高中数学空间几何体知识点总结

合集下载

高中数学必修2第一二章知识点总结

高中数学必修2第一二章知识点总结

高中数学必修②知识点————立体几何一、空间中点、直线、平面之间的位置关系(1)四个公理:公理1:符号语言:公理2:三个推论:①②③ 它给出了确定一个平面的依据。

公理3: 符号语言: 。

公理4:符号语言: (2)空间中直线与直线之间的位置关系1.概念 异面直线及夹角: (画法,用平面衬托) 已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的角(或直角)叫 。

(易知:夹角范围 )空间中如果一个角的两边分别与另一个角的两边分别平行,那么这两个角 __2.位置关系:⎧⎧⎪⎨⎨⎩⎪⎩相交直线:_______________________________;共面直线平行直线:_______________________________;异面直线:_________________________________________.(3)空间中直线与平面之间的位置关系直线与平面的位置关系有三种: 1.23//l l A l ααα⊂⎧⎪=⎧⎨⎨⎪⎩⎩直线在平面内:.直线与平面相交:直线在平面外.直线与平面平行:(4)平面与平面之间的位置关系有两种: 1.//2.lαβαβ⎧⎨=⎩ 两个平面平行:两个平面相交:二、 直线、平面平行的判定及其性质(1)四个定理三、直线、平面平垂直的判定及其性质(一)基本概念1.直线与平面垂直:如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与⊥。

直线l叫做平面α的垂线,平面α叫做直线l的垂面。

直线与平平面α垂直,记作lα面的公共点P叫做垂足。

2. 直线与平面所成的角:角的取值范围:。

3.二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。

这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

二面角的取值范围:四、空间几何体1、简述定义, 描述几何体的主要特点多面体定义:旋转体定义:棱柱的定义:棱锥的定义:棱台的定义:圆柱的定义:圆锥的定义:圆台的定义:2、三视图与直观图(重点体会、观察、猜想、验证、画图)3、定量计算表面积和体积,以及其他数量关系.会求常见几何体的:侧面积,底面积,表面积,体积S圆柱侧= S圆柱表= S= S圆锥表=圆锥侧S圆台侧= S圆台表=柱体、锥体、台体的体积公式V棱柱= V棱锥= V棱台=V圆柱= V圆锥= V圆台=球体的表面积和体积公式:V 球= S 球=五、线面关系逆向思维总结b a //⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫α//a ⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫ βα//⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫ b a ⊥⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫α⊥⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫a βα⊥⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫ 六、定量计算问题中的:一找、二证、三求 (写出关键方法,如何找?) 1.线线角________________________________________________ 2.线面角________________________________________________ 3.面面角________________________________________________ 七、总结课本常见结论(例题或探究中):——要求熟知 如课本P60例6,P65例1等. 可以积累如下(符号表达): _______________________________________________________ _______________________________________________________ _______________________________________________________ 八、心得与体会:常用解题技巧与方法,解题步骤:_______________________________________________________ _______________________________________________________ _______________________________________________________九、培养、熟练基本作图技能——常见图形(能熟练画出直观图)1、(三、四、五、六)棱柱、棱锥,台体同理;球;2、锥体、球体、长方体间的内切、外接、截面图等;3、两个平行平面、垂直平面;两个平行平面被第三个平面所截;三个两两相交(或垂直)的平面;正方体(参照物)中研究各种线面关系;辅助平面的作法…十、画知识框图,梳理脉络,形成体系:可参考课本P34,P76之知识框架+二教P22,P62之章末总结,自己画出,再补充,不要直接抄. 另外,框图之后,更需细化. 附加题型分析,思想方法分析等等,精益求精,更好的掌握本部知识。

