空间目标探测雷达技术发展及启示

合集下载

雷达系统的应用和发展

雷达系统的应用和发展

雷达系统的应用和发展雷达(Radar)是指利用电磁波感知、探测和定位目标的无线电探测设备。

随着科技的发展,雷达系统的应用范围越来越广泛,已经成为现代军事、民用和科研领域中不可或缺的工具。

一、雷达系统的应用1.军事领域:雷达系统在军事中的应用最为广泛,它能探测敌方的飞机、船只、导弹等,提供实时的目标信息,方便军事指挥部进行决策。

同时,雷达还可以监测敌方的通讯信号和地面活动,提供安全保障。

除此之外,雷达还可以用于飞机导航、火控系统、天气预报等。

2.空管系统:航空交通管理系统需要用雷达来掌握飞行器的位置、速度和高度,这样才能避免航空器之间的相撞,并确保航空器的安全起降。

航班管制人员通过雷达提供的信息来指挥飞机的飞行路径和高度,保证空中交通的安全。

3.气象预报:气象雷达可以探测降雨和分布的范围,以及云的类型和强度,为气象部门提供了可靠的数据基础,帮助他们制定气象预报,预测天气变化。

4.地质探测:雷达可以较为准确地判断地下的构造和岩层分布情况,有利于地质勘探和矿产资源开发。

同时,雷达系统还可以用于搜索和救援,通过探测遇险人员的体温和心跳等信息,提供救援方案。

二、雷达系统的发展随着技术的不断成熟,雷达系统也在不断发展。

主要体现在以下几个方面:1.多波束雷达:传统雷达只能探测特定方向的目标,而多波束雷达可以同时在多个方向探测目标,提高雷达的探测效率,适用于空管系统、远程监测等领域。

2.消失雷达:消失雷达是一种将雷达的发射和接收装置隐藏在一个平面上的技术,可以将雷达隐蔽在城市建筑和自然环境中,有助于保护军事设施和提高安全性。

3.相干雷达:相干雷达可以进行高分辨率的成像,逐渐取代了传统雷达的模糊成像,应用于目标识别、导航、地质勘探等方面。

4.立体雷达:立体雷达可以三维探测目标,不仅可以掌握目标的位置和速度,还可以给出目标的尺寸和形状信息,对于空中管制和军事应用具有重要意义。

总之,雷达系统在当今社会中扮演着越来越重要的角色,在国防、经济和安全方面扮演着不可或缺的角色。

空间目标探测与识别方法研究

空间目标探测与识别方法研究

空间目标探测与识别方法研究一、概述空间目标探测与识别作为航天领域的重要研究方向,旨在实现对地球轨道上各类空间目标的精确探测和有效识别。

随着航天技术的不断发展,空间目标数量日益增多,类型也日趋复杂,这给空间目标探测与识别带来了前所未有的挑战。

深入研究空间目标探测与识别方法,对于提升我国航天事业的国际竞争力、维护国家空间安全具有重要意义。

空间目标探测主要依赖于各类传感器和探测设备,如雷达、光电望远镜、红外传感器等。

这些设备能够捕获空间目标的信号或特征信息,为后续的目标识别提供数据支持。

由于空间环境的复杂性和目标特性的多样性,探测过程中往往伴随着大量的噪声和干扰,这要求我们必须采用先进的信号处理技术来提取有用的目标信息。

空间目标识别则是基于探测到的目标信息,利用模式识别、机器学习等方法对目标进行分类和识别。

识别的准确性直接影响到后续的空间态势感知、目标跟踪以及空间任务规划等工作的质量。

如何提高识别算法的准确性和鲁棒性,是当前空间目标识别领域的研究重点。

本文将对空间目标探测与识别方法进行深入研究,包括探测设备的选择与优化、信号处理技术的研究与应用、以及识别算法的设计与实现等方面。

通过对这些关键技术的探讨,旨在为提升我国空间目标探测与识别的能力提供理论支持和技术保障。

1. 空间目标探测与识别的背景与意义随着科技的飞速发展和人类对宇宙探索的深入,空间目标探测与识别技术逐渐成为当今科研领域的热点。

空间目标包括各类卫星、太空碎片、深空探测器以及潜在的太空威胁等,它们的存在与活动对人类的航天活动、地球安全以及宇宙资源的开发利用具有重要影响。

在空间目标探测与识别领域,通过高精度、高可靠性的技术手段对空间目标进行实时、准确的监测与识别,对于保障航天器的安全运行、预防太空碰撞、维护国家安全和促进航天事业的发展具有重要意义。

