境恶劣,液压系统是比较精密的设备,平常要多注意保养,油质要好,加油时要过滤,系统密封要好。各类检测设备要完善,需要有专业的人员对系统的工作情况进

行记录和维护。 六、液压缸动作不规则。 1、电磁阀换向不规则,需要检查电炉部分 2、电液伺服、比例阀的放大器失灵或调整不当。 3、也有就是油缸磨损严重,需修理或者更换。 4、可能是液压管路混杂有空气,需要找出混入空气的部位,然后清洗检查,重新安装和更换元辅件。

柱塞泵故障及操作

柱塞泵故障现象:噪音过大 产生原因及排除方法 1)泵内有空气;排除空气,检查可能进入空气的部位 2)轴承装配不当,或单边磨损或损伤;检查轴承损坏情况,及时更换 3)滤油器被堵塞,吸油困难;清洗滤油器 4)油液不干净;抽样检查,更换干净的油液 5)油液黏度过大,吸油阻力大;更换黏度较小的油液 6)油液的液面过低或业余泵吸空导致噪音;按油标高注油,并检查密封。 7)泵与电机安装不同心使泵增加了径向载荷;重新调整,使在允差范围内 8)管路振动;采取隔离消振措施 高压柱塞泵操作规程 1 范围 本标准规定了油田高压柱塞注水泵启泵前的检查、启泵操作、运行、停泵操作、资料填写与录取。 本标准适用于油田高压柱塞注水泵的操作。 2 启泵前按设备巡回检查点项进行逐一检查 2.1 工频启动检查 2.1.1 检查柱塞泵液力缸(泵头)总成 2.1.1.1 检查液力缸(泵头)与曲轴箱固定螺栓,应齐全、紧固良好。 2.1.1.2 检查液力缸各端盖压入量一致均衡,无上翘偏斜现象,密封良好,无渗漏;端盖固定螺栓齐全,固定扭力达到规定要求,安装合格。 2.1.1.3 检查液力缸总成表面清洁,见本色。吊装孔完好。 2.1.2 检查泵进口流程 2.1.2.1 检查泵进口来水压力,满足启泵要求 2.1.2.2 检查进口阀门应开关灵活、完好,无松、缺、渗、漏现象,黄油嘴完好、见本色;检查进口流程,防腐到位、流程标识正确合理。各连接部位密封完好,无渗漏现象。 2.1.2.3 检查水表:水表应完好、在校验期内、无渗漏无腐蚀,并记录水表底数。 2.1.2.4 检查泵进口法连扭紧固定良好,无渗漏;关闭泵进口放空阀门。 2.1.3 检查泵拉杆油封、密封函体(盘根)槽 2.1. 3.1 检查拉杆、油封总成;拉杆表面应无锈蚀、无伤痕,油封总成固定良好、无渗漏;新泵或停用较长的泵,应洗净防锈油,锈蚀部位应进行砂光。 2.1. 3.2 检查挡水板固定牢靠,达到防水要求

全国液压系统维修及故障诊断技术培训班

目录 第一章液压传动基本知识 (33) 一、液压传动的工作原理 (33) 二、液压传动工作特性 (33) 三、液压传动系统的组成 (44) 四、液压传动系统的图形符号 (55) 第二章常用液压元件 (55) 一、液压泵 (55) 二、液压缸 (88) 三、液压马达 (1010) 五、液压辅助元件 (1414) 第三章液压系统的使用维护与管理 (1616) 一、液压系统的安装与试压 (1616) 二、液压系统的正确使用 (1717) 三、液压系统的维护 (1717) 四、液压系统的点检管理 (1919) 五、运行中期液压设备的管理要点 (2121) 六、常用液压元件的维护与修理 (2121) 第四章工作介质的使用和管理 (2626) 一、工作介质的种类 (2626) 二、对工作介质的基本要求 (2727) 三、液压油液的基本性质 (2727) 四、工作介质的选用 (2828) 五、工作介质的储存保管 (3030) 六、液压系统的换油方式 (3030)

