九年级数学弧长和扇形面积1

合集下载

弧长和扇形面积(解析版) 九年级数学下册

弧长和扇形面积(解析版) 九年级数学下册

27.3第1课时弧长和扇形面积姓名:_______班级_______学号:________题型1三角形外接圆的说法辨析1.(2023上·广东深圳·九年级深圳外国语学校校考阶段练习)下列说法正确的是()A .经过三点可以作一个圆B .三角形的外心到这个三角形的三边距离相等C .同圆或等圆中,等弧所对的圆心角相等D .相等的圆心角所对的弧相等【答案】C【分析】本题考查了圆的相关知识点,包括圆的确定条件、外心、弧弦角等的关系,熟记相关结论即可.【详解】解:A 、经过不在同一条直线上的三点可确定一个圆,故A 错误;B 、三角形的外心到这个三角形的三个顶点的距离相等,故B 错误;C 、同圆或等圆中,等弧所对的圆心角相等,故C 正确;D 、同圆或等圆中,相等的圆心角所对的弧相等,故D 错误.故选:C .2.(2023上·安徽芜湖·九年级统考阶段练习)在ABC 中,点P 是ABC 的外心,则点P ()A .到ABC 三边的距离相等B .到ABC 三个顶点的距离相等C .是ABC 三条高线的交点D .是ABC 三条角平分线的交点【答案】B【分析】本题考查三角形的外心,理解三角形的外心是三角形三边垂直平分线的交点,是解决问题的关键.【详解】解:∵点P 是ABC 的外心,∴点P 是ABC 的三条边的垂直平分线的交点,即:点P 到ABC 的三个顶点距离相等,(1)当点O 在ABC ∵点O 是三角形ABC ∴12A BOC ∠=∠,又240BOC A ∠+∠=【答案】43【分析】由三角形外心的性质结合可得出12BAC BOC ∠=∠【答案】()1,2-【分析】本题考查了三角形的外接圆与外心,坐标与图形性质,根据网格作直平分线,两条线交于点D ,可得点定义.【详解】解:如图,根据网格作∴点(1,2)D -是ABC 的外心,ABC ∴ 的外心的坐标为(1,-故答案为:(1,2)-.6.(2023上·北京海淀·九年级北京交通大学附属中学校考阶段练习)如图,在平面直角坐标系xOy 中,()3,6A ,()1,4B 【答案】()52,52,.所以点P的坐标为()52,.故答案为:()7.(2023上·江苏泰州·九年级统考期中)如图,在平面直角坐标系中,点()3,0,点C是第一象限内0,3、()为(),a b,则a b+的最大值为【答案】222++【分析】如图,作等边三角形BK为半径的优弧AMB=-+上,而直线y x m∵点A B 、的坐标分别为()0,3、()3,0,∴2223AB OA OB =+=,sin OBA ∠∴60OBA ∠=︒,∵60ABM AMB ∠=︒=∠,∴AM OB ∥,∴()23,3M ,3BN OA ==,AN MN =(1)在正方形网格中画出ABC 的外接圆(2)若EF 是M 的一条长为4的弦,点【答案】(1)见解析,()1,0M -(2)6【分析】本题考查作图-应用与设计,三角形的外接圆与外心等知识,解题的关键是熟练掌(2)连接MD,MG,ME,CM 点G为弦EF的中点,EM=∴⊥,MG EF,EF=4∴==,2EG FG221∴=-=,MG ME EGA.3cm B【答案】B【分析】连接OB、OC则90ODB ∠=︒,60A ∠=︒ ,120BOC ∴∠=︒,60BOD ∴∠=︒,OB OC = ,OD BC ⊥∴OA OB =,AH BC ⊥,∴116322BH BC ==⨯=,在Rt AHB △中,由勾股定理,得2225AH AB BH =-=-题型5判断三角形外接圆的圆心位置18.(2023上·江苏无锡·九年级统考期中)已知O 是ABC 的外接圆,那么点O 一定是ABC 的()A .三个顶角的角平分线交点B .三边高的交点C .三边中线交点D .三边的垂直平分线的交点【答案】D【分析】本题考查三角形外接圆圆心的确定,掌握三角形外接圆圆心的确定方法,结合垂直平分线的性质,是解决问题的关键.【详解】解:已知O 是ABC 的外接圆,那么点O 一定是ABC 的三边的垂直平分线的交点,故选:D .19.(2023上·江苏泰州·九年级统考期中)在如图所示的方格型网格图中,取3个格点、、A B C 并顺次连接得到ABC ∆,则ABC ∆的外心是()(1)求证:AO平分BAC∠(2)若O的半径为5,AD(3)若OD mOB=,求ADDC的值(用含【答案】(1)证明见解析(2)1.5AB AC = ,⊥AP BCPAB PAC ∴∠=∠,BP PC =,∵点O 是ABC 的外接圆圆心,∴点O 在AP 上,∴OAB OAC ∠=∠,OA ∴平分BAC ∠.(2)解:5OA OB == ,题型6判断确定圆的条件21.(2023上·山东聊城·九年级校联考阶段练习)小明不慎把家里的圆形镜子打碎了(如图),其中四块碎片如图所示,为了配到与原来大小一样的圆形镜子,小明带到商店去的碎片应该是()A.①B.②C.③D.④【答案】A【分析】本题考查了确定圆的条件,解题的关键是熟练掌握:圆上任意两弦的垂直平分线的交点即为该圆的圆心.要确定圆的大小需知道其半径.根据垂径定理知第①块可确定半径的大小.【详解】解:第①块出现一段完整的弧,可在这段弧上任做两条弦,作出这两条弦的垂直平分线,两条垂直平分线的交点就是圆心,进而可得到半径的长.故选:A.22.(2023上·陕西西安·九年级陕西师大附中校考阶段练习)下列说法中,正确的个数是()(1)相等的圆心角所对的弧相等,所对的弦相等(2)平分弦的直径垂直于弦,并且平分弦所对的弧(3)任意三点可以确定一个圆(4)圆是轴对称图形,其对称轴是任意一条直径所在的直线(5)圆是中心对称图形,对称中心是圆心A.1B.2C.3D.4【答案】B【分析】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理.熟练掌握圆的性质是解题的关键.根据圆心角、弧、弦的关系对(1)进行判断;根据垂径定理的推论对(2)进行判断;根据不在同一直线上的三点可以确定一个圆判断(3),根据对称轴的定义对(4)(5)进行判断.【详解】解:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦相等,所以(1)错误;平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,所以(2)错误;任意不在同一直线上的三点可以确定一个圆,所以(3)错误;圆是轴对称图形,其对称轴是任意一条直径所在的直线,所以(4)正确;圆是中心对称图形,对称中心是圆心,所以(5)正确;故正确的个数是2个,故选:B.23.(2023上·浙江嘉兴·九年级校考期中)下列命题正确的是()A.过三点一定能作一个圆B.相似三角形的面积之比等于相似比C.圆内接平行四边形一定是矩形D.三角形的重心是三角形三边中垂线的交点【答案】C【分析】根据不共线的三点确定一个圆;相似三角形的面积之比等于相似比的平方;圆内接四边形对角互补;三角形的重心是三角形三边中线的交点逐项判断即可.