对于深空探测和宇宙资源的开发利用,空间目标探测与识别技术也提供了有力的技术支撑。

随着太空竞争的加剧,空间目标探测与识别技术也成为各国军事竞争的重要领域。

美国防空反导系统雷达新技术发展及应用

美国防空反导系统雷达新技术发展及应用

442019.04军事文摘装 备美国防空反导系统雷达新技术发展及应用赵 飞 郭凯丽面对导弹技术的扩散、五代机的入役和高超声速武器等新威胁的出现,美军的防空反导系统面临着日益严重的威胁,目标识别难题也更加严重。

为进一步提升探测跟踪及目标识别能力,增强防空反导系统的作战能力,美国近年来从雷达新体制、新器件等多个方面,加大雷达新技术的研究力度。

美国防空反导雷达部署及不足导弹预警雷达和天基红外预警卫星是美军主要防空反导预警装备。

目前,美军导弹预警雷达主要包括固定阵地的3部升级型早期预警雷达、2部铺路爪雷达、1部丹麦眼镜蛇雷达,以及移动型海基X波段雷达、前置型X波段雷达A N/TPY-2、巡洋舰和驱逐舰装备的宙斯盾系统雷达AN/SPY-1、陆军爱国者系统雷达AN/MPQ-53/65等。

其中,早期预警雷达、铺路爪雷达和丹麦眼镜蛇雷达是地基中段防御系统的预警雷达,分别工作在P波段和L波段,由于频率低、带宽窄,不具备目标识别能力。

前置型AN/TPY-2雷达对来袭弹头的识别距离有限,主要用于跟踪早期飞行阶段的导弹。

“宙斯盾”系统的AN/SPY-1雷达工作在S波段,“爱国者”系统的AN/MPQ-53/65雷达工作在C波段,频率低且作用距离有限,用于对拦截弹的末段制导。

海基X波段雷达具有高分辨能力,但最初建造目的是用于试验,不具备作战系统所需的可靠性和实用性,且雷达波束角度范围(即电子视场)只有25°,限制了雷达处理呈大角度分散的多目标的能力。

因此,美国防空反导系统利用现有雷达进行目标识别的能力尚有欠缺。

美军目前主要依靠X波段雷达解决防空反导系统目标识别的问题。

2012年以来,美国相继提出多项方案,以改善对来袭导弹的目标识别性能,主要包括:在早期预警雷达附近部署堆叠式A N/TPY-2雷达或X波段非相控阵雷达;将夸贾林靶场的GBR-P 雷达样机升级后部署至东海岸;以及新建S 波段远程识别雷达(LRDR),部署在阿拉斯加州克2019.04军事文摘铺路爪雷达相控阵天线阵列位于阿拉斯加的美军早期预警雷达境能力的智能、动态的闭环雷达系统,可实现对外界环境的连续感知,并实时、智能化地调节发射波形,雷达在发射、环境和接收之间形成一个闭环系统。