高中数学 必修二-第一章 立体几何初步 知识点整理

高中数学 必修二-第一章  立体几何初步 知识点整理

底面为三角形、四边形、五边形„„的棱锥分别叫做三棱锥、四棱锥、五棱锥„„,
其中三棱锥又叫四面体。
4
必修二
正棱锥:如果一个棱锥的底面是正多边形,并且顶点在底面上的射影是底面的中心, 这样的棱锥叫做正棱锥。
正棱锥的性质: ①各侧棱相等,各侧面都是全等的等腰三角形; ②棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形,棱锥的高、侧棱和侧 棱在底面上的射影也组成一个直角三角形。 (4)棱台的结构特征 用一个平行于棱锥底面的平面去截棱 锥,底面与截面之间的部分叫做棱台。 原棱锥的底面和截面分别叫做棱台的 下底面和上底面;其它各面叫做棱台的侧 面;相邻侧面的公共边叫做棱台的侧棱; 底面与侧面的公共顶点叫做棱台的顶点; 当棱台的底面水平放置时,铅垂线与两底 面交点间的线段叫做棱台的高。 由正棱锥截得的棱台叫做正棱台。正棱台的性质: ①各侧棱相等,侧面是全等的等腰梯形;②两底面以及平行于底面的截面是相似多边 形;③两底面中心连线、相应的边心距和斜高组成一个直角梯形;④两底面中心连线、侧 棱和两底面外接圆相应半径组成一个直角梯形;⑤正棱台的上下底面中心的连线是棱台的 一条高;⑥正四棱台的对角面是等腰梯形。
8
必修二
②在已知图形中平行于 x 轴或 y 轴的线段,在直观图中分别画成平行于 x′轴或 y′ 轴的线段。
③在已知图形中平行于 x 轴的线段,在直观图中保持原长度不变,平行于 y 轴的线段, 长度变为原来的一半。
用斜二测法画直观图,关键是掌握水平放置的平面图形的直观图的画法,而画水平放 置的平面图形的关键是确定多边形的顶点。因为多边形顶点的位置一旦确定,依次连接这 些顶点就可画出多边形。
在一束平行光线照射下形成的投影,叫做平行投影。平行投影的投影线是平行的。在 平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影。

数学立体几何知识点

数学立体几何知识点

数学立体几何知识点数学立体几何知识点立体几何是高中数学知识点中重要内容之一,也是每年高考中都会占有一定的分值,不管是在选择题、填空题还是应用大题,都是必出的题型,而且出题难度系数较大。

下面是店铺搜集整理的数学立体几何知识点,希望对你能有帮助。

数学立体几何知识点11.平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。

能够用斜二测法作图。

2.空间两条直线的位置关系:平行、相交、异面的概念;会求异面直线所成的角和异面直线间的距离;证明两条直线是异面直线一般用反证法。

3.直线与平面①位置关系:平行、直线在平面内、直线与平面相交。

②直线与平面平行的判断方法及性质,判定定理是证明平行问题的依据。

③直线与平面垂直的证明方法有哪些?④直线与平面所成的角:关键是找它在平面内的射影,范围是⑤三垂线定理及其逆定理:每年高考试题都要考查这个定理. 三垂线定理及其逆定理主要用于证明垂直关系与空间图形的度量.如:证明异面直线垂直,确定二面角的平面角,确定点到直线的垂线.4.平面与平面(1)位置关系:平行、相交,(垂直是相交的一种特殊情况)(2)掌握平面与平面平行的证明方法和性质。

(3)掌握平面与平面垂直的证明方法和性质定理。

尤其是已知两平面垂直,一般是依据性质定理,可以证明线面垂直。

(4)两平面间的距离问题点到面的距离问题(5)二面角。

二面角的平面交的作法及求法:①定义法,一般要利用图形的对称性;一般在计算时要解斜三角形;②垂线、斜线、射影法,一般要求平面的垂线好找,一般在计算时要解一个直角三角形。

③射影面积法,一般是二面交的两个面只有一个公共点,两个面的交线不容易找到时用此法数学立体几何知识点2立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

