某建筑结构的弹塑性分析与设计研究

合集下载

动力弹塑性时程分析技术抗震应用阐述

动力弹塑性时程分析技术抗震应用阐述

动力弹塑性时程分析技术抗震应用阐述高层建筑是当前建筑的主要形式,新材料、新技术的应用使得建筑质量提高,功能越来越齐全。

但其结构设计也更复杂,施工难度加大,因此对其抗震施工技术提出了更高的要求。

高层建筑的投资数额较大,周期也相对较长,而动力弹性时程分析技术是一项综合性较强的技术工作,涉及每一个环节,一旦出现问题,必将影响到施工质量。

从而延误工期,甚至引发安全事故,带来严重的损失。

所以,在施工过程中,必须加强建筑结构抗震设计中对动力弹塑性时程分析技术的应用,进而保证及时解决潜在的隐患。

1.动力弹塑性时程分析技术概述弹塑性时程分析方法可以有效的将结构作为弹塑性振动体系进行相应的分析,并通过对地震波数据在地面运动中的输入应用,可以有效的进行下一步的积分运算,进而可以得出地面加速度随着时间的变化而发生的变化,同时,还可以得出结构的内力与变形随着时间的变化而变化的整个过程。

动力弹塑性时程分析技术的应用通常有以下几个步骤:第一,通过对几何模型的建立,进而实现网格的划分工作;第二,对材料的本构关系进行确定,并根据各个构件自身的单元类型及材料类型的确定,进而对结构的质量、刚度及阻尼矩阵进行确定;第三,根据本场地的地震波,并对模型的边界条件进行定义,进而得出相应的计算结果;第四,根据计算所得出的结果进行进一步的处理工作,并根据处理的结果进行结构整体性可靠度的评估。

2 高层建筑动力弹塑性时程分析技术管理现状2.1材料设备管理中的问题材料是建筑的基础,现代化高层建筑用途不同,所用的材料也千差万别,加上各种新型材料日新月异,种类繁多,管理十分复杂。

如果购置时质检把关不严、储存方式不合理,很容易出现材料不能及时供应等情况,或导致材料性能下降,或与工程技术要求不相符。

各项机械设备、电气设备也是施工中不可或缺的元素,由于制度不健全、监督不严,存在着违规操作等不规范行为,这就导致动力弹塑性时程分析技术在实际的工程施工过程中不能得到有效的反应。

动力弹塑性分析步骤

动力弹塑性分析步骤

文献一
结构弹塑性动力时程分析是将建筑物作为弹塑性振动系统,直接输入地面地震加速度记录[5],对运动方程直接积分,从而获得计算系统各质点的位移、速度、加速度和结构构件地震剪力的时程变化曲线。

通过计算还可以分析出结构的薄弱层和构件塑性铰位置。

所以这种分析方法能更准确而完整地反映结构在强烈地震作用下的变形特性,是改善结构抗震能力、提高抗震设计水平的一项重要措施。

弹塑性动力分析步骤:
1)建立整体结构模型;
2)定义材料的本构关系,通过对各个构件指定相应的单元类型和材料类型确定结构动力响应的各参数;
3)施加恒、活荷载等竖向荷载值以及风等横向荷载;
4)输入适合本场地的地震波;
5)定义模型的边界条件;
6)计算,并对结果进行评定。

文献二
弹塑性动力分析的基本方法
弹塑性动力分析包括以下几个步骤:
(1) 建立结构的几何模型并划分网格;
(2) 定义材料的本构关系,通过对各个构件指定相应的单元类型和材料类型确定结构的质量、刚度和阻尼矩阵;
(3) 输入适合本场地的地震波并定义模型的边界条件,开始计算;
(4) 计算完成后,对结果数据进行处理,对结构整体的可靠度做出评估。