【详解】解:A.过不共线的三点一定能作一个圆,原命题错误;B.相似三角形的面积之比等于相似比的平方,原命题错误;C.∵圆内接四边形对角互补,且平行四边形的对角相等,∴圆内接平行四边形的对角都是90 ,∴圆内接平行四边形一定是矩形,正确;D.三角形的重心是三角形三边中线的交点,原命题错误;故选:C.【点睛】本题考查了确定圆的条件,相似三角形的性质,圆内接四边形的性质,平行四边形的性质,矩形的判定,三角形的重心等知识;熟练掌握相关定理和性质是解题的关键.24.(2023上·广东汕头·九年级校考阶段练习)下列命题在,正确的是由()①平分弦的直径垂直于弦;②经过三角形的三个顶点确定一个圆;③圆内接四边形对角相等;④相等的圆心角所对的弧相等,所对的弦也相等.A.①②B.②③C.②D.①④【答案】C【分析】根据确定圆的条件、圆心角、弧、弦的关系定理、垂径定理、圆内接四边形的性质进行判断即可得到正确结论.【详解】解:①平分弦(不是直径)的直径垂直于弦,①错误;②经过三角形的三个顶点确定一个圆,②正确;③圆内接四边形对角互补,③错误;④在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等,④错误.故选:C.【点睛】本题考查了确定圆的条件、圆心角、弧、弦的关系定理、垂径定理、圆内接四边形的性质,熟练掌握以上知识是解题的关键.题型7确定圆心(尺规作图)25.(2023上·河北邯郸·九年级校考阶段练习)如图,直角坐标系中一条圆弧经过格点A,B,C,其中B点坐标为(4,4),则该圆弧所在圆的圆心坐标为()A.(2,0)B.(2,1)C.(2,2)D.(3,1)【答案】A【分析】本题主要考查确定圆的条件和坐标与图形性质的知识点,根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心,是解决问题的关键.【详解】解:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB 和BC 的垂直平分线,交点即为圆心.如图所示,则圆心是(2,0).故选:A .26.(2023上·江苏宿迁·九年级统考期中)如图,在单位长度为1的正方形网格中建立一直角坐标系,一条圆弧经过网格点、、A B C ,请在网格图中进行下列操作:(1)利用网格作出该圆弧所在圆的圆心D 点的位置,并写出D 点的坐标为______;(2)求出扇形DAC 的面积.【答案】(1)见解析,()2,0(2)5π【分析】本题考查垂径定理,勾股定理以及扇形面积的计算,掌握扇形面积的计算方法,理解垂径定理、勾股定理是正确解答的前提.(1)根据网格和正方形的性质,分别作出AB 、BC 的中垂线,两条中垂线的交点即为圆心,进而写成点D 的坐标;(2)利用网格以及勾股定理和逆定理得出90ADC ∠=︒以及半径的平方,再根据扇形面积的计算方法进行计算即可.故答案为:(2,0);(2)解:由(1)图可知:2222425,2AD CD =+==222DA DC AC += ,ADC ∴ 为直角三角形,ADC ∠即D 的半径为25,ADC ∠的度数为(1)在网格图中画出圆M (包括圆心)(2)判断M 与y 轴的位置关系:【答案】(1)见解析,(3,2)(2)相交点M 坐标为:(3,2)故答案为:(3,2);(2)∵22(32)(25)MA =-+-=即:M 的半径10r =,点M 到y 轴的距离3d =,(1)画出圆心P ;(2)画弦BD ,使BD 平分ABC ∠.【答案】(1)见解析(2)见解析【分析】(1)根据题意得到BC ,AF 是圆的直径,BC 和AF 的交点即为要求的点P ;(2)连接AC ,AC 的中点为E ,连接PE 并延长交P 于点D ,连接BD ,即为所求.【详解】(1)如图所示,点P 即为所求;∵BC ,AF 是圆的直径,∴BC 和AF 交于点P ,∴点P 是圆心.(2)如图所示,BD 即为所求;连接AC ,AC 的中点为E ,连接PE 并延长交P 于点D ,连接BD ,∵AE CE=∴PE AC⊥∴ CD AD=∴CBD ABD∠=∠∴BD 平分ABC ∠.【点睛】此题考查了垂径定理的应用,网格作图,解题的关键是熟练掌握以上知识点.题型8求能确定的圆的个数29.(2023上·安徽芜湖·九年级统考阶段练习)在平面直角坐标系中,点P 的坐标为()1,0-,以点P 为圆心,1为半径作圆,这样的圆可以作()A .1个B .2个C .3个D .无数个【答案】A【分析】本题考查圆的确定,牢记平面内已知圆心与半径可以唯一确定圆是解决问题的关键.【详解】解:∵点()1,0P -为圆心,1为半径作圆,∴可以唯一确定圆,即:这样的圆只有1个,故选:A .30.(2023上·河北邢台·九年级校考期中)如图,点A ,B ,C ,D 均在直线l 上,点P 在直线l 外,则经过其中任意三个点,最多可画出圆的个数为()A .12B .8C .6D .4【答案】C 【分析】本题考查了确定圆的条件,熟练掌握不共线三点确定一个圆是解题的关键.【详解】解:依题意A ,B ;A ,C ;A ,D ;B ,C ;B ,D ;C ,D 加上点P 可以画出一个圆,∴共有6个,故选:C .31.(2023上·全国·九年级专题练习)平面上有不在同一直线上的4个点,过其中3个点作圆,可以作出n 个圆,那么n 的值不可能为()A .1B .2C .3D .4【答案】B【分析】分为三种情况:①当四点都在同一个圆上时;②当三点在一直线上时;③当A 、B 、C 、D 四点不共圆,且其中的任何三点都不共线时;分别画出图形讨论即可.【详解】解:分为三种情况:①当四点都在同一个圆上时,如图1,此时1n =,②当三点在一直线上时,如图2n=,分别过A、B、C或A、C、D或A、B、D作圆,共3个圆,即3③当A、B、C、D四点不共圆,且其中的任何三点都不共线时,n=,分别过A、B、C或B、C、D或C、D、A或D、A、B作圆,共4个圆,即此时4即n不能是2,故选:B.【点睛】本题考查了确定一个圆的条件,正确分类、熟知不共线的三点确定一个圆是解题的关键.32.(2023·江西·统考中考真题)如图,点A,B,C,D均在直线l上,点P在直线l外,则经过其中任意三个点,最多可画出圆的个数为()A.3个B.4个C.5个D.6个【答案】D【分析】根据不共线三点确定一个圆可得,直线上任意2个点加上点P可以画出一个圆,据此列举所有可能即可求解.【详解】解:依题意,,A B;,A C;,A D;,B C;,B D,,C D加上点P可以画出一个圆,∴共有6个,故选:D.【点睛】本题考查了确定圆的条件,熟练掌握不共线三点确定一个圆是解题的关键.(1)求作A,使得(2)在(1)的条件下,设于点G,求AB AD【答案】(1)见解析(2)51-如图,以A 为圆心AN 为半径画圆即为所求;(2)解:设AB ADα=,A 的半径为BD Q 与A 相切于点E ,CF AE BD ∴⊥,AG CG ⊥,即90AEF AGF ∠=∠=︒,CF BD ⊥ ,90EFG ∴∠=︒,∴四边形AEFG 是矩形,又AE AG r ==,∴四边形AEFG 是正方形,,【答案】图见解析【分析】本题考查作图—复杂作图,切线的性质,根据切线的定义,得到点35.