雷达技术的最新应用趋势

雷达技术的最新应用趋势

雷达技术的最新应用趋势雷达技术是现代科技中不可或缺的一部分,它具有多种应用场景,包括军事、民用、空间探测、气象预报、移动通信等诸多领域。

随着技术的不断发展,雷达的应用越来越广泛,而且不断出现新的应用趋势。

本文将探讨雷达技术的最新应用趋势。

一、毫米波雷达毫米波雷达是近年来发展起来的一种新型雷达技术,主要用于近距离测量和成像。

相比于传统的雷达技术,毫米波雷达具有更高的分辨率和更广泛的应用范围。

毫米波雷达可以用于成像、人体监测、无人驾驶车辆等应用中,尤其是在无人驾驶领域中,毫米波雷达可以更好地识别路面障碍物,提高车辆的自主行驶能力。

二、人工智能应用雷达技术在人工智能领域中的应用也越来越广泛。

利用雷达技术可以实现人机交互、目标检测、行为识别等多项功能。

在视觉识别无法完成的场景下,如雾霾天气、低照度环境、粒子污染等情况下,雷达技术的应用可以更好地识别和定位目标物,为智能化设备提供更多可能。

三、多传感器融合多传感器融合是指结合多个传感器对目标进行识别和定位,以达到更高的准确率和可靠性。

除了雷达技术之外,多传感器融合还需要结合声学、光学、红外等多种传感器技术。

多传感器融合可以在多种应用中得到应用,特别是在军事、安防、智能交通等领域中,它可以提高命中率、识别率以及识别准确度,从而更好地保障社会安全和人民生命财产。

四、3D图像雷达3D图像雷达是近年来发展起来的一种新型雷达技术。

它利用激光波浪对目标进行扫描,可以实现目标的三维成像和定位。

相比于传统的雷达技术,3D图像雷达可以提供更多的信息,包括目标的大小、形状、距离、速度、方向等等。

这种技术可以应用在机器人导航、无人机探测和军事情报等多种场景中。

五、基于雷达的无线充电基于雷达技术的无线充电是目前新兴的一个应用领域。

它可以通过射频波浪向目标传输电能,实现对目标设备的无线充电。

在多种无法传输电能的场景下,包括雨雾天气、远距离无法进行有线充电的场合等等,基于雷达技术的无线充电可以提供便利和实用性,并将为人们的生活和工作带来极大的便利。

雷达技术发展综述及多功能相控阵雷达未来趋势

雷达技术发展综述及多功能相控阵雷达未来趋势

雷达技术发展综述及多功能相控阵雷达未来趋势摘要院当今全球各个国家都非常重视雷达技术,因此其得到了很快的发展,由此也出现了许多新的技术,这些技术的出现都是为了很好地应付未来在资源上的竞争。

本篇文章对雷达技术发展的历程进行综述,并对多功能相控阵雷达的发展前景进行分析。

Abstract: Nowadays, the global various countries attach great importance to the radar technology, so it obtained fast development.Thus, there appear a lot of new technologies, and the emergence of these technologies is to better cope with the future competition inresources. This article summarizes the development history of radar technology, and analyzes the development prospects of multifunctionphased array radar.关键词院雷达技术;规律性;稳定性Key words: radar technology;regularity;stability中图分类号院TN958.92 文献标识码院A 文章编号院1006-4311(2014)31-0219-020 引言在当今社会雷达得到了广泛的应用,它既可以用于军事也可以用于民用,雷达主要用来进行探测目标,当然对雷达的性能也提出了要求,那就是雷达必须能够在复杂的环境下进行工作,可以及时地跟踪发现目标,并能够进行有效的传输。

可是当下环境越来越复杂,任务也越来越多,有些目标还具有隐形的能力,在低空以高速度进行飞行的飞行器都可能进行捕捉,所以对雷达技术提出了新的要求。

雷达学科发展趋势与研究方向

雷达学科发展趋势与研究方向

雷达学科发展趋势与研究方向(一)微波遥感成像雷达技术合成孔径雷达(SAR)是一种主动式微波成像雷达,由于它具有全天候、全天时、髙分辨率、宽测绘带以及可穿透植被和土壤的能力,有着广泛的应用前景,如洪水监测、地形测绘、城市规划、环境监测、农作物评估、资源勘探和军事应用等。

毫无疑问,SAR技术将会快速发展,星载SAR因监测范围广,HP510电池将会成为未来的发展重点。

合成孔径雷达引起平台相对于固定的地面目标运动而形成合成孔径,实现成像;反过来,若雷达固定而目标运动,则以目标为基准可视为雷达在等效反方向运动,也能形成合成阵列,据此也可对目标成像,通常称为逆合成孔径雷达(ISAR)技术。