静力弹塑性分析(Pushover分析)两种方法剖析

静力弹塑性分析(Pushover分析)两种方法剖析

静力弹塑性分析(Pushover分析)■简介Pushover分析是考虑构件的材料非线性特点,分析构件进入弹塑性状态直至到达极限状态时结构响应的方法。

Pushover分析是最近在地震研究及耐震设计中经常采用的基于性能的耐震设计(Performance-BasedSeismicDesign,PBSD)方法中最具代表性的分析方法。

所谓基于性能的耐震设计就是由用户及设计人员设定结构的目标性能(targetperformance),并使结构设计能满足该目标性能的方法。

Pushover分析前要经过一般设计方法先进行耐震设计使结构满足小震不坏、中震可修的规范要求,然后再通过pushover分析评价结构在大震作用下是否能满足预先设定的目标性能。

计算等效地震静力荷载一般采用如图2.24所示的方法。

该方法是通过反应修正系数(R)将设计荷载降低并使结构能承受该荷载的方法。

在这里使用反应修正系数的原因是为了考虑结构进入弹塑性阶段时吸收地震能量的能力,即考虑结构具有的延性使结构超过弹性极限后还可以承受较大的塑性变形,所以设计时的地震作用就可以比对应的弹性结构折减很多,设计将会更经济。

目前我国的抗震规范中的反应谱分析方法中的小震影响系数曲线就是反应了这种设计思想。

这样的设计方法可以说是基于荷载的设计(force-baseddesign)方法。

一般来说结构刚度越大采用的修正系数R越大,一般在1~10之间。

但是这种基于荷载与抗力的比较进行的设计无法预测结构实际的地震响应,也无法从各构件的抗力推测出整体结构的耐震能力,设计人员在设计完成后对结构的耐震性能的把握也是模糊的。

基于性能的耐震设计中可由开发商或设计人员预先设定目标性能,即在预想的地震作用下事先设定结构的破坏程度或者耗能能力,并使结构设计满足该性能目标。

结构的耗能能力与结构的变形能力相关,所以要预测到结构的变形发展情况。

所以基于性能的耐震设计经常通过评价结构的变形来实现,所以也可称为基于位移的设计(displacement-baseddesign)。

弹塑性详解

弹塑性详解

弹塑性的未来发展
智能材料
未来弹塑性材料将与智能传感器和控制系统集成,实现自主监测和自适应调节,提高结构系统的稳定性和可靠性。
高性能应用
在航空航天、汽车制造、能源等领域,弹塑性材料将发挥更大作用,提高关键部件的抗冲击和耐疲劳能力。
仿生设计
从生物体的运动机理中吸取灵感,开发出更高效、协调的弹塑性机构,应用于机器人、生化假肢等领域。
制造工艺控制
弹塑性理论在冲压、挤压、锻造等成形加工中发挥重要作用,可预测工件变形、确定最佳工艺参数,提高产品质量。
生物医学应用
医疗器械和义肢设计需要利用弹塑性分析,确保其能适应人体组织的变形特性,提高舒适度和功能性。
弹塑性的重要性
1
提高结构安全性
弹塑性能够增强材料和结构在外力作用下的变形能力,有效降低意外事故发生的风险,提高结构的安全可靠性。
弹塑性的影响因素
应力-应变关系
材料的弹塑性行为主要取决于其应力-应变曲线的形状,包括弹性模量、屈服强度和最大强度等关键参数。
材料成分与微观结构
材料的化学成分、晶粒大小、相组成等微观结构特征直接影响其宏观力学性能和弹塑性行为。
应力状态与几何形状
零件或结构的受力状态和几何形状会导致局部应力集中,从而影响弹塑性响应和失效模式。
工程应用
20世纪中后期,弹塑性理论和方法广泛应用于工程实践,在航空、汽车、建筑等领域发挥了重要作用。
现代进展
当前,随着计算机技术的发展,弹塑性分析方法不断创新,在复杂结构设计、材料选择和工艺优化中展现强大的潜力。
弹塑性的基本原理
数学描述
弹塑性通过应变-应力关系的数学模型来描述材料在力学作用下的变形行为。这些模型结合了材料的弹性特性和塑性特性。

