高二上学期数学知识点归纳总结大全
高二上数学知识点归纳总结

高二上数学知识点归纳总结高二上学期是数学学科中重要的一个学习阶段,学生们将接触到更加深入和复杂的数学知识点。
为了帮助同学们更好地理解和掌握这些知识,本文将对高二上数学知识点进行归纳总结。
内容涵盖了数列与数学归纳法、函数、导数与微分以及平面向量这四个重要的数学主题。
一、数列与数学归纳法1. 等差数列与等差中项:定义、性质和求和公式的推导;2. 等比数列与等比中项:定义、性质和求和公式的推导;3. 通项公式的求取:根据已知条件进行数列的通项公式推导;4. 数学归纳法:原理与应用,通过数学归纳法证明数学命题的正确性。
二、函数1. 函数的概念与性质:定义、自变量、因变量、定义域、值域等基本概念;2. 一次函数与二次函数:特点、图像、性质及其应用;3. 反函数与复合函数:概念与性质;4. 综合函数与分段函数:定义、性质及其求导法则;5. 高次函数与有理函数:定义、性质及其图像特点。
三、导数与微分1. 切线与斜率:切线的定义、斜率的计算及其在函数图像上的应用;2. 导数的概念与性质:导数的定义、计算、导数与函数图像的关系;3. 基本导数公式与导数法则:常见初等函数的导数、四则运算法则、链式法则、乘积法则和商法则;4. 高阶导数与微分:定义与基本性质;5. 隐函数与参数方程的微分:隐函数求导、参数方程求导及其应用。
四、平面向量1. 向量的概念与性质:定义、数量与方向、零向量、负向量等基本概念;2. 向量的加法与减法:平移法则、三角法则及其性质;3. 数量积与向量积:数量积的定义、长度及其应用,向量积的定义、模长与方向;4. 向量的坐标表示与平面向量方程:向量的坐标表示、向量间的运算及其几何应用。
通过对高二上学期的数学知识点的归纳总结,希望能够帮助同学们更好地理解和应用这些知识,提高数学学科的学习成绩。
同学们可以根据这些知识进行系统性的学习和复习,同时通过大量的练习题提升自己的解题能力,为接下来的学习打下坚实的基础。
高二上学期数学知识点汇总

高二上学期数学知识点汇总一、函数与方程1. 函数的概念与性质函数是一种特殊的关系,其中每一个自变量都对应唯一一个因变量。
函数可以用图像、表格或公式表示。
函数的性质包括定义域、值域、奇偶性、单调性等。
2. 一次函数与二次函数一次函数的表达式为f(x) = kx + b,其中k和b是常数。
一次函数的图像是一条直线。
二次函数的表达式为f(x) = ax^2 + bx + c,其中a、b和c是常数,且a ≠ 0。
二次函数的图像是抛物线。
3. 指数函数与对数函数指数函数的表达式为f(x) = a^x,其中a是正实数且不等于1。
指数函数的性质包括增减性、奇偶性、对称轴等。
对数函数是指数函数的逆运算,可以表示为f(x) = logₐx,其中a是正实数且不等于1。
对数函数的性质包括定义域、值域、单调性等。
4. 三角函数常见的三角函数包括正弦函数、余弦函数和正切函数。
这些函数可以用来描述角度和边长之间的关系。
三角函数的性质包括定义域、值域、周期性、对称性等。
二、数列与数学归纳法1. 等差数列与等差数列的通项公式等差数列是指相邻两项之差都相等的数列。
等差数列的通项公式为aₙ = a₁ + (n-1)d,其中a₁是首项,d是公差。
等差数列的常用性质包括前n项和公式、通项求和公式等。
2. 等比数列与等比数列的通项公式等比数列是指后一项与前一项的比值都相等的数列。
等比数列的通项公式为aₙ = a₁ · r^(n-1),其中a₁是首项,r是公比。
等比数列的常用性质包括前n项和公式、通项求和公式等。
3. 数学归纳法数学归纳法是一种用来证明数学命题的方法。