逆合成孔径雷达技术可用来对空中、空间和海上目标成像,已成为一个新的研究热点。

未来5~10年,微波遥感成像技术应着重研究以下问题:(1)高分辨率SAR及图像解释技术;(2)低频率机载SAR的探地能力;(3)动目标的检测、定位技术;(4)SAR定标技术(是SAR对地定量观测的关键技术);(5)3八尺小卫星及星座,星载5八尺实时图像处理技术;(6)多参数、多模式SAR综合技术及应用;(7)SAR干涉测量技术;(8)机动目标高分辨率逆合成孔径雷达(ISAR)技术;(9)逆合成孔径雷达三维成像技术。

(二)空间和空中探测雷达技术相控阵技术为空间和空中探测雷达带来了许多优越性,因此各种先进的空间和空中探测雷达越来越多地采用了相控阵技术,DELLInspiron1525电池这种情况反过来又推动了相控阵技术的发展.相控阵雷达技术的下一步发展方向是:(1)有源相控阵雷达技术,尤其是X波段的有源相控阵雷达技术,以满足一些高端需求;(2)宽频带相控阵技术,主要用于高分辨率雷达,也可实现雷达与其他电子设备的综合利用;(3)低/超低副瓣相控阵天线技术;(4)数字相控阵技术;(5)共形相控阵天线技术;(6)毫米波相控阵天线技术;(7)天基相控阵技术;(8)低成本相控阵技术。

如何进行空间目标探测和定位

如何进行空间目标探测和定位

如何进行空间目标探测和定位空间目标探测和定位是现代科技领域中的重要课题,它在航天、导航、通信等领域发挥着重要的作用。

历史的发展使得我们能够在地球的大气层之外,进一步观测和研究宇宙。

本文将从技术手段、载体选择和定位方法等方面,探讨如何进行空间目标探测和定位。

一、技术手段的演进空间目标探测和定位的实现离不开先进的技术手段。

过去几十年间,科技的飞速进展为空间探测提供了一系列新的工具和设备。

例如,天文望远镜的发展使得我们能够对遥远的星系和行星进行高分辨率的观测,从而探索宇宙的奥秘;雷达技术的应用则使我们能够侦测到宇宙中的微弱信号,实现对卫星和其他空间目标的跟踪和定位。