高中数学必修2知识点总结归纳 整理

高中数学必修2知识点总结归纳 整理

高中数学必修2知识点总结归纳整理高中数学必修二空间几何体1.1 空间几何体的结构棱柱棱柱是由两个平行的底面和若干个四边形侧面组成的几何体。

底面多边形的边数不同,可以分为三棱柱、四棱柱、五棱柱等。

棱柱可以用各顶点的字母表示,例如五棱柱ABCDE或用对角线的端点字母表示,例如ABCDE。

棱柱的几何特征是:两底面是对应边平行的全等多边形;侧面和对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

棱锥棱锥是由一个多边形底面和若干个三角形侧面组成的几何体。

底面多边形的边数不同,可以分为三棱锥、四棱锥、五棱锥等。

棱锥可以用各顶点的字母表示,例如五棱锥P-ABCDE。

棱锥的几何特征是:侧面和对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

棱台棱台是由一个平行于底面的平面截取棱锥而成的几何体。

底面多边形的边数不同,可以分为三棱台、四棱台、五棱台等。

棱台可以用各顶点的字母表示,例如四棱台ABCD-A'B'C'D'。

棱台的几何特征是:上下底面是相似的平行多边形;侧面是梯形;侧棱交于原棱锥的顶点。

圆柱圆柱是由一个矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

圆柱的几何特征是:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形。

圆锥圆锥是由直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

圆锥的几何特征是:底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形。

圆台圆台是由一个平行于圆锥底面的平面截取圆锥而成的几何体。

圆台的几何特征是:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形。

球体球体是由半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体。

球体的几何特征是:球的截面是圆;球面上任意一点到球心的距离等于半径。

1.2 空间几何体的三视图和直观图1.中心投影与平行投影中心投影是指把光由一点向外散射形成的投影。

高中数学必修2知识点总结归纳 整理

高中数学必修2知识点总结归纳 整理

高中数学必修二·空间几何体1.1空间几何体的结构棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边 形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、 五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱'''''E D C B A ABCDE -几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形, 由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、 五棱锥等表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间 的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、 五棱台等表示:用各顶点字母,如四棱台ABCD —A'B'C'D'几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的 曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面 圆的半径垂直;④侧面展开图是一个矩形。

圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

圆台定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

高二下数学知识点总结.doc

高二下数学知识点总结.doc

高二数学知识点总结大全(必修)第1章 空间几何体11 .1柱、锥、台、球的结构特征 1. 2空间几何体的三视图和直观图 11 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 22 画三视图的原则:长对齐、高对齐、宽相等 33直观图:斜二测画法 44斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。

5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和 2 圆柱的表面积 3 圆锥的表面积2r rl S ππ+=4 圆台的表面积22R Rl r rl S ππππ+++=5 球的表面积24R S π= (二)空间几何体的体积 1柱体的体积 h S V ⨯=底2锥体的体积 h S V ⨯=底313台体的体积 h S S S S V ⨯++=)31下下上上(4球体的体积 334R V π=第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)222r rl S ππ+= DC BA α(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。

3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈LB ∈L => L α A ∈αB ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

高中数学平面几何知识点知识清单

高中课程复习专题——数学立体几何一 空间几何体 ㈠ 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。

围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。

2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。

其中,这条直线称为旋转体的轴。

㈡ 几种空间几何体的结构特征 1 棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2 棱柱的分类1.3 棱柱的性质⑴ 侧棱都相等,侧面是平行四边形;⑵ 两个底面与平行于底面的截面是全等的多边形; ⑶ 过不相邻的两条侧棱的截面是平行四边形; ⑷ 直棱柱的侧棱长与高相等,侧面的对角面是矩形。

1.4 长方体的性质⑴ 长方体的一条对角线的长的平方等于一个顶点上三 条棱的平方和:AC 12 = AB 2 + AC 2 + AA 12⑵ 长方体的一条对角线AC 1与过定点A 的三条棱所成 的角分别是α、β、γ,那么:cos 2α + cos 2β + cos 2γ = 1 sin 2α + sin 2β + sin 2γ = 2⑶ 长方体的一条对角线AC 1与过定点A 的相邻三个面所组成的角分别为α、β、γ,则:cos 2α + cos 2β + cos 2γ = 2 sin 2α + sin 2β + sin 2γ = 11.5 棱柱的侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱为邻边的矩形。