某超限高层建筑复杂连体结构设计分析

某超限高层建筑复杂连体结构设计分析

某超限高层建筑复杂连体结构设计分析摘要:某连体建筑两侧塔楼体型差异较大,为超限高层复杂连体建筑,采用框架-剪力墙+连体桁架的结构体系。

针对连体桁架结构选型进行优化分析,针对连体结构整体模型,进行小震弹性分析、中震性能化验算和大震动力弹塑性分析。

随后对连体结构的关键问题进行了研究,包括关键构件和节点的设计、抗连续倒塌能力以及大震下结构的变形和损伤情况。

分析结果表明,超限高层复杂连体结构的结构体系合理,具有较好的整体性,关键构件和节点的设计均能达到预设的性能目标,且连体结构具有较好的抗连续倒塌能力。

关键词:超限高层建筑;复杂连体结构;;连体桁架;抗连续倒塌1工程概况某工程是集生态绿化、文教科研、商务办公为一体的生态科研开发区。

本项目为其中6号楼的一个超限高层结构单元,主要功能为科研办公。

建筑室外地面至结构主屋面高度33.9m。

地上8层,层高均为4.2m,下部5层为两塔楼,在地上6层至屋面范围相连,连体跨度36m。

地下2层为大底盘地下室,地下2层、地下1层层高分别为6.0、3.9m。

建筑平面布置和剖面图见图2、3。

该项目抗震设防烈度为7度(0.10g),设计地震分组为第一组,场地类别为Ⅲ类,2022年2月通过超限高层抗震设防专项审查,目前处于施工阶段。

虽然复杂连体结构有大量实际工程案例,但本项目有以下特殊性:1)连体两侧结构体型相差较大,两侧结构单元轴网尺寸分别为27.0m×42.75m、35.0m×18.0m;2)连体部分轴网尺寸为27.0m×36.0m,与两侧塔楼相比,体量大;3)⑥轴位于建筑内部房间,不能有斜向杆件穿越,导致连体桁架布置不对称。

2结构选型2.1主体结构体系分析针对两侧塔楼不对称、连体体量大的特点,主体结构采用框架-剪力墙结构体系。

通过剪力墙调整两侧塔楼振动形态及变形;利用剪力墙刚度,调整楼层上下刚度比,减少连体结构引起的刚度突变;设置剪力墙使整个结构具有抗震二道防线,提高结构冗余度。

sap2000弹塑性分析方法

sap2000弹塑性分析方法

SAP2000弹塑性分析方法运用总结结构的抗震设计一般可通过三个方面来实现,一种是增加结构的截面和刚度来“抗震”,此时如果要使结构在大震作用下保持弹性状态,结构需要具有如右图所示的承载能力,此时结构的设计截面会变得非常不经济;第二种方法是容许结构发生一定的塑性变形,并保证结构不发生倒塌的"耐"震设计(或叫延性设计);第三种方法是通过一些装置地震响应比较(如阻尼器、隔振装置等)来吸收能量的"减"震或"隔"震设计。

当结构和结构构件具有一定的延性时,大震作用下部分构件会发生屈服,此时结构的周期会变长,结构周期的变长反过来减小了地震引起的惯性力,即塑性铰的出现吸收了部分地震能量,从而避免了结构的倒塌。

对结构抗震性能的评价以往多从强度入手,但结构在发生屈服后仍具有一定的耗能和变形能力,因此用能够反映结构延性和耗能能力的变形评价结构的抗震性能应更为合适。

通过动力弹塑性分析我们不仅要了解结构发生屈服和倒塌时的地震作用的大小,同时也要了解结构的变形能力(弹塑性层间位移角、延性系数等)、构件的变形能力、铰出现顺序等,从而实现“小震不坏、中震可修、大震不倒”的三水准设防目标。