(2023上·江苏连云港·九年级统考期中)如图,在平面直角坐标系()4,4B -、()6,2.C -(1)在图中画出经过A 、B 、C (2)M 的半径为__;(3)点O 到M 上最近的点的距离为【答案】(1)见解析,()2,0-(2)25故答案为:()2,0-;(2)()6,2C - ,()2,0M -22(62)22MC ∴=-++=即M 的半径为25,A .5π2【答案】D 【分析】先确定圆心由题意得:221OA =+∴222OA OC AC +=,∴AOC 是等腰直角三角形,∴=90AOC ∠︒,A.12【答案】A【分析】此题考查圆锥的计算,正方形的性质,勾股定理,解题的关键是熟练掌握扇形的弧【答案】5π【分析】本题考查了弧长,三角形内角和.熟练掌握弧长的计算公式是解题的关键.由题意知,三条弧的半径相同为计算求解即可.【答案】1m 3【分析】本题考查圆锥的有关计算,是解决问题的关键.根据弧长公式求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.A.0.9米B.0.8米【答案】B【分析】本题考查通过弧长计算半径,熟练掌握弧长公式是解题关键. OA【答案】4【分析】本题考查圆锥展开图及扇形弧长公式,直接求解即可得到答案;【详解】解:由题意可得,【答案】4【分析】本题考查圆锥的侧面积,由圆锥侧面展开图是扇形,可以利用求扇形面积公式12S lr =即可求解,解题的关键是正确理解圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.【答案】500OCD S π=扇形【分析】本题考查了扇形的弧长,扇形的面积;由弧长公式可求 180n r l π=扇形和2360n r S π=扇形是解题的关键.【详解】解:由题意得(1)点O 在线段BP 上.若以点尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,O (2)解:连接CO ,∵BC PC=∴CBP P∠=∠∵ 6AB AC =,的长为π.(1)画出点A 的对应点A '(要求:尺规作图,保留作图痕迹,不写作法)(2)已知336AB ABC ∠=︒=,,点A 运动到点果保留π);(2)解:∵336AB ABC ∠=︒=,,∴18036144ABA '∠︒-︒=︒=,∴点A 经过的路线长为1443121805π⨯=π,故答案为:125π.49.(2023上·河南商丘·九年级商丘市第六中学校考期末)如图,在平面直角坐标系中,点(1)请作出△ABC 绕点B 逆时针旋转点E .分别写出点D ,点E 的坐标.(2)请直接写出(1)中点A 在旋转过程中经过的弧长为【答案】(1)图见解析,()03D ,,(2)10π2【分析】本题考查旋转变换的作图、弧长公式,熟练掌握旋转的性质、勾股定理、弧长公式是解答本题的关键.(1)根据旋转的性质作图,即可得出答案.(2)利用勾股定理求出AB 的长,再利用弧长公式计算即可.由图可得,D (0,3),E (3,1).(2)解:由勾股定理得,23AB =+∴点A 在旋转过程中经过的弧长为90π故答案为:10π2.50.(2023上·山东聊城·九年级校联考阶段练习)如图,在平面直角坐标系中,个顶点坐标分别为()2,1A -,()1,4B -(1)ABC 绕原点O 逆时针旋转90︒径长度;(2)以原点O 为位似中心,位似比为如果点(),D a b 在线段AB 上,那么请直接写出点【点睛】本题主要考查了坐标与图形变化—旋转,画位似图形,求位似图形对应点坐标,勾股定理,求弧长等等,正确根据变换方式找到对应点的位置是解题的关键.A .54π【答案】C【分析】本题考查扇形面积的计算,角形的判定得出BOD9π(1)求证:PA PB =;(2)若O 的半径为6,60P ∠=︒, 3CD=【答案】(1)证明见解析(2)39π-【分析】(1)连接OA ,OC ,OD ,OB ,AC BD=,AC BD ∴=,OA OC OB OD === ,OM AC ⊥,ON BD ⊥,CM AM ∴=,BN DN =,90OMC OND ∠=∠=︒,CM DN ∴=,在Rt OMC 和Rt OND 中,CM DN OC OD=⎧⎨=⎩,Rt Rt (HL)OMC OND \ ≌,OM ON ∴=,在Rt POM ∆和Rt PON ∆中,OP OP OM ON=⎧⎨=⎩,Rt Rt (HL)POM PON ∴≅ ,PM PN ∴=,AM BN = ,PA PB ∴=.(2)解:60APB ∠=︒ ,90PMO PNO ∠=∠=︒,120MON ∴∠=︒,POM PON ≌,60POM PON ∴∠=∠=︒,3CDAC =,∴116322AJ OA ==⨯=912AOC O J S C A ∴=⋅= ,2306939360AOC AOC S S S ππ⨯⨯∴=-=-=- 阴扇形.【点睛】本题考查扇形的面积公式,垂径定理,弧、圆心角、弦的关系,全等三角形的判定与性质,直角三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.【基础巩周】(2)如图,正方形ABCD 的比值;【尝试应用】(3)如图,在半径为【答案】(1)相等,理由见解析;【分析】本题考查的是平行线的性质,垂径定理,弧、弦、圆心角的关系,圆周角定理,扇形面积,勾股定理等,解决本题的关键是熟练掌握两条平行线之间的距离处处相等.(1)根据等底等高的三角形面积相等可直接得出答案;(2)根据OAN ODN S S = MN AD ∥,正方形ABCD ∴BC MN AD ∥∥,∴OAN ODN S S =,OBN S =∴阴影面积等于扇形DOCBD CD =,OB OC =∴OD BC ⊥,∴2BDC BDO ∠=∠=∴2BAC BDC ∠=∠= 2ACO BDO ∠=∠,A .π【答案】B 【分析】根据旋转的性质得出式,即可求解.【答案】84π-/84π-+【分析】由图知,要求的面积有两部分:与原三角形相似,已知了原三角形的周长和面积,三角形内部被圆滚过部分的三角形的内切圆半径,【点睛】此题主要考查的是圆的综合题,图形面积的求法,切线的性质、扇形面积的计算方法、相似三角形以及三角形内切圆半径的求法等知识,与原三角形相似,原三角形边界的三个扇形正好构成一个单位圆是解题的关键.57.(2023上·北京西城·九年级校考期中)如图所示,在平面直角坐标系顶点均在格点上,点C的坐标为(4-,绕原点O顺时针方向旋转(1)将ABC(2)C点运动到1C的过程,线段OC【答案】(1)见解析π(2)54【分析】(1)根据旋转的性质,分别作出(2)解:如图,线段OC扫过的图形的面积即为扇形(),4,1C-。