它包括基本步骤和归纳假设两个部分,可以用来证明关于自然数的命题。
三、平面解析几何1. 平面直角坐标系平面直角坐标系由两条垂直的坐标轴组成。
坐标轴的交点称为原点,用O表示。
平面上的点可以用有序数对(x, y)来表示,其中x表示横坐标,y表示纵坐标。
2. 点的坐标与距离点在平面直角坐标系中的坐标可以用来求点的距离和位置关系。
高二数学上册知识点大全

高二数学上册知识点大全一、平面直角坐标系平面直角坐标系由x轴、y轴和原点O组成。
其中,x轴和y 轴互相垂直,原点O是它们的交点。
二、平面向量1. 平面向量的定义:平面向量是具有大小和方向的量。
2. 平面向量的表示:平面向量可以用有向线段来表示,线段的长度表示向量的大小,箭头的方向表示向量的方向。
3. 平面向量的运算:平面向量的加法和数乘运算。
三、直线与圆的方程1. 直线的方程:直线可以用一般式方程、斜截式方程和点斜式方程来表示。
2. 圆的方程:圆可以用标准方程、一般方程和参数方程来表示。
四、函数与映射1. 函数的定义:函数是自变量与因变量之间的一种依赖关系。
2. 函数的图像:函数的图像是由全部点(x, f(x))构成的集合。
3. 函数的性质:奇函数、偶函数、周期函数等。
五、数列与数列极限1. 数列的定义:数列是按照一定规律排列的一串数。
2. 等差数列与等比数列:等差数列的通项公式和部分和公式,等比数列的通项公式和部分和公式。
3. 数列极限的定义:数列极限是指当数列的项趋于无穷大时,数列的极限存在且唯一。
六、三角函数1. 三角比的定义:正弦、余弦和正切等概念。
2. 三角函数的性质:周期性、奇偶性、可导性等。
3. 三角函数的图像:正弦函数、余弦函数和正切函数的图像。
七、导数与微分1. 导数的定义:导数表示函数在某一点处的变化率。
2. 导数的计算:基本导数公式、导数的四则运算、复合函数的导数等。
3. 微分的定义:微分表示函数在某一点处的局部线性近似。
八、不定积分1. 不定积分的定义:不定积分表示函数的原函数。
2. 不定积分的性质:线性性质、分部积分、换元积分法等。
九、二次函数与一元二次方程1. 二次函数的定义:二次函数是形如f(x) = ax² + bx + c的函数,其中a、b、c是常数且a≠0。
2. 二次函数的图像:抛物线的开口方向、顶点坐标等。
3. 一元二次方程的解法:配方法、因式分解法、求根公式等。
高二上册数学知识点归纳大全

高二上册数学知识点归纳大全1. 函数与方程1.1 一次函数1.1.1 函数的定义与性质1.1.2 一次函数的图像与性质1.1.3 斜率与函数图像的关系1.2 二次函数1.2.1 函数的定义与性质1.2.2 二次函数的图像与性质1.2.3 利用一些特殊点确定二次函数的图像1.3 指数函数与对数函数1.3.1 函数的定义与性质1.3.2 指数函数与对数函数的图像与性质1.3.3 指数函数与对数函数的运算法则1.3.4 应用:经验增长模型、指数衰减模型等1.4 三角函数1.4.1 三角函数的定义与性质 1.4.2 三角函数的图像与性质 1.4.3 三角函数的运算法则 1.4.4 弧度与角度的互相转换2. 几何与向量2.1 图形的性质与判定2.1.1 三角形的性质与判定 2.1.2 四边形的性质与判定 2.1.3 圆的性质与判定2.2 平面向量2.2.1 向量的定义与性质2.2.2 向量的运算法则2.2.3 向量的共线与垂直判定 2.2.4 平面向量与几何应用3. 三角函数与解析几何3.1 三角函数的图像与性质3.1.1 正弦函数与余弦函数的图像与性质 3.1.2 正切函数与余切函数的图像与性质 3.2 三角函数的基本关系式3.2.1 和差化积公式3.2.2 二倍角公式3.2.3 半角公式3.2.4 诱导公式3.3 三角函数的方程与不等式3.3.1 解三角方程的基本方法3.3.2 三角不等式3.4 解析几何3.4.1 点、直线、平面的方程3.4.2 二次曲线的方程3.4.3 点与曲线的关系4. 