七、工作介质的取用 (3030) 八、工作介质变质的原因 (3131) 九、工作介质变质的控制 (3131) 十、工作介质的合理使用 (3232) 第五章液压系统的泄漏与密封....................... 错误!未定义书签。错误!未定义书签。 一、液压系统的泄漏............................. 错误!未定义书签。错误!未定义书签。 二、液压系统的密封............................. 错误!未定义书签。错误!未定义书签。第六章液压系统的污染控制......................... 错误!未定义书签。错误!未定义书签。 一、液压系统污染的原因......................... 错误!未定义书签。错误!未定义书签。 二、液压系统污染的类型及危害................... 错误!未定义书签。错误!未定义书签。 三、液压系统污染的控制......................... 错误!未定义书签。错误!未定义书签。 四、工作介质的污染度测定....................... 错误!未定义书签。错误!未定义书签。第七章液压系统故障诊断........................... 错误!未定义书签。错误!未定义书签。 一、液压系统故障的概念......................... 错误!未定义书签。错误!未定义书签。 二、液压系统故障分类........................... 错误!未定义书签。错误!未定义书签。 三、液压系统故障的特点......................... 错误!未定义书签。错误!未定义书签。 四、液压系统故障对设备及其工作的影响........... 错误!未定义书签。错误!未定义书签。 五、液压系统故障诊断的工作内容................. 错误!未定义书签。错误!未定义书签。 六、液压系统常见故障现象及其原因............... 错误!未定义书签。错误!未定义书签。 七、液压系统故障排除的步骤..................... 错误!未定义书签。错误!未定义书签。 八、液压系统故障诊断的层次和方法............... 错误!未定义书签。错误!未定义书签。 九、液压系统常见故障分析....................... 错误!未定义书签。错误!未定义书签。 十、现代液压故障诊断的技术途径................. 错误!未定义书签。错误!未定义书签。

基于PLC电机故障诊断系统设计

基于PLC电机故障诊断系统设计 摘要:随着经济的高速发展,现今社会自动化代替人工操作已经不是梦想,PLC可编程逻辑控制器(PLC)是实现自动化操作的基础。一个完善的PLC控制系统不仅仅只是使整个自动化操作系统满足工业自动化控制的要求还可以在自动化生产系统出现故障时及时的对故障进行诊断和处理,保证了生产设备的正常运转。PLC故障的诊断和处理是体现自动化控制系统代替人工操作实现自我诊断和处理的先进化程度,同时也是衡量自动化控制的智能化指标。PLC 对于整个系统故障的自我诊断对于工业控制具有较的实用价值。 关键词:PLC电机故障诊断系统设计 中图分类号:TM57 文献标识码:A 文章编号:1003-9082(2016)06-0278-02 在当下的工业生产过程中,PLC控制系统在工业智能化的领域被大量的使用,是实现工业自动化控制的中间力量。PLC的完善程度决定着整个自动化操作系统的安全性和可靠性,PLC故障诊断系统它在工业自动化控制中占有举足轻重的地位。 一、电机系统的组成和工作原理 PLC电机系统主要由上位计算机和一套PLC监控系统组

成[1]。上位计算机为用户提供数据、图形和事件的显示。PLC 通过外部变送器、互感器和发动机连接完成自动化系统设备的故障信号检测并将这些数据转化为通讯数据传输给上位计算机。上位计算机通过对故障原因进行分析和判断,分析和判断后的结果通过数据传送给人机界面。人机界面给出故障点解释故障的诊断结果,并在人机界面给出相应排除故障的建议。电机故障诊断系统的框架图如下: 当操作人员按下生产系统的开机按钮后,PLC电机故障诊断系统先对断路器的闭合或断开的形态进行判断,如果电机故障诊断系统监测到断路器初始状态为闭合那么电机将无法启动,并且伴随报警,反之则启动成功。电机启动成功的标志是在控制柜上电机的“开/关”指示灯亮起,反之则电机出现故障。在生产设备运行过程中,PLC不停的对电机有可能发生的故障进行循环的检测。如果电机发生相间短路、断相和过负荷以及过电流等故障,PLC迅速的对电机故障做出判断和相应的故障分析并且为操作人员给出排除故障的建议。在关机时,PLC接到关机命令后,断路器跳闸(电机“开/关”指示灯灭),故障声光报警后,按下报警复位按钮进行系统复位完成关机动作[2]。 二、PLC的组成 PLC的组成主要包含:中央处理器、存储器、输入/输出模块、电源、外部设备接口及输入/输出扩展单元等组成。它