人教版九年级数学上册《弧长和扇形面积》学案及同步作业(含答案)

人教版九年级数学上册《弧长和扇形面积》学案及同步作业(含答案)

24.4弧长和扇形面积(第1课时)【学习目标】了解扇形的概念,理解 n?°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用.【学习重点】n°的圆心角所对的弧长 L= n R,扇形面积S扇= n R2及其它们的应用.180360【学习过程】(教师寄语:勤动脑,多动手,体验收获!)自主探究(教师寄语:学会独立思考,自主学习是最重要的!)一、任务一:探究弧长公式1、圆的周长公式是什么?什么叫弧长?2、圆的周长可以看作 ______度的圆心角所对的弧.1°的圆心角所对的弧长是 _______; 2°的圆心角所对的弧长是 _______;4°的圆心角所对的弧长是 _______;n°的圆心角所对的弧长是 _______。

任务二:探究扇形面积公式3、圆的面积公式是什么?什么叫扇形?4、圆的面积可以看作度圆心角所对的扇形的面积;设圆的半径为R,1°的圆心角所对的扇形面积S 扇形 =_______; 2°的圆心角所对的扇形面积 S 扇形=_______; 5°的圆心角所对的扇形面积S 扇形=_______;n °的圆心角所对的扇形面积S 扇形 =_______。