目的:1) 评价建筑在罕遇地震下的抗震性,根据主要构件的塑性破坏情况和整体变形情况,确认结构是否满足性能目标的要求。

2) 研究超限对结构抗震性能的影响,包括罕遇地震下的最大层间位移;3)根据以上分析结果,针对结构薄弱部位和薄弱构件提高相应的加强措施。

弹塑性分析两种方法:1、静力弹塑性方法push-over2、动力弹塑性时程分析《建筑抗震设计规范》GB50011-2010(以下简称《抗规》)第1.0.1条中规定了三水准设防目标为“小震不坏、中震可修、大震不倒”。

《抗规》5.5.2条中分别规定了"应"进行弹塑性变形验算和"宜"进行弹塑性变形验算的结构。

结构动力弹塑性分析方法

结构动力弹塑性分析方法1. 动力理论动力理论是直接通过动力方程求解地震反应。

由于地震波为复杂的随机振动,对于多自由度体系振动不可能直接得出解析解,只可采用逐步积分法•通过直接动力分析可得到结构响应随时间的变化关系,因而该方法又称为时程分析法。

时程分析法能更真实地反映结构地震响应随时间变化的全过程,并可以得到强震下结构的弹塑性变形,因此己成为抗震分析的一种重要方法。

多自由度体系地震反应方程为:M {x(t)} - C{x(t)} - K{x(t)} - {x g(t)} (1.1)在弹塑性反应中刚度矩阵与阻尼矩阵亦随时间变化,因此不可能求出解析解,只能采取数值分析方法求解。

把整个地震反应的过程分为短而相等的时间增量缸,并假定在每一个时间区间上体系的各物理参数均为常数,它们均按区间起点的值来确定,这样就可以把非线性体系的分析近似按照一系列连续变化的线性体系来分析。

方程(1 .2)适用于结构的任何时刻,则对于结构. ■:t时刻的地震反应方程可以表示为:M {lx(t:•一t)} - C {x(t :•一t)}门K { x(t :*t)} - _ M {x g(t :xt)} (1.2)令:{ , :x} ={x(t •.⑴} -{x(t)} (1.3) { .:X} ={x(t •••L t)} -{ x (t)}(1.4){ :x} ={x(t • . :t)} -{x(t)} (1.5) { >X g}二{X g(t •: =t)} -{ x g(t)} (1.6) 择将式(1.3)与式(1.2)相减得到结构的增量平衡方程:M { x} C {「:x} - K {.:x} - -I M { .%} (1.7) 2. 方法介绍时程分析法的基本过程是将地震波按时段进行数值化后,输入结构体系的微分方程中,采用逐步积分法对结构进行弹性或弹塑性地震反应分析,得到结构在整个时域中的振动状态全过程,并描述各个时刻结构构件的内力和变形。

弹性、弹塑性时程分析

PKPM软件园地 建筑结构.技术通讯 2007年1月弹性、弹塑性时程分析法在结构设计中的应用杨志勇 黄吉锋(中国建筑科学研究院 北京 100013)0 前言地震作用是建筑结构可能遭遇的最主要灾害作用之一。

几十年来,人们积累了大量的实测地震资料,这些资料多以位移、速度或者加速度时程的形式体现。

与此相对应,时程分析方法也被认为是最直接的一种计算建筑结构地震响应的方法。

但是,由于地震作用随机性导致计算结果的不确定性,弹性时程分析方法只是结构设计的一种辅助计算方法;虽然如此,抗震规范为了增强重要结构的抗震安全性,还是将弹性时程分析方法规定为常遇地震作用下振型分解反应谱法的一种补充计算方法;尤其是考虑了结构的弹塑性性能后,弹塑性时程分析方法更是被普遍认为是一种仿真的罕遇地震作用响应计算方法。

《建筑抗震设计规范》(GB50011-2001)第3.6.2,5.1.2,5.5.1,5.5.2,5.5.3等条文规定了时程分析相关的内容。

下面结合TAT ,SATWE ,PMSAP 和EPDA 等软件应用,探讨如何将弹性、弹塑性时程分析正确应用到结构设计中去。

1 弹性时程分析的正确应用11正确地在软件中应用弹性时程分析方法需要对规范的相关条文规定有正确的认识。

以下几点是需要特别明确的:(1)抗震规范第5.1.2条第3点规定,“可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值”。