8液压马达的工作原理

河北机电职业技术学院备课记录No9-1 序号9 日期200811.10 班级数控0402 课题§3.1第一节液压马达 §3.2第二节液压缸 重点与难点重点: 1.液压马达的工作原理 难点: 2.液压缸的类型和特点 教师魏志强2008 年11月1日 一引入 复习:(5分钟) 1.单作用叶片泵工作原理 2.限压式变量叶片泵工作原理 二正课 第三章液压执行元件 第一节液压马达 一、液压马达的特点及分类 液压马达是把液体的压力能转换为机械能的装置,从原理上讲,液压泵可以作液压马达用,液压马达也可作液压泵用。但事实上同类型的液压泵和液压马达虽然在结构上相似,但由于两者的工作情况不同,使得两者在结构上也有某些差异。例如: 1.液压马达一般需要正反转,所以在内部结构上应具有对称性,而液压泵一般是单方向旋转的,没有这一要求。 2.为了减小吸油阻力,减小径向力,一般液压泵的吸油口比出油口的尺寸大。而液压马达低压腔的压力稍高于大气压力,所以没有上述要求。 3.液压马达要求能在很宽的转速范围内正常工作,因此,应采用液动轴承或静压轴承。因为当马达速度很低时,若采用动压轴承,就不易形成润滑滑膜。 4.叶片泵依靠叶片跟转子一起高速旋转而产生的离心力使叶片始终贴紧定子的内表面,起封油作用,形成工作容积。若将其当马达用,必须在液压马达的叶片根部装上弹簧,以保证叶片始终贴紧定子内表面,以便马达能正常起动。 5.液压泵在结构上需保证具有自吸能力,而液压马达就没有这一要求。 6.液压马达必须具有较大的起动扭矩。所谓起动扭矩,就是马达由静止状态起动时,马达轴上所能输出的扭矩,该扭矩通常大于在同一工作压差时处于运行状态下的扭矩,所以,为了使起动扭矩尽可能接近工作状态下的扭矩,要求马达扭矩的脉动小,内部摩擦小。 由于液压马达与液压泵具有上述不同的特点,使得很多类型的液压马达和液压泵不能互逆使用。 液压马达按其额定转速分为高速和低速两大类,额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。 高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。它们的主要特点是转速较高、转动惯量小,便于启动和制动,调速和换向的灵敏度高。通常高速液压马达的输出

液压系统故障诊断

第十一章液压系统故障诊断 第一节概述 液压系统的故障诊断是指在不拆卸液压设备的情况下,凭观察和仪表测试判断液压设备的故障所在和原因。液压设备的故障是指液压设备的各项技术指标偏离了它的正常状态,如管路和某些元件损坏、漏油、发热、致使设备的工作能力丧失,功率下降,产生振动和噪声增大等。 在使用液压设备时,液压系统可能出现的故障是多种多样的。即使是同一个故障现象,产生故障的原因也不一样,它是许多因素综合影响的结果。特别是新装置的液压设备,在试车时产生的故障现象,其原因更是多方面的。液压系统是一个密闭的系统,各元件的工作状态是看不见,摸不着的。因此,在进行故障诊断时,必须对引起故障的因素逐一分析,注意到其内在联系,找出主要矛盾,这样才能比较容易地排除故障。 液压系统的故障主要是由构成回路的液压元件本身产生的动作不良、系统回路的相 少液压设备出现故障的有力措施。 当然,液压系统的故障除由元件本身和工作油液的污染引起的以外,还因安装、调试和设计不当等原因引起的也较多。 液压系统的故障诊断,过去一般凭经验,随着液压测试技术的发展,国内外正研制和应用专用的测试仪和设备。如手提式测试器、液压故障诊断器和液压故障检修车等。应用这些专用仪器和设备能在现场很快查出液压元件及系统的故障,并进行排除。 近年来,在液压系统故障诊断与状态监测技术方面取得了较大进展。如利用振动信