5、比较扇形面积公式和弧长公式,如何用弧长表示扇形的面积?二、合作学习(教师寄语:学会与别人合作是一种能力!)例 1、(教材 121 页例 1)例 2:如图,已知扇形 AOB的半径为 10,∠ AOB=60°,求AB的长( ?结果精确到 0.1)和扇形 AOB的面积结果精确到 0.1)三、课时小结(教师寄语:及时总结能使人不断进步!)四、自我测评(教师寄语:细心思考,必定成功!)1、已知扇形的圆心角为120°,半径为6,则扇形的弧长是().A . 3B . 4C . 5D . 62、如图所示,把边长为 2 的正方形 ABCD的一边放在定直线L 上,按顺时针方向绕点 D 旋转到如图的位置,则点 B 运动到点 B′所经过的路线长度为()A.1B.C.2D.2B C(A')B'AlD C'A BCO(第 2 题图)(第 3 题图)(第 4 题图)(第 6 题图)3、如图所示, OA=30B,则AD的长是BC的长的 _____倍.4、如图,这是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中AOB 为120,OC 长为8cm, CA 长为12cm,则阴影部分的面积为。

24.4弧长和扇形面积--4.1 弧长公式和扇形面积公式(共27张PPT)

24.4弧长和扇形面积--4.1  弧长公式和扇形面积公式(共27张PPT)


所围成的图形叫做扇形,可
以发现,扇形面积与组成扇形的圆心角
的大小有关,圆心角越大,扇形面积也
就越大.
怎样计算圆半径为R,圆心角为n°的扇形面积呢?
12
知识点二:与扇形面积有关的计算
新知探究
由扇形的定义可知,扇形面积就是 圆面积的一部分.
想一想,如何计算圆的面积? S=πR2
圆面积可以看作是多少度的圆心角所对的 扇形的面积?
O · 1°

R
13
知识点二:与扇形面积有关的计算
归纳总结
圆心角为n°的扇形面积是:
比较扇形面积与弧长公式, 用弧长表示扇形面积:
l=
14
知识点二:与扇形面积有关的计算
典例讲评
如图,水平放置的圆柱形排水管道的截面半径是0.6cm, 其中水面高0.3cm,求截面上有水部分的面积.
解析:弓形的面积 = S扇 - S△OAB
【解析】由弧长公式,可得弧AB的长
l
(mm)
因此所要求的展直长度
l
(mm)
答:管道的展直长度为2970mm.
7
知识点一:与弧长有关的计算
学以致用
1.如图,A,B,C是圆周上的三点, ∠BAC=30°,且弧BC的长是 π, ⊙O的半径为( A )
A.1 B.2 C.1.5 D.3 2.如图,在边长为1的正方形组成的网 格中,△ABC的顶点都在格点上,将 △ABC绕点C顺时针旋转60°,则顶点 A所经过的路径长为( C ) A.10π B. C. π D.π
形的面积是
㎝2.
解析:设扇形的半径为R,根据题意得
135πR 180
Байду номын сангаас
=3π

人教版九年级数学上册24.4弧长和扇形面积(教案)

人教版九年级数学上册24.4弧长和扇形面积(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解弧长和扇形面积的基本概念。弧长是圆上一段弧的长度,而扇形面积则是圆心角所对的区域。这些概念在工程、地理和日常生活中有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。假设我们要计算一个半径为10米的半圆的弧长,我们将学习如何使用弧长公式来求解。
然而,我也注意到在小组讨论环节,有些小组的参与度并不高,可能是因为问题设置不够贴近学生的实际经验,或者是我没有给予足够的引导。在未来的教学中,我需要针对这一点进行改进,设计更具启发性和参与性的讨论主题。
实践活动虽然增加了学生对知识的直观感受,但在时间分配上似乎有些紧张。有些小组没有足够的时间完成讨论和实验操作,导致成果展示不够充分。我考虑在下次课中,适当延长实践活动的时间,确保每个小组都有足够的机会来展示他们的成果。
(3)教学难点中的弧度与角度转换,学生需要记住π弧度等于180°,因此在计算中如遇到角度制,需要先转换为弧度制。例如,一个圆心角为60°的扇形,其对应的弧度为π/3(60° × π/180)。
(4)在实际应用中,学生需要将问题描述转化为数学表达式。例如,如果一个公园的圆形喷泉半径是3米,需要清洁的部分占整个圆的1/6,学生需要计算出这部分扇形的面积(A = 1/2 × 3² × π/3)。这个过程中,学生需要识别出圆心角是π/3弧度,这是解决问题的关键。
人教版九年级数学上册24.4弧长和扇形面积(教案)
一、教学内容
人教版九年级数学上册第24.4节,本节课将重点探讨以下内容:
1.弧长的概念及其计算公式;
2.弧度的概念及其与角度的转换;
3.扇形的定义及扇形面积的计算公式;
4.应用实例:计算给定圆的半径或弧长,求解扇形面积。