二、载体选择的考虑进行空间目标探测和定位时,合适的载体选择是至关重要的。

根据任务的性质和目标的特点,我们可以选择不同的载体进行发射。

火箭是最常见的载体选择,它能够将卫星和其他探测器送入太空中。

此外,火箭的发射高度和速度也决定了探测器的轨道和位置。

人类还尝试过使用气球、飞艇等轻型载体进行低空探测,这样可以以较低的成本实现对大气和地球表面的观测,但受限于高度和速度,其应用范围相对有限。

三、定位方法的应用在进行空间目标探测和定位时,准确的定位方法非常重要。

全球导航卫星系统(GNSS)是现代化定位系统的重要组成部分。

目前最常用的GNSS系统是美国的GPS系统,并以此为基础发展了其他国家的导航定位系统。

这些系统通过利用卫星信号和地面接收器的相互测量,实现对目标位置的精确定位。

此外,激光测距、雷达测距等技术也可用于空间目标的定位,它们利用光学或电磁波的传输时间和接收信号的频率差异来计算目标距离。

四、空间目标探测的挑战尽管空间目标探测和定位在技术上有了长足的进步,但仍然面临一些挑战。

首先,空间目标间的相互干扰可能影响到数据的可靠性和精度,因此需要采取相应的措施来减小干扰。

其次,高速移动和快速变化的目标对探测和定位的要求更高,需要更加先进的技术手段来实现准确的跟踪。

国外空间目标探测与识别系统发展现状研究

国外空间目标探测与识别系统发展现状研究

国外空间目标探测与识别系统发展现状研究一、本文概述随着科技的不断进步,空间领域的探索与利用已成为全球竞争的重要焦点。

空间目标探测与识别系统作为空间领域的重要组成部分,对于国家安全、空间科学研究以及空间资源开发等方面具有重要意义。

本文旨在全面梳理和分析国外空间目标探测与识别系统的发展现状,以期为我国的空间领域研究和应用提供有益的参考。

本文首先界定了空间目标探测与识别系统的基本概念和主要功能,为后续研究奠定基础。

接着,从技术角度对国外空间目标探测与识别系统的发展历程进行回顾,梳理了关键技术的演变和进步。

在此基础上,对国外空间目标探测与识别系统的应用领域和典型案例进行深入分析,揭示了其在国家安全、空间科学研究以及空间资源开发等方面的重要作用。

本文还对国外空间目标探测与识别系统的发展趋势进行展望,探讨了未来可能的技术创新和应用拓展。

结合我国的实际情况,提出了针对性的建议和思考,以期推动我国空间目标探测与识别系统的发展和应用。

通过本文的研究,我们可以更全面地了解国外空间目标探测与识别系统的发展现状和趋势,为我国在该领域的研究和应用提供有益的参考和借鉴。

也为我国空间领域的科技创新和国家安全建设提供有力的支撑。

二、国外空间目标探测与识别系统概述随着科技的飞速发展,空间目标探测与识别技术逐渐成为世界各国竞相研究的热点领域。

目前,美国、俄罗斯、欧洲等国家和地区在空间目标探测与识别技术方面均取得了显著的进展。

美国作为空间科技领域的领先者,其空间目标探测与识别系统发展尤为成熟。

美国国防部建立了一套完善的空间监视网络,包括地基和空间基传感器,用于实时监测和跟踪在轨空间目标。

美国还积极开发高分辨率成像技术、光学和红外探测技术等,以提高对空间目标的识别精度和分辨率。

俄罗斯作为航天大国,其空间目标探测与识别技术同样具备较高水平。

俄罗斯通过构建全球性的空间监测网络,实现对空间目标的全面覆盖和实时监测。

同时,俄罗斯还注重提高空间目标探测的自动化和智能化水平,以减少人工干预和提高探测效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间目标探测雷达技术发展及启示 空间目标探测是利用各种天、地基探测设备(卫星、光电、雷达等)对所有人造天体向空间进入、在空间运行及离开空间的过程进行探测、关联、特性测定和测轨,并结合情报资料,综合处理分析出目标轨道、功能、威胁等信息,掌握空间态势,向各类航大活动等提供空间目标信息。主要探测特点是非合作性、完备性及长期性等。目前,仅有美国和俄罗斯具备对空间目标编目数据进行定期更新能力。欧洲正在讨论未来空间目标探测系统多项计划,最终将建成‘空间态势感知系统“。 应用雷达成像结果分析卫星失效原因 雷达以其固有特点,在空间目标探测技术发展中起着重要作用,它实时性强、探测信息丰富,可以全天候、全天时对空间目标进行探测、识别和编目。