号、油液光谱分析、油液铁谱分析、超声波泄漏指示器、红外线测试仪等来进行检测的技术,利用微机进行分析处理信号和预报故障的技术等的应用已有不少报道。而在港口工程机械液压系统中,普遍使用这些技术来进行故障诊断及状态监测,则还需经过有关各方面的努力才可能逐步实现。 第二节液压系统的故障预兆 液压系统产生故障以前,通常都有预兆。如压力失调、噪声过大、振动过大、温升过高,泄漏过大等等。如果这些现象能及时发现,并加以适当控制或排除,系统的故障就可以减少或避免发生。 一、液压系统的工作压力失调 压力失调常表现为压力不稳定、压力调不上去或调不下来、压力转换滞后、卸荷压力较高等。产生压力失调的原因主要有以下几个方面: 1.液压泵引起的压力失调 1)液压泵的轴向、径向间隙由于磨损而增大; 2)泵的“困油”未得到圆满解决; 3)泵内零件加工及装配精度较差; 4)泵内个别零件损坏等。 2. 液压控制阀引起的压力失调 1)在压力控制阀中: ①先导阀的锥阀与阀座配合不良; ②调压弹簧太软或损坏; ③主阀芯的阻尼孔被堵塞,滑阀失去控制作用; ④主阀芯被污物卡住在开口位置或闭口位置; ⑤溢流阀作远程控制用时,其远程连接通道过小或泄漏; ⑥溢流阀作卸荷阀用时,其控制卸荷的换向阀失灵等。 2)在方向控制阀中: ①油路切换过快而产生液压冲击; ②电磁换向阀换向推杆过长或过短等。 3.辅助元件引起的压力失调 1)油滤器堵塞; 2)液流通道过小,回油不畅; 3)油液粘度太稠或太稀等。 4.其他 1)机械部分未调整好,摩擦阻力过大; 2)空气进入系统; 3)油液污染; 4)电机功率不足或转速过低;

实用电机故障诊断方法总结

交流异步电动机常见故障的分析、诊断及处理 一、异步电动机的故障分析、诊断与处理 电动机的故障大体归纳为电磁的原因和机械的原因两个方面。常见故障分析、诊断与处理如下: 1.异步电动机不能起动: 1.1电动机不能起动,有被拖动机械卡住、起动设备故障和电动机本体故障及其它方面原因: 处理方法:当电动机不能起动的故障时,可使用万用表测量三相电压,若电压太低,应设法提高电压,原因可能有:⑴电源线太细,起动压降太大,应更换粗导线。⑵三角形接线错接成星形接线,又是重载起动,应按三角形接法起动。⑶送电电压太低,应增高电压,达到要求的电压等级。若三相电压不平衡或缺相,说明故障发生在起动设备上。若三相电压平衡,但电动机转速较慢并有异常声响,这可能是负荷太重,拖动机械卡住。此时应断开电源,盘动电动机转轴,若转轴能灵活均衡地转动,说明是负荷过重;若转轴不能灵活均衡地转动,说明是机械卡阻。若三相电压正常而电机不转,则可能是电机本体故障或卡阻严重,此时应使电动机与拖动机械脱开,分别盘动电动机和拖动机械的转轴,并单独起动电动机,即可知道故障所在,作相应的处理。 1.1.1当确定为起动设备故障时,要检查开关,接触器各触头及接线柱的接触情况;检查热继电器过载保护触头的开闭情况和工作电流的调整值是否合理;检查熔断器熔体的通断情况,对熔断的熔体在分析原因后应根据电动机起动状态的要求重新选择;若起动设备内部接线有错,则应按照正确接线改正。 1.1.2 当确定为电动机本体故障时,则应检查定,转子绕组是否接地或轴承是否损坏。绕组接地或局部匝间短路时,电动机虽能起动但会引起熔体熔断而停转,短路严重时电动机绕组很快就会冒烟。 检查绕组接地常采用的方法:用兆殴表检查绕组的对地绝缘电阻,若存在接地故障,兆殴表指示值为零。绕组短路:通常用双臂电桥测直阻的平衡情况,对于绕组接地、匝间短路的处理通常都是重新绕制绕组。 1.1.3其它原因 由于轴承损坏而造成电动机转轴窜位、下沉、转子与定子磨擦乃至卡死时,应更换轴承。 若在严冬无保温,环境较差场所的电动机,应检查润滑脂。 2、鼠笼式电动机起动后转速低于额定值 2.1电动机运行时的转速降低: 2.1.1电源电压;如端电压降低,则电机起动转矩减小,转速降低。若检查是电压太低,则应提高电源电压。电动机接线错误,绕组应是三角形接线而错接成星形的也会使相电压降低。 2.1.2转子电阻;若鼠笼转子导条断裂或开焊,表现为转速和起动转矩下降。导条断裂和开焊,首先可进行直观检查,也可借助于仪表检查。直观检查:就是查看鼠笼导条有没有电弧灼痕,有无断裂和细小裂纹,端环连接是否良好。借助于仪表检查:一种方法是在电动机运行时,看指示电动机定子电流的电流表。在鼠笼转子导条断裂或开焊故障时,电流表指针将来回摆动。对于未装设电流表的电动机,可将电动机的定子绕组串联电流表后接到15-20%Ue(Ue为额定电压)的三相交流电源上,(用三相自耦调压器调压),盘动电动机转轴,随着转子位置不同,定子电流会发生变化,指针突然下降处即导条断裂或开焊处。 2.2若检查是被拖动机械轻微卡住,使转轴转不灵活,也会使电动机勉强拖动负载