概率与统计4.1 随机事件与概率4.1.1 随机事件的基本概念4.1.2 概率的定义与性质4.1.3 随机事件的运算法则4.2 条件概率与独立事件4.2.1 条件概率的定义与性质4.2.2 独立事件的定义与性质4.3 排列与组合4.3.1 排列与排列数4.3.2 组合与组合数4.4 统计与抽样4.4.1 统计的基本概念与性质4.4.2 数据的整理与分析4.4.3 抽样与样本调查以上是高二上册数学的知识点归纳大全,详细介绍了每个章节的内容和要点。
高二数学知识点总结上学期

高二数学知识点总结上学期在高二上学期的数学学习中,我们接触了许多重要的数学知识点。
这些知识点不仅是数学学科的基础,也是我们今后学习更高级数学的基石。
在本文中,我将对高二上学期的数学知识点进行总结和梳理。
1.函数与方程函数与方程是数学中最基本的概念之一。
我们学习了线性方程、二次函数、指数函数、对数函数等不同类型的函数形式。
同时,我们也学习了求解各种类型的方程,如一元一次方程、一元二次方程等。
掌握了这些概念和方法后,我们能够解决很多实际问题,如求最值、求解交点等。
2.三角函数三角函数是高中数学中的重要内容。
我们学习了正弦函数、余弦函数、正切函数等各种三角函数的性质和图像。
同时,我们也学习了如何利用三角函数解决实际问题,如求角度、求边长等。
掌握了三角函数的概念和性质,我们能更好地理解几何形体之间的关系,并解决与几何相关的问题。
3.数列与数学归纳法数列是按一定规则排列的一组数。
我们学习了等差数列、等比数列等常见数列的概念和求解方法。
通过数学归纳法,我们能够推导数列的通项公式,并求解数列的各种问题,如求和、判断递增递减等。
数列与数学归纳法在数学中具有广泛的应用,尤其在数学证明中扮演着重要角色。
4.平面向量平面向量是高中数学中的重点内容之一。
我们学习了向量的概念、运算法则以及向量的线性运算等。
通过平面向量的知识,我们可以解决许多几何和物理问题。
同时,平面向量也是向量代数的基础,为我们学习更高级的向量知识奠定了基础。
5.导数与微分导数与微分是高中数学中的难点内容。
我们学习了函数的导数定义、导数的运算法则以及导数的应用。
通过导数,我们可以求解函数的极值、判定函数的单调性等问题。
微分则是导数应用的一种具体方式,能够帮助我们求函数在某一点的近似值,以及解决曲线的切线问题。
6.立体几何立体几何是高中数学中的重要内容之一。
我们学习了空间中点、线、面的性质和运算,以及立体图形的特征和计算方法。
通过立体几何的知识,我们能够解决许多实际问题,如计算物体的体积、表面积等。
高二上数学知识点总结

高二上数学知识点总结高二上学期的数学知识丰富且重要,为后续的学习打下坚实的基础。
以下是对高二上数学知识点的详细总结。
一、函数1、函数的单调性函数的单调性是指函数在某个区间上是递增还是递减。
对于给定的函数 f(x),如果对于区间内任意的 x1 < x2,都有 f(x1) < f(x2),则函数在该区间上单调递增;如果都有 f(x1) > f(x2),则函数在该区间上单调递减。
判断函数单调性的方法有定义法、导数法等。
定义法就是通过比较函数值的大小来判断;导数法则是通过求导,若导数大于零,则函数单调递增,若导数小于零,则函数单调递减。
2、函数的奇偶性函数的奇偶性是函数的重要性质之一。
若对于函数 f(x)定义域内任意一个 x,都有 f(x) = f(x),则函数 f(x)为偶函数;若都有 f(x) = f(x),则函数 f(x)为奇函数。