在美国空间监视网中大量使用了地基探测雷达,像位于夸贾林的ALTAIR、ALCOR、MMW和TRADEX以及林肯实验室空间目标探测站的Haystack、HAX和Millstone(MHR)等雷达。欧洲也建设了GRAVES系统和TIRA雷达并充分利用法国Monge测量船Armor雷达以及英国用于大气层和电离层研究的Chilbolton雷达开展空间目标探测活动。 美国空间目标探测雷达技术发展 进入20世纪90年代,关国先后对夸贾林的ALTAIR、ALCOR、MMW和TRADEX以及林肯实验室空间目标探测站的Haystack、HAX和MilIstone(MHR)雷达进行了技术升级改造,使其现代化。目前正在对Haystack雷达进行更人的技术升级改造,完成后称为HUSIR(Haystack Ultra-wideband Satellite Imaging Radar),即Haystack超宽带卫星成像雷达。 Haystack超宽带卫星成像雷达 这些雷达技术升级主要措施为:> ALTAIR雷达建立了一套用于区分、辨别和跟踪中高轨目标的高分辨波形;>TRADEX雷达改进实时积累算法、增加了凝视方式(Stare Mode)和凝视追踪方式(Stare-and—Chase)、使用更大功率速调管;> ALCOR雷达更新信号处理器支持相参积累和实时成像、使用扩展交互作用速调管(EIK)替换原行波速调管、采用GaAs FET低噪声放人器改进灵敏度;> 毫米波雷达(MMW)35GHz采刚波束波导天线馈源替代了波导馈线、增加了第二部发射机,95GHz系统采用先进的低温致冷固态技术与准光学馈源单元组合,有效提高系统灵敏度;>HUSIR雷达增加了W频段,雷达同时工作在X频段(10GHz频率,1GHz带宽)和W频段(96GHz频率,8GHz带宽),成像分辨率小于3cm。主要更新升级包括天线、伺服控制、发射机、信号处理等。 欧洲空间目标探测雷达技术发展 欧洲现有一些雷达和光学设施虽然能跟踪空间目标并拍摄其图像,但还未形成空间目标探测体系工作能力,严重依赖于美国资料。为了建立独立的空间目标监视系统,欧空局成立了空间目标探测特别工作组,规划未来欧洲空间目标探测系统(ESSS)。在此系统中,典型的探测雷达包括法国GRAVES系统和德国TIRA雷达。 法国GRAVES系统是目前欧洲唯一不配属美国空间目标探测网的雷达,可以完成典型空间目标探测任务。GRAVES归法国国防部所有,由法国空军操作。该系统可自主汇集和维持编目表。探测低轨极限目标尺寸一般为1m以上,目标总数2200个左右。2005年投入止常运行。 GRAVES系统使用VHF发射机,四个各15mX 6m的平板形相控阵天线,都位于Dijon附近。这些倾斜天线排列成面向南方的半圆,展开一个高度直剑1000km的锥形探测扇面。穿过该探测范围的目标反射同来部分发射功率,利用偶极子平面相控阵大线接收。偶极子平面阵排成一个60m直径的圆面,布在发射机南面380km的机场内。GRAVES系统利用方向角、多普勒和多普勒变化率确定大量目标的轨道根数集。 德国TIRA雷达属于Wachtberg的应用科学研究院。按其跟踪模式,TIRA系统利用各目标的方向角、距离和多普勒米确定其轨道。可探测1000km距离上小至2cm左右的目标。进行统计观测,灵敏度可提高到1cm左右。这时以舣站波求交会(beam-park)方式运行TIRA和近旁Effelsberg100m射电望远镜,TIRA刚作发射机,Effelsberg用作接收机。TIRA是一台单脉冲跟踪和成像雷达,抛物面大线直径34m,置于49m直径天线罩内。该雷达跟踪目标利用L波段(1.333GHz),峰值功率1MW;以逆综合孔径雷达对目标成像,工作于Ku波段(16.7GHz),峰值功率13kw。TIRA的距离一多普勒逆综合孔径Ku波段成像产生距离分辨率高于7cm的图像。