北师大版九年级下册数学第18讲《弧长和扇形面积》知识点梳理

北师大版九年级下册数学第18讲《弧长和扇形面积》知识点梳理

北师大版九年级下册数学第 18 讲《弧长和扇形面积》知识点梳理【学习目标】1.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长和扇形面积的计算公式,并应用这些公式解决问题;2.能准确计算组合图形的面积.【要点梳理】要点一、弧长公式半径为R 的圆中360°的圆心角所对的弧长(圆的周长)公式:n°的圆心角所对的圆的弧长公式:(弧是圆的一部分)要点诠释:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;(2)公式中的n表示1°圆心角的倍数,故n和180 都不带单位,R 为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.要点二、扇形面积公式1.扇形的定义由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.2.扇形面积公式半径为R 的圆中360°的圆心角所对的扇形面积(圆面积)公式:n°的圆心角所对的扇形面积公式:要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.3 (3) 扇形面积公式 ,可根据题目条件灵活选择使用,它与三角形面积公式 有点类似,可类比记忆;(4) 扇形两个面积公式之间的联系: .【典型例题】类型一、弧长和扇形的有关计算1. 如图(1),AB 切⊙O 于点 B ,OA= 2,AB=3,弦 BC∥OA ,则劣弧 B»C 的弧长为( ). A . 3 π B . 3 π 3 2 C .π D . 3π 2A图(1)【答案】A.【解析】连结 OB 、OC ,如图(2)则∠OBA =90︒ ,OB= , ∠A =30︒ , ∠AOB =60︒ ,由弦 BC ∥OA 得∠OBC =∠AOB = 60︒ ,所以△OBC 为等边三角形, ∠BOC =60︒ .则劣弧 B»C 的弧长为 60π 3 = 3π ,故选 A. 图(2) 180 3【总结升华】主要考查弧长公式:.举一反三:【变式】制作弯形管道时,需要先按中心线计算“展直长度”再下料, 试计算如图所示的管道的展直长度,即的长(结果精确到 0.1mm)3 C B O【答案】R=40mm,n=110∴的长= = ≈76.8(mm)因此,管道的展直长度约为76.8mm.2.如图,⊙O 的半径等于1,弦AB 和半径OC 互相平分于点M.求扇形OACB 的面积(结果保留π)【答案与解析】∵弦AB 和半径OC 互相平分,∴OC⊥AB,OM=MC= OC= OA.∴∠B=∠A=30°,∴∠AOB=120°∴S 扇形= .【总结升华】运用了垂径定理的推论,考查扇形面积计算公式.举一反三:【变式】如图(1),在△ABC 中,BC=4,以点A 为圆心,2 为半径的⊙A 与BC 相切于点D,交AB 于E,交AC 于F,点P 是⊙A 上的一点,且∠EPF=40°,则图中阴影部分的面积是().A.4 -4πB.4 -8πC.8 -4πD.8 -8π 9 9 9 9A PE FB D C图(1)的面积是: 【答案】连结 AD ,则 AD ⊥BC ,△ABC 的面积是:BC•AD= ×4×2=4,∠A=2∠EPF=80°.则扇形 80π 22 EAF = 8π.360 9故阴影部分的面积=△ABC 的面积-扇形 EAF 的面积= 4- 8π. 图(2) 9故选 B .3.(2015•ft西模拟)如图,已知⊙O 是△ABC 的外接圆,AC 是直径,∠A=30°,BC=2,点 D 是 AB 的中点, 连接 DO 并延长交⊙O 于点 P ,过点 P 作 PF⊥AC 于点 F .(1) 求劣弧 PC 的长;(结果保留 π)(2) 求阴影部分的面积.(结果保留 π).【答案与解析】解:(1)∵点 D 是 AB 的中点,PD 经过圆心,∴PD⊥AB,∵∠A=30°,∴∠POC=∠AOD=60°,OA=2OD ,∵PF⊥AC,∴∠OPF=30°,∴OF=OP ,∵OA=OC,AD=BD ,∴BC=2OD,∴OA=BC=2,∴⊙O 的半径为 2,∴劣弧 PC 的长===π;(2)∵OF=OP ,∴OF=1,∴PF== ,∴S阴影=S 扇形﹣S△OPF=﹣×1×=π﹣.【总结升华】本题考查了垂径定理的应用,弧长公式以及扇形的面积公式等知识,求得圆的半径和扇形的圆心角的度数是解题的关键.类型二、组合图形面积的计算4.(2015•槐荫区三模)如图,AB 是⊙O的直径,弦CD⊥AB,垂足为E,∠CDB=30°,CD=2,求图中阴影部分的面积.【答案与解析】解:∵AB是⊙O的直径,弦CD⊥AB,∴CE=.∵∠CDB=30°,∴∠COE=60°,在Rt△OEC中,OC= =2,∵CE=DE,∠COE=∠DBE=60°∴Rt△COE≌Rt△DBE,∴S阴影=S 扇形OBC=π×OC2= π×4=π.【总结升华】本题考查了垂径定理,扇形的面积等,解此题的关键是求出扇形和三角形的面积.。

初中数学中的弧长与扇形面积解题技巧详解

初中数学中的弧长与扇形面积解题技巧详解

初中数学中的弧长与扇形面积解题技巧详解在初中数学中,弧长与扇形面积是一个重要的概念,在解题过程中需要掌握一些解题技巧。

本文将详细介绍解决弧长与扇形面积问题的方法和技巧。

一、弧长的计算方法弧长是指圆周上的一段弧的长度。

计算弧长时需要知道圆的半径和弧度,弧度是指弧对应的圆心角所包的角度。

1. 当已知圆的半径和圆心角的度数时,可以使用如下公式计算弧长:弧长 = (圆心角 / 360)* 2πr其中,r为圆的半径,π为圆周率。

2. 当已知圆的半径和圆心角的弧度时,可以使用如下公式计算弧长:弧长 = 弧度 * r其中,r为圆的半径。

二、扇形面积的计算方法扇形是指由圆心和圆周上的两点所围成的图形,计算扇形面积时需要知道圆的半径和圆心角的度数或弧度。

1. 当已知圆的半径和圆心角的度数时,可以使用如下公式计算扇形面积:扇形面积 = (圆心角 / 360)* πr²其中,r为圆的半径,π为圆周率。

2. 当已知圆的半径和圆心角的弧度时,可以使用如下公式计算扇形面积:扇形面积 = 0.5 * 弧度 * r²其中,r为圆的半径。

三、解题技巧在解决弧长与扇形面积问题时,可以运用以下技巧:1. 将问题转化为已知数据和未知数之间的关系,建立方程或比例,然后进行求解。

2. 注意单位换算,确保所有的数值具有相同的单位。

3. 理解并运用相似三角形的性质,可以简化计算过程。

4. 将问题转化为几何图形的面积问题,利用面积公式求解。

5. 多进行反思与总结,在解题过程中不断优化自己的思考方式和解题方法。

四、例题演练下面通过几个例题演练来更好地掌握弧长与扇形面积的解题技巧:例题1:半径为8cm的圆的弧长是12cm,求圆心角的度数。

解题步骤:设圆心角为x度,根据弧长的计算公式可得:12 = (x / 360)* 2π * 8通过移项和化简计算得:x = 540 / π ≈ 172.18所以,圆心角的度数约为172.18度。