偶函数的图象关于 y 轴对称,奇函数的图象关于原点对称。
3、函数的周期性对于函数 f(x),如果存在一个非零常数 T,使得当 x 取定义域内的每一个值时,f(x + T) = f(x)都成立,那么就把函数 y = f(x)叫做周期函数,周期为 T。
二、导数1、导数的定义函数 y = f(x)在 x = x0 处的导数 f'(x0) = lim(Δx→0)f(x0 +Δx) f(x0) /Δx 。
导数表示函数在某一点处的切线斜率。
2、导数的运算常见函数的导数公式要牢记,如(x^n)'= nx^(n 1),(sin x)'= cos x,(cos x)'= sin x 等。
导数的四则运算法则:f(x) ± g(x)'= f'(x) ± g'(x);f(x)g(x)'=f'(x)g(x) + f(x)g'(x);f(x) / g(x)'= f'(x)g(x) f(x)g'(x) / g(x)^2 (g(x) ≠ 0)3、导数的应用利用导数可以研究函数的单调性、极值与最值。
高二上学期数学知识点总结
高二上学期数学知识点总结高二上学期是数学学科中的重要阶段,这个学期的数学内容非常丰富,涵盖了多个知识点。
在这篇文章中,我将对高二上学期的数学知识点进行总结,并帮助大家系统梳理这些知识点。
1. 函数与方程在高二上学期的数学课程中,函数与方程是最基础的知识点之一。
我们学习了一次函数、二次函数、指数函数、对数函数等不同类型的函数及其性质。
同时,我们也学习了一元二次方程、二元一次方程等各种类型的方程,并通过解方程来求解实际问题。
2. 三角函数与解三角形三角函数也是高二上学期的重点内容之一。
我们学习了正弦函数、余弦函数、正切函数等三角函数及其性质。
同时,我们还学习了如何利用三角函数来解决三角形的各类问题,比如用正弦定理、余弦定理求解三角形的边长和角度等。
3. 三角函数的图像与性质高二上学期还涉及了三角函数的图像与性质。
我们学习了正弦函数、余弦函数、正切函数的图像特点,以及它们的周期、振幅和相位等性质。
这些知识点对于理解三角函数在实际问题中的应用具有重要意义。
4. 数列与数学归纳法数列与数学归纳法也是高二上学期数学课程的一部分。
我们学习了等差数列、等比数列以及它们的性质,例如公式推导、前n 项和的求解等。
同时,我们还学习了数学归纳法的原理和应用,通过数学归纳法来证明数学命题。
5. 导数与函数的应用导数是高二上学期数学课程的重要内容之一。
我们学习了函数的导数概念,包括导数的定义、导数的计算法则以及导数在函数图像上的几何意义。
同时,我们还学习了函数的变化率、极值、最值等概念,并通过导数的应用来解决函数相关的实际问题。
6. 统计与概率高二上学期还涉及到了统计与概率的知识。
我们学习了图表的分析与应用、频率分布、概率的计算等内容。
通过统计与概率的学习,我们可以更好地理解和应用统计数据,并通过概率计算来解决实际问题。
7. 平面向量平面向量也是高二上学期数学课程的一部分。
我们学习了向量的概念、向量的加法和数乘,以及向量的线性运算和坐标表示等。
高二数学知识点总结 高二上学期数学学什么
高二数学知识点总结高二上学期数学学什么
很多人想知道高二数学的学习上有哪些重要的知识点,小编为大家整理了一些高二数学的重点知识,供参考!
高二上学期数学知识点总结一、不等式的性质
1.两个实数a与b之间的大小关系
2.不等式的性质
(4)(乘法单调性)
3.绝对值不等式的性质
(2)如果a>;0,那幺
(3)|a?b|=|a|?|b|.
(5)|a|-|b|≤|a±b|≤|a|+|b|.
(6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.