在设计过程中,如何实现“较大值”有不同的做法:1)设计采用弹性时程分析的构件内力响应包络值的多波平均值与振型分解反应谱法计算结果二者的较大值直接进行构件设计;2)在实现振型分解反应谱方法时,放大地震力使得到的楼层响应曲线包住时程分析楼层响应曲线的平均值。

图1 SATWE 地震作用放大系数前一种做法可能使得构件配筋较大,因为在时程分析过程中,构件内力的最大响应具有不同时性,采用包络值进行设计会使得构件内力,尤其是压弯构件内力偏于保守。

动力弹塑性时程分析技术在建筑结构抗震设计中的应用

径。
动 力弹塑 性时程分 析技术在 建筑结 构抗 震设 计 中的应
参考文献
[ 1 】 闫澈 ,孙 东红.循环流 化床锅 炉 电厂燃料 系统设计.东北电
力 学 院 学报 , 1 9 9 5 年1 2 月
用》 的主要读者对象 为专业的建筑设计 师、施工人员及高校相 关专业 的师生。
虑 ,适应煤种变化的能 力较小 ,易存在 易堵、过破碎和不 能完全破碎情况 ,进而造成锅炉燃烧不稳定 ,煤耗偏高,
排 渣 困难 ,锅 炉 热效 率 下 降 ,除 尘 器 负荷 增加 ,排 灰量 及
飞灰含碳量增大 ,细灰综合利用难度加大等问题 。采用破 碎机前增加 筛分及破碎机 后增加检查筛措 施 ,能有效改 善破碎机使用工况 ,控制入炉煤粒径 ,最终改善锅炉燃烧 效果 ,对存在类似情况的电厂提供一条新的解决 问题的途
中 国科 技信 患 2 0 1 4年笼 0 2期 ・ C H I N A S C I E N C E AN D T E C H N OL OG Y I N F OR MA T I ON J a n 。 2 0 1 4
推 广 技 术
仓 的有 效 容积 1 5 0 m ,能 储 存8 小 时运 行 时产 生 的矸 石 。矸

动力弹 塑性 时程分析技术在 建 筑结构抗震设计 中的应用
烟气中粉尘的浓度降低 ,从而实现节能、减排 、增效的 目
的。
6 经验总结
6 . 1 检查筛上物后返料需增加一级除铁器 ,主要是为 了防止破碎机中锤头等铁件脱落会返 回系统 ,进而造成破 碎机损坏。实际安装时 ,由于增加的返料系统转运环节较 多 ,易出现故障 ,返料系统并未安装 ,从检查筛上物进入 矸 石 仓 的物 料 来 看 ,也 多 是石 头 ,对 保 护破 碎 机 、运 营 方 便 、节省投资的角度来看也是很有益处的。 6 . 2 增加筛分同时也增加了运行中堵煤环节,采用不 易堵煤的筛子 ,如 白清洁滚筒筛可有效减少这类情况的发

梁的弹塑性弯曲课件

绿色可持续发展
将环保、可持续发展理 念融入弹塑性弯曲优化 设计,推动绿色工程的 发展。
THANK YOU
感谢观看
弹性模量01Fra bibliotek材料的弹性模量越大,梁的抗弯刚度越大,弹塑性弯曲程度越
小。
屈服强度
02
材料的屈服强度越高,梁的塑性变形能力越小,弹塑性弯曲程
度越小。
应变硬化指数
03
材料的应变硬化指数越大,梁在弹塑性弯曲过程中的承载能力
越强。
截面形状对弹塑性弯曲影响
截面面积
截面面积越大,梁的抗弯截面系数越大,弹塑性弯曲程度越小。
变形与应力分布
分析模拟结果,得到梁的变形和应力分布情况, 评估梁的承载能力和安全性。
塑性铰形成与发展
观察塑性铰的形成和发展过程,研究塑性铰对梁 弹塑性弯曲性能的影响。
参数敏感性分析
针对不同参数进行敏感性分析,探讨各参数对梁 弹塑性弯曲性能的影响规律。
05
梁的弹塑性弯曲影响因素 研究
材料性能对弹塑性弯曲影响
02
梁的弹塑性弯曲理论分析
弹性力学基础
01
02
03
应力与应变
掌握应力、应变的概念及 其在张量表示下的物理意 义,理解弹性体受力与变 形之间的关系。
弹性本构关系
熟悉广义胡克定律及其在 不同材料中的应用,了解 弹性常数之间的换算关系 。
弹性力学基本方程
掌握平衡方程、几何方程 和物理方程的推导及其意 义,理解边界条件的提法 和应用。
截面惯性矩
截面惯性矩越大,梁的抗弯刚度越大,弹塑性弯曲程度越小。
截面形状系数
截面形状系数越大,梁在弹塑性弯曲过程中的应力分布越均匀, 承载能力越强。
加载条件对弹塑性弯曲影响
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