容积式泵和液压马达的工作原理

第三章液压泵 3.1重点、难点分析 本章的重点是容积式泵和液压马达的工作原理;泵和液压马达的性能参数的定义、相互间的关系、量值的计算;常用液压泵和马达的典型结构、工作原理、性能特点及适用场合;外反馈限压式变量叶片泵的特性曲线(曲线形状分析、曲线调整方法)等内容。学习容积式泵和马达的性能参数及参数计算关系,是为了在使用中能正确选用与合理匹配元件;掌握常用液压泵和马达的工作原理、性能特点及适用场合是为了合理使用与恰当分析泵及马达的故障,也便于分析液压系统的工作状态。 本章内容的难点是容积式泵和液压马达的主要性能参数的含义及其相互间的关系;容积式泵和液压马达的工作原理;容积式泵和液压马达的困油、泄漏、流量脉动、定子曲线、叶片倾角等相关问题;。限压式变量泵的原理与变量特性;高压泵的结构特点。 1.液压泵与液压马达的性能参数 液压泵与液压马达的性能参数主要有:压力、流量、效率、功率、扭矩等。 (1)泵的压力 泵的压力包括额定压力、工作压力和最大压力。液压泵(马达)的额定压力是指泵(马达)在标准工况下连续运转时所允许达到的最大工作压力,它与泵(马达)的结构形式与容积效率有关;液压泵(马达)的工作压力p B(p M)是指泵(马达)工作时从泵(马达)出口实际测量的压力,其大小取决于负载;泵的最大压力是指泵在短时间内所允许超载运行的极限压力,它受泵本身密封性能和零件强度等因素的限制;工作压力小于或等于额定压力,额定压力小于最大压力。 (2)泵的流量 泵的流量分为排量、理论流量、实际流量和瞬时流量。泵(马达)的排量V B (V M)是指在不考虑泄漏的情况下,泵(马达)的轴转过一转所能输出(输入)油液的体积;泵(马达)的理论流量q Bt(q Mt)是指在不考虑泄漏的情况下,单位时间内所能输出(输入)油液的体积;实际流量q B(q M)是指泵(马达)工作时实际输出(输入)的流量;额定流量q Bn(q Mn)是指泵(马达)在额定转速和额定压力下工作时输出(输入)的流量。泵的瞬时流量q Bin是液压泵在某一瞬间的流量值,一般指泵瞬间的理论(几何)流量。考虑到泄漏,泵(马达)的实际流量小于(大于)或等于额定流量,泵(马达)的理论流量大于(小于)实际流量。 (3)液压泵与液压马达的功率与效率 液压泵与液压马达的功率与效率主要指输入功率、输出功率、机械效率、容积效率、总效率。对于液压泵,输入的是机械功率P BI,输出的是液压P BT,两功

液压系统维修及故障诊断技术。

全国液压系统维修及故障诊断技术培训班 目录 第一章液压传动基本知识 (1) 一、..................................................................... 液压传动的工作原理 1 二、液压传动工作特性 (2) 三、液压传动系统的组成 (2) 四、液压传动系统的图形符号 (3) 第二章常用液压元件 (3) 一、................................................................................. 液压泵 3 二、液压缸 (6) 三、液压马达 (8) 五、液压辅助元件 (13) 第三章液压系统的使用维护与管理 (15) 一、................................................................... 液压系统的安装与试压 15 二、液压系统的正确使用 (15) 三、液压系统的维护 (16) 四、液压系统的点检管理 (18) 五、运行中期液压设备的管理要点 (19) 六、常用液压元件的维护与修理 (20) 第四章工作介质的使用和管理 (25) 一、工作介质的种类 (25) 二、对工作介质的基本要求 (26) 三、液压油液的基本性质 (26) 四、工作介质的选用 (27) 五、工作介质的储存保管 (29) 六、液压系统的换油方式 (29) 1 中国机电装备维修与发行技术协会秦皇岛信和会展服务有限公司全国液压系统维修及故障诊断技术培训班

八、..................................................................... 工作介质变质的原因 30 九、工作介质变质的控制 (31)