二、不等式的证明
1.不等式证明的依据
(2)不等式的性质(略)
(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)
②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)
2.不等式的证明方法
(1)比较法:要证明a>;b(a0(a-b用比较法证明不等式的步骤是:作差——变形——判断符号.
(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.。
高二上学期数学知识点整理
高二上学期数学知识点整理(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!高二上学期数学知识点整理本店铺整理的《高二上学期数学知识点整理》希望能够帮助到大家。
高二上数学知识点总结
高二上数学知识点总结在高二上学期的数学学习中,我们学习了许多重要的数学知识点。
下面将对这些知识点进行总结,以帮助大家更好地回顾和巩固所学内容。
一、集合与函数1. 集合的概念与表示方法:集合是由一些确定的对象构成的整体,可以使用列举法、描述法和集合间关系表示。
2. 集合运算:交集、并集、差集与补集等。
3. 函数的概念与性质:函数是两个集合之间的一种特殊关系,包括定义域、值域、单调性、奇偶性等概念。
二、三角函数与解三角形1. 弧度制与角度制:介绍了弧度制与角度制的相互转换关系。
2. 正弦定理与余弦定理:通过正弦定理与余弦定理可以求解任意三角形的边长和角度。
3. 解三角形:利用已知条件和三角函数的性质来求解三角形的各边长和角度。
三、平面向量1. 向量的概念与表示方法:向量是具有大小和方向的量,可以使用有向线段表示,也可以使用坐标表示。
2. 向量的运算:向量的加法、减法、数量积和向量积等。
3. 向量的应用:向量的平移、共线、垂直等应用。
四、导数与函数的应用1. 导数的定义与性质:介绍了导数的概念,导函数的性质以及一阶导数与高阶导数。
2. 函数的极值与最值:利用导数的应用来求解函数的极值和最值问题。
3. 函数与图像:介绍了函数的单调性、凹凸性等性质与函数图像的关系。
五、数列与数学归纳法1. 数列的概念与表示方法:数列是一系列按照一定规律排列的数。
2. 数列的通项与求和公式:数列的通项公式表示了数列中的任意一项与项号之间的关系,求和公式表示了数列前n项和的计算方法。
3. 数学归纳法:数学归纳法是证明数学命题的一种常用方法,包括基本步骤和归纳假设。
六、概率与统计1. 随机事件与概率:随机事件与样本空间、必然事件、不可能事件等概念的引入,及概率的计算方法。
2. 离散型随机变量与概率分布:介绍了离散型随机变量的概念,概率分布的计算和性质。
3. 统计学应用:对样本调查的数据进行统计分析,包括频数分布、频率分布、累积频率等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二上学期数学知识点归纳总结大全很多同学在复习高二上册数学时,因为之前没有做过系统的总结,导致复习时效率不高。
下面是由编辑为大家整理的“高二上学期数学知识点归纳总结大全”,仅供参考,欢迎大家阅读本文。
高二上册数学知识点总结1复合函数定义域若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D={x|x∈A,且g(x)∈B}综合考虑各部分的x的取值范围,取他们的交集。
求函数的定义域主要应考虑以下几点:⑴当为整式或奇次根式时,R的值域;⑵当为偶次根式时,被开方数不小于0(即≥0);⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;⑷当为指数式时,对零指数幂或负整数指数幂,底不为0。
⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。
⑹分段函数的定义域是各段上自变量的取值集合的并集。
⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。
⑼对数函数的真数必须大于零,底数大于零且不等于1。
⑽三角函数中的切割函数要注意对角变量的限制。
复合函数常见题型(ⅰ)已知f(x)定义域为A,求f[g(x)]的定义域:实质是已知g(x)的范围为A,以此求出x的范围。
(ⅱ)已知f[g(x)]定义域为B,求f(x)的定义域:实质是已知x的范围为B,以此求出g(x)的范围。
(ⅲ)已知f[g(x)]定义域为C,求f[h(x)]的定义域:实质是已知x的范围为C,以此先求出g(x)的范围(即f(x)的定义域);然后将其作为h(x)的范围,以此再求出x的范围。
高二上册数学知识点总结21.求函数的单调性:利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。
利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。
反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x 值不构成区间);(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x 值不构成区间);(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。
2.求函数的极值:设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值)。
可导函数的极值,可通过研究函数的单调性求得,基本步骤是:(1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的变化情况:(4)检查f(x)的符号并由表格判断极值。
3.求函数的值与最小值:如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的值。
函数在定义域内的极值不一定,但在定义域内的最值是的。