人教版九年级数学上册课件:24.4弧长和扇形面积(共19张PPT)



1353π6×0 152=375π(cm2).
9
能力提升
11.如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分.图2中, 图形的相关数据:半径OA=2 cm,∠AOB=120°,则图2的周长为 83π ________cm.(结果保留π)
10
12.如图,在△ABC中,AC=4,将△ABC绕点C逆时针旋 转30°得到△FGC,则图43中π 阴影部分的面积为________.
第二十四章 圆
弧长和扇形面积
第一课时
知识展示
知识点 1 弧长公式 n°的圆心角所对的弧长 l 的计算公式为 l=n1π8R0 ,其中 R 为半径. 核心提示:在弧长公式中,已知 l、n、R 中的任意两个量,都可以求出第三个 量. 知识点 2 扇形的定义 由组成圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形.
分析:先用扇形OAB的面积-三角形OAB的面积求出上面空白部分面积,再用扇形OCD的面积-三角形OCD的面积-上面空白部分的面
积7.,如即图可,求5分出.别阴以影【五部边分黑形的A龙面BC积D江.E的顶哈点尔为圆滨心,中以1考为半】径作一五个个圆,扇则图形中的阴影弧部分长的面是积之1和1为π__c___m___.,半径是18
2
知识点 3 扇形面积公式 (1)n°圆心角的扇形面积公式:S 扇形=n3π6R02 ,其中 R 为半径. (2)弧长为 l 的扇形面积公式:S 扇形=12lR,其中 R 为半径. 【典例】如图,半径为 12 的圆中,两圆心角∠AOB=60°、∠COD=120°,连接 AB、CD,求图中阴影部分的面积.
cm,则此扇形的圆心角是__________度. 71.2.如如图图,,分在别△以AB五C中边,形AACB=CD4E,的将顶△点AB为C圆绕心点,C逆以时11为针1半旋0 径转作30五°得个到圆△,FG则C,图则中图阴中影阴部影分部的分面的积面之积和为为________________.. 一列火车以6每.小时【28 江km的苏速度泰经州过10中秒通考过弯】道.如那么图弯,道所分对的别圆心以角为正___三_____角__度形.(π的取3.3个顶点为圆心, 98..一已段知铁扇边路形弯所长道在成圆为圆半弧 径半形为,4径,圆弧弧画长的为弧半6径π,,是则2三扇km形.段面积弧为_围_____成____.的图形称为莱洛三角形.若正三角 分 积析,:即先 可用 求形扇 出形 阴边影OA部长B的分面为的积面6-积三.c角m形,OAB则的面该积求莱出上洛面三空白角部分形6面π积的,再周用扇长形为OCD_的_面__积_-__三_角c形mOC. D的面积-上面空白部分的面

初中数学人教九年级上册(2023年新编)第二十四章 圆弧长和扇形面积(教案)

弧长和扇形面积第1课时弧长和扇形面积教学目标:1、能推导弧长和扇形面积的计算公式。

.2通过等分圆周的方法,体验弧长扇形面积公式的推导过程,培养学生抽象、理解、概括、归纳能力和迁移能力.3、知道公式中字母的含义,并能运用这些公式进行相应的计算。

教学重点:弧长和扇形面积公式,准确计算弧长和扇形的面积.教学难点:熟练地运用弧长和扇形面积公式进行计算。

一、情境导入问题1 制造弯形管道时,经常要先按中心线计算“展直长度”,再下料,这就涉及到计算弧长的问题.如图,根据图中的数据你能计算弧AB的长吗?求出弯道的展直长度.这就是我们今天要学习的内容弧长和扇形的面积——板书课题.二、进入新课1.探索弧长公式思考 1 你还记得圆的周长的计算公式吗?圆的周长可以看作多少度的圆周角所对的弧长?由此出发,1°的圆心角所对的弧长是多少?n°的圆心角所对的弧长多少?分析:在半径为R的圆中,圆周长的计算公式为:C=2πR,则:圆的周长可以看作360°的圆心角所对的弧;∴1°的圆心角所对的弧长是:1/360·2πR=πR/180;2°的圆心角所对的弧长是:2/360·2πR=πR/90;4°的圆心角所对弧长是:4/360·2πR=πr/45;∴n°的圆心角所对的弧长是:l=nπR/180;由此可得出n°的圆心角所对的弧长是:l=nπR/180.【教学说明】①在应用弧长公式进行计算时,要注意公式中n的意义,n表示1°圆心角的倍数,它是不带单位的;②公式可以按推导过程来理解记忆;③区分弧、弧度、弧长三个概念,度数相等的弧,弧长不一定相等;弧长相等的弧也不一定是等弧,而只有在同圆或等圆中才可能是等弧.小练习:①课本P111例1②课本p113练习第一题2.扇形面积计算公式如图,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.思考2 扇形面积的大小与哪些因素有关?(学生思考并回答)从扇形的定义可知,扇形的面积大小与扇形的半径和圆心角有关.扇形的半径越长,扇形面积越大;扇形的圆心角越大,扇形面积越大.思考3若⊙O的半径为R,求圆心角为n°的扇形的面积.【教学说明】此问题有一定的难度,目的是引导学生迁移推导弧长公式的方法步骤,利用迁移方法探究新问题,归纳结论.3、例1(教材112页例2)如图,水平放置的圆柱形排水管道的截面半径为,其中水面高,求截面上有水部分的面积(精确到).解:连接OA、OB,作弦AB的垂线OD交AB于点C.∵OC=,DC=,∴OD=OC-DC=在Rt△OAD中,OA=,OD=,由勾股定理可知:Rt△OAD中,OD=1/2OA.∴∠OAD=30°,∠AOD=60°,∴∠AOB=120°.∴有水部分的面积为:S=S扇形OAB -S△OAB=π-12××≈(m2).三、运用新知,深化理解完成教材第113页练习2个小题.【教学说明】这几个练习较为简单,可由学生自主完成,教师再予以点评.四、师生互动,课堂小结通过这堂课的学习,你知道弧长和扇形面积公式吗?你会用这些公式解决实际问题吗?【教学说明】教师先提出问题,然后师生共同回顾,完善认知.五、布置作业1.默写弧长公式和面积公式2、课本P115 6、7、8题。