液压动力转向系统常见故障诊断与维修

摘要 液压动力转向系统由转向器、转向动力缸和转向动力阀三部分组成。动力转向系统的故障主要有一般故障、转向噪声和油液渗漏等。一般故障主要包括转向冲击、转向沉重、转向不灵和转向回跳等。这些故障有些可能与动力转向装置、转向操纵机构和转向传动机构均有关。 关键词:转向系故障现象故障分析故障排除

前言 转向系统是整车系统中必不可少的最基本的组成系统,驾驶者通过方向盘来操纵和控制汽车的行进方向,从而实现自己的驾驶意图。汽车转向系统也随着汽车工业的发展历经了长时间的演变。传统的汽车转向系统是机械式的转向系统,汽车的转向由驾驶员控制方向盘,通过转向器等一系列机械转向部件实现车轮的偏转,从而实现转向。随着上世纪五十年代起,液压动力转向系统在汽车上的应用,标志着转向系统革命的开始。汽车转向动力的来源由以前的人力转变为人力加液压助力。这种助力转向系统主要的特点是液压力支持转向运动,减小驾驶者作用在方向盘上的力,改善了汽车转向的轻便性和汽车运行的稳定性 一液压动力转向系统的概述 1.1液压动力转向系统的组成 液压动力转向系统由转向器、转向动力缸和转向动力阀三部分组成。 1.2液压动力转向系统的工作原理 (1)直线行驶时,转向控制阀将转向油泵泵出来的工作液与油罐相通,转向油泵处于卸荷状态,动力转向器不起助力作用。 (2)向右转向时,向右转动转向盘,转向控制阀将转向油泵泵出的工作液与R腔接通,将L腔与油罐接通,在油压作用下,活塞向下移动,通过传动结构使左右轮向右偏转,从而实现右转向。 (3)向左转向时向左转向时,情况与上述相反。 二液压动力转向系统常见的故障现象与分析 2.1 转向冲击或振动 1.故障现象:当前轮达最大转向角时,车辆出现冲击或振动。 2.故障分析: (1)检查齿条导向螺塞的调整是否正确,并视情调整。若经调整无

找出液压柱塞泵噪音的7个“帮凶”解读

找出液压柱塞泵噪音的7个“帮凶” 来源:液压扳手 https://www.360docs.net/doc/e64700286.html,/ 液压柱塞泵产生噪音有以下列七种情况: 1.液压柱塞泵固有的噪音 随着柱塞拉出与倒灌流量的增压,缸体柱塞孔腔内压力上升到与排油腔内的油压平衡后,柱塞在斜盘的推压下,柱塞开始向下运动压迫油液进入缸体的配流窗口,柱塞排油由于液阻的阻抗作用,油液的排出受到系统压力的反冲击阻力,缸体柱塞孔腔内形成压力超调。当柱塞完成排液后,缸体柱塞孔腔旋出排油窗口后,进入到配流盘的遮盖区时,缸体柱塞孔腔内还余存部份没有排空的超调压力的死容积压力油,由于配流盘上θ1的角度遮盖区,柱塞还有一段继续压缩行程,使缸体柱塞孔腔内余存的死容积压力油更加超调。 当缸体柱塞孔腔旋转到吸油窗口前,要完成一次释压过程,以促使缸体柱塞孔腔内的油压释压到与吸油窗口内的低压油平衡。缸体柱塞孔腔内的超调的死容积高压油瞬间释压造成一次液爆,这种九柱塞孔腔的连续的压力瞬变液爆是一种稳定的高音调声响,每台液压柱塞泵都存在着或高或低的液瀑声响。世界各国的液压液压柱塞泵生产厂都在配流盘的压力过渡区域内采取多种形式的降噪单元。 由传统的“三角节流槽式”到“泄荷孔式”“斜沟式”等方法,但都还是没有圆满解决液压柱塞泵的输出压力油波动所引发的流体噪音。对于工程机械上用的大排量压力突变的高压 液压柱塞泵,死容积区超调油液泄压时产生的液爆噪音也特别强劲。 2. 气蚀噪音 液压油中含有气泡时,带有气泡的油液被吸入缸孔中,柱塞在缸孔中压迫油液压入缸体配流面的排油窗口,在高压作用下,这些油液中的气泡将突然挤破裂,大小几乎相同的气泡被高压浓缩后再突发性的溃灭,就造成一次强劲的气爆,气泡的爆裂时所产生的另一种超高音调噪音,会发出一种尖锐刺耳的啸叫声。这种尖锐刺

相关文档
最新文档