某建筑结构的弹塑性分析与设计研究
建筑结构的弹塑性分析与设计是建筑设计中重要的环节之一。

在建筑物设计过
程中,耐久性、稳定性和安全性是最为关键的因素。

这些问题需要从力学的角度、结构的角度进行分析和研究,确保建筑物的安全性和耐久性。

本研究以某建筑结构为研究对象,对其进行了弹性分析和塑性分析,确定了其
承受荷载的弹塑性特点和极限状态下的承载能力,以此为依据完成了设计方案。

一、建筑结构的简介
某建筑结构为一栋高层建筑,整体结构共包括地下室、塔楼和顶层等部分。


层数为45层,建筑高度为222米,建筑面积为8.4万平方米。

该建筑结构采用钢混凝土组合结构,钢材用于结构构件加强和大跨度框架的构造,混凝土用于结构的主体构造。

为确保结构安全性和稳定性,建筑结构部分采用了双肋钢桁架和双子柱汇流节点等先进技术,以强化结构的整体抗震性和承载能力。

二、弹性分析
弹性分析是建筑结构设计中的重要环节之一。

在该建筑结构的弹性分析中,我
们采用有限元方法进行模拟和计算,对建筑结构进行了力学分析,研究出建筑结构的强度、刚度和变形等弹性特点。

通过弹性分析,我们发现该建筑结构在典型荷载下的变形和应力状态都较为稳定,符合建筑安全和耐久的需求。

三、塑性分析
塑性分析是建筑结构设计中不可或缺的一个环节。

为了更加全面地了解建筑结
构的性能和优缺点,在弹性分析的基础上,我们对建筑结构进行了塑性分析。

在某些极端情况下,建筑结构可能会发生超载和失稳等问题。

为了避免发生这种情况,我们通过塑性分析确定了建筑结构的承载能力和极限状态下的应力分布情况,确保了建筑结构在所有工况下的安全性和稳定性。

四、设计方案
根据弹性分析和塑性分析的结果,我们得到了该建筑结构在不同荷载和工况下的变形、应力和承载能力等重要参数,建立了相应的模型和计算公式。

最后,我们根据这些数据和设计要求,制定了该建筑结构的最终设计方案。

该建筑结构的设计方案在结构构造、施工方式、材料组合等方面进行了全面考虑,确保了建筑物的稳定性、耐久性和安全性。

同时,在方案设计中,我们还采用了一系列先进的技术和措施,如结构加强技术、补强措施、防震减灾技术等,以提高建筑物的整体性能和抗震能力。

五、结论
本研究以某建筑结构为研究对象,对其进行了弹性分析和塑性分析,并得出了该建筑结构在极限状态下的承载能力和应力状态等重要参数,完成了该建筑结构的设计方案。

该设计方案在技术水平、结构稳定性和安全性等方面都较高,为该建筑结构的施工和使用提供了重要保障。

同时,本研究也充分发掘出建筑结构弹塑性分析和设计的重要性,为今后的建筑领域提供了宝贵的经验和借鉴。

相关文档
最新文档