德国TIRA雷达对航天飞机成像欧美空间目标探测雷达技术发展特点 综观欧美空间目标探测雷达廊用及技术升级发展历程,可以看出其有以下几方面的技术特点:> 空间目标探测雷达是伴随着弹道导弹、军用卫星及空间攻防武器等系统的发展,得到逐步建立、完善和发展;> 空间目标探测雷达全球部署,作为主要测量、探测设备,全面支撑了弹道导弹鉴定定性飞行试验、反导反卫试验、航大测控及空间目标监视等;> 依据军事需求和相关技术的进步,对己部署的雷达系统不断地进行改进和更新;> 注重新技术研究,力求获取目标的多样信息,在获取目标轨道信息的同时,还注重获取目标的电磁散射特性;> 空间目标探测雷达涵盖了微波全频段,有力支持了目标识别技术发展;> 采用多种体制雷达(如相控阵、电子篱笆等)增强空间目标探测网搜索捕获目标能力;> 空间目标探测雷达实现了空间碎片等微小目标,同步轨道卫星等超远距离目标超宽带成像观测。 空间目标探测雷达技术发展启示 为了适应未来获取空间目标信息优势的需要,欧美正大力扩展其雷达空间目标探测能力。未来,欧美空间目标探测网将继续改进地基监视系统,着力开发雷达和光电、红外探测技术,并大力开展空间目标探测的数据处理、算法和数据融合等技术研究。纵观美国空间目标探测雷达技术升级发展历程,每次技术升级都紧紧围绕进一步提高雷达探测能力和提升雷达使刚性能而开展。随着现代微小卫星发展和应用,空间目标尺寸越来越小,对雷达空间目标探测能力和成像观测图像分辨率的要求越米越高。今后一个时期,空间目标探测雷达必将围绕超远距离探测和高清晰成像测量两大技术主题快速发展。 超远距离(中高轨空间目标)雷达探测技术 随着科学技术的发展,轨道空间正在成为越米越被关注和大力发展的热点,世界各军事强国也纷纷将各自的军事力量越来越多的向空间延伸。除了通常以民用名义发射的大量通讯、气象等卫星(实际上这些卫星同样具有军事用途)以外,还有用于导航的GPS卫星、用于情报获取的侦察卫星、监视预警卫星,甚至还在发展具备直接进攻能力的空间武器等等。为了及时掌握这些具有战略意义的空间目标信息,欧美空间目标探测网已将发展中高轨道空间目标的超远距离雷达探测技术作为重要领域。 01大功率发射机技术 发展超远距离雷达系统的主要制约因素是高功率微波源。美国CPI研制的Ku波段耦合腔行波管,峰值功率达到60kW,占空比30%,增益40dB,带宽2GHz;Ka波段耦合腔行波管,峰值功率达到50kW,占空比10%,增益40dB,效率16%,带宽2GHz,已经实现商品化,分别用于MIT林肯实验室的Ku波段远程成像雷达和夸贾林靶场远程雷达。在俄罗斯,Ka波段同旋速调管,峰值功率可达到250kW,带宽0.5GHz,平均功率1.2kW,效率35%,增益40dB,已应用于远程毫米波相控阵雷达‘'Ruza'。我国目前Ku波段和Ka波段耦合腔行波管远远不能满足超远距离雷达需求。 根据我国实际情况,若选择Ku波段作为同旋行波管的技术突破口,是一条既可行,又有很大发展潜力的技术线路。同旋行波管具有高功率、宽频带的特点,其功率容量可达剑100kW以上,带宽可达5%~20%,甚至更高,目前国内研制基础条件基本成熟,其主要关键技术的研究方法、理论和毫米波段同旋行波管放人器基本相同,可以相互借鉴。同时,在Ku波段同旋行波管放人器取得的新成果,义可推进毫米波同旋行波管放大器研究,进而可以发展毫米波段超远距离探测雷达。 02大功率合成技术 大功率合成技术是满足超远距离雷达探测所需功率的有效技术途径,美国Haystack雷达使用了四台发射机并列工作,单台输出峰值功率100kW,平均功率40kW。在HUSIR雷达中,开发了一个新颖的发射机体系,频率上采用多个放大管多路复用达到需要的带宽,幅度上采用多管合成达到要求的功率。一个多路组合16个回旋放大器阵列,功率合成和频率多路复用类似于使用准光学四端混合和低通滤波器,合成后达到对同步轨道卫星成像要求的发射机功率160kW(峰值),工作比为40%,带宽8GHz。 我国目前已实现了两路大功率发射机合成,为满足超远距离探测雷达的需求,还必须在功率合成、频率复用技术方面取得更人突破。 03大口径天线及馈电技术 为满足空间目标探测雷达的需求,获得接收远距离微弱信号能力,多采用大口径天线以获得高增益。甚至采用了阵列天线并发展了相控阵天线技术。卡塞格伦双反射面天线具有高增益、低旁瓣、技术成熟等优点,一直在远距离探测雷达领域得到广泛应用。 馈源是影响天线效率的重要部件,通常有两种体制:多喇叭体制和多模体制。近年来,多模馈源以和差效率高,频带宽等技术特点,成功应用于我国脉冲雷达,取得较好效果。 雷达发射机功率必须通过一定路径传输至馈源经天线向空

相关文档
最新文档