求函数f(x)在区间[a,b]上的值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值;(2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的值与最小值。
4.解决不等式的有关问题:(1)不等式恒成立问题(绝对不等式问题)可考虑值域。
f(x)(xA)的值域是[a,b]时,不等式f(x)0恒成立的充要条件是f(x)max0,即b0;不等式f(x)0恒成立的充要条件是f(x)min0,即a0。
f(x)(xA)的值域是(a,b)时,不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0。
(2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0。
5.导数在实际生活中的应用:实际生活求解(小)值问题,通常都可转化为函数的最值.在利用导数来求函数最值时,一定要注意,极值点的单峰函数,极值点就是最值点,在解题时要加以说明。
高二上册数学知识点总结3函数的单调性、奇偶性、周期性单调性:定义:注意定义是相对与某个具体的区间而言。
判定方法有:定义法(作差比较和作商比较)导数法(适用于多项式函数)复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:定义:注意区间是否关于原点对称,比较f(x)与f(-x)的关系。
f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数;f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。
判别方法:定义法,图像法,复合函数法应用:把函数值进行转化求解。
周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T 为函数f(x)的周期。
其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.应用:求函数值和某个区间上的函数解析式。
四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。
常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)平移变换y=f(x)→y=f(x+a),y=f(x)+b注意:(ⅰ)有系数,要先提取系数。
如:把函数y=f(2x)经过平移得到函数y=f(2x+4)的图象。
(ⅱ)会结合向量的平移,理解按照向量(m,n)平移的意义。
对称变换y=f(x)→y=f(-x),关于y轴对称y=f(x)→y=-f(x),关于x轴对称y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。
(注意:它是一个偶函数)伸缩变换:y=f(x)→y=f(ωx),y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。
一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称;高二上册数学知识点总结41、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形.(3)求圆方程的方法:一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.3、高中数学必修二知识点总结:直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆.注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线5、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.应用:判断直线是否在平面内用符号语言表示公理1:公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a,记作α∩β=a.符号语言:公理2的作用:它是判定两个平面相交的方法.它说明两个平面的交线与两个平面公共点之间的关系:交线公共点.它可以判断点在直线上,即证若干个点共线的重要依据.公理3:经过不在同一条直线上的三点,有且只有一个平面.推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.公理3及其推论作用:它是空间内确定平面的依据它是证明平面重合的依据公理4:平行于同一条直线的两条直线互相平行高二上册数学知识点总结5一、变量间的相关关系1.常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.2.从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关.二、两个变量的线性相关1.从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.当r>0时,表明两个变量正相关;当r<0时,表明两个变量负相关.r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常|r|大于0.75时,认为两个变量有很强的线性相关性.三、解题方法1.相关关系的判断方法一是利用散点图直观判断,二是利用相关系数作出判断.2.对于由散点图作出相关性判断时,若散点图呈带状且区域较窄,说明两个变量有一定的线性相关性,若呈曲线型也是有相关性.3.由相关系数r判断时|r|越趋近于1相关性越强.拓展阅读:高二数学成绩提高方法1、通览教材把每一科的几本教材认认真真研究一遍,把知识点(每本书包括哪几章、每章包括哪几节、每节讲了哪几个问题、每个问题又涉及到具体哪些方面)按章节用括号总结出来。
一定要非常详细,而且还要亲自动手。
2、对整体知识熟悉后,开始进行专项总结比如每一科涉及到的概念、定理、公式,以前学这些知识的时候是分散学的,现在我们把这些东西集中起来,是为了便于更好的记忆,也是便于发现不同知识之间的联系。