人教版数学九年级上册24.4.1弧长和扇形面积说课稿

(2)学生在学习过程中,容易混淆弧长和扇形面积的计算公式,需要重点掌握。
2.教学难点:弧长和扇形面积在实际问题中的应用。
具体原因:
(1)实际问题的解决需要学生具备一定的观察能力、分析能力和空间想象力,对学生的思维能力要求较高。
(2)学生在解决实际问题时,容易忽略弧长和扇形面积的计算方法,导致解答错误。
具体的反思和改进措施包括:
-根据学生的反馈调整教学方法和内容。
-分析学生的作业和测试结果,针对普遍错误进行集中讲解。
-定期回顾和总结教学过程,不断优化教学策略。
(二)学习障碍
学生在学习本节课之前,应该已经具备了一定的圆相关知识,如圆的周长和面积的计算方法,以及基本的几何图形概念。然而,可能存在以下学习障碍:
1.对弧长和扇形面积的概念理解不深,容易混淆。
2.在实际应用中,学生可能难以将抽象的数学公式与具体问题联系起来。
3.学生可能缺乏解决实际问题时所需的观察能力和空间想象力。
-使用具体的实例和生活情境来解释抽象概念。
-设计针对性的练习,加强学生的计算能力。
-通过提问和小组讨论,增加课堂互动,提高学生的参与度。
课后评估教学效果的方法包括:
-检查学生的作业和练习,了解他们对知识点的掌握情况。
-通过课堂问答和测试,评估学生对知识的应用能力。
-收集学生的反馈,了解他们的学习体验和困难。
3.通过小组合作解决问题,鼓励学生之间的交流和讨论,培养他们的合作精神和沟通能力。
4.设定一些挑战性的问题,激发学生的探究欲望和成就感,同时给予及时的反馈和鼓励,以维持他们的学习动力。
三、教学方法与手段
(一)教学策略
本节课将采用以下主要教学方法:启发式教学、探究式学习和小组合作学习。

九年级数学弧长和扇形面积公式

九年级数学弧长和扇形面积公式好嘞,以下是为您生成的关于“九年级数学弧长和扇形面积公式”的文章:咱上了九年级,数学里有个特重要的知识点,就是弧长和扇形面积公式。

这玩意儿听起来可能有点复杂,但是别慌,咱们慢慢捋清楚。

先来说说弧长公式。

弧长公式是啥呢?就是L = nπr/180 ,这里的 L 表示弧长,n 是圆心角度数,r 是圆的半径。

我给您举个例子哈。

有一次我去公园散步,看到公园里有个圆形的花坛。

我就琢磨着,假如这个花坛的半径是 5 米,其中一段弧所对的圆心角是 60 度,那这段弧长是多少呢?咱们就可以用弧长公式来算一算。

把数值代入公式,L = 60×π×5÷180 ,算出来弧长就是5π / 3 米。

您看,是不是还挺简单的?再说说扇形面积公式,扇形面积公式有两个,一个是S = nπr²/360 ,另一个是 S = 1/2 × Lr 。

这两个公式都能用来求扇形面积,具体用哪个,得看题目给的条件。

比如说,还是那个花坛,这次咱们要算扇形花坛的面积。

如果知道圆心角是 60 度,半径是 5 米,那用第一个公式,S = 60×π×5²÷360 ,算出来面积就是25π / 6平方米。

要是知道弧长是5π / 3 米,半径是 5 米,那就用第二个公式,S = 1/2 × 5π / 3 × 5 ,算出来也是25π / 6 平方米。

在做这类题目的时候,可一定要仔细看清楚题目给的条件,别用错公式啦。

我之前就有个学生,做题的时候心急,没看清条件就用公式,结果算错了,还被我好好教育了一番。

其实啊,弧长和扇形面积公式在生活中的应用可多了去了。

像做个圆形的扇子,要知道用多少材料,就得用到扇形面积公式。

还有设计个弧形的窗户,得算出弧长,才能知道需要多长的边框材料。

总之,九年级数学里的弧长和扇形面积公式虽然有点小复杂,但只要咱们多做几道题,多联系联系实际生活,就一定能把它拿下!您觉得这弧长和扇形面积公式是不是也没那么难啦?希望您在学习的过程中也能像我一样,发现其中的乐趣,轻松搞定这些知识点!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档