图1-1 棱柱图1-2 长方体图1-1 棱柱1.6 棱柱的面积和体积公式S 直棱柱侧面 = c ·h (c 为底面周长,h 为棱柱的高) S 直棱柱全 = c ·h+ 2S 底 V 棱柱 = S 底 ·h 2 圆柱的结构特征2-1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。

高中数学立体几何总结

高中数学立体几何总结立体几何是高中数学中一个重要的内容,大致内容包括立体几何基本概念、体积、体积计算公式、侧棱、正三棱柱、正四棱锥、正八棱锷、台面等等。

(一)立体几何基本概念1、三视图:即从三个不同的视角把物体有条不紊的绘出来的文字图形,可以根据它来确定物体的三维形状。

2、几何体:是由把平面图形几何关系组合而成的任何在空间中由一致点构成的物体。

3、棱:即立体几何中各几何体的侧面所围成的线段或面称为棱,如正三棱柱的侧棱。

(二)体积1、体积的定义:体积是立体图形的面积之和,反映物体内部空间的容积大小。

2、体积的计算公式:几何体的体积可用面积的乘积公式计算,比如正三棱柱的体积的表示公式:V=ah;正四棱锥的体积的表示公式:V=1/3bh;正八棱锷的表示公式为:V=1/3πr²h。

(三)正三棱柱1、正三棱柱,是一种方形底面,面积相同的三角柱体,它有三个直角,等边的三个棱,以及一个正方形的底部。

2、侧棱:正三棱柱的侧棱可以分别表示为a,b,c三条线段,表示a=b=c,它们在同一平面且互相垂直。

3、体积计算:正三棱柱的体积可以用面积乘积公式来计算:V=ah;其中,a表示正三棱柱的侧棱,h表示高度。

(四)正四棱锥1、正四棱锥是由正方形底面、顶面和棱构成的三角锥体,它有四个直角棱,棱之间相互垂直,底面和顶面也相互垂直。

2、侧棱:正四棱锥的侧棱只有一条,用a表示,它的四条边都要等于。

(五)正八棱锷1、正八棱锷是一种八个棱组成的几何体,其四条边中有三条边为互相垂直的折线,其余五条边为圆形弧线。

2、侧棱:正八棱锷有八个侧棱,用a1,a2,a3…a8表示,但它们互相之间不相等,作用上也不是等距的。

(六)台面1、台面,又称台体,是由一个小三角形共同构成的平面图形。

当该平面图形在三维空间中展开时,可以形成一个台体,它由三个等高的并列棱构成。

2、台体体积计算:台体的体积可以由其三角面积和三边长共同确定,台体的体积公式为:V=1/3(A1+A2+A3)H;其中,A1,A2,A3表示三个三角面积,H表示高度。

高中数学知识点总结及公式大全

高中数学知识点总结及公式大全关于高中数学知识点总结及公式大全空间几何体表面积体积公式:1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h 为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,3、a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-h-高V=Sh6、棱锥S-h-高V=Sh/37、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/38、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、r-底半径h-高V=πr^2h/312、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形) 二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.③直二面角:平面角是直角的二面角叫直二面角.两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角④求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角高一必修二数学复习知识点总结空间中的垂直问题(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直.(2)垂直关系的判定和性质定理①线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.②面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.棱锥棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥棱锥的性质:(1)侧棱交于一点。

高中数学人教版A必修二第一章知识点总结

高中数学人教版A必修二数学必修二第一章知识总结一、空间几何体(一)空间几何体的结构1、棱柱的结构特征:一般地,有两个面互相平行,其余各面都是四边形并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

注意:①两底面是多边形平行且全等;②侧面是平行四边形;③侧棱互相平行且相等。

补充:①平行六面体:底面是平行四边形的棱柱。

②直平行六面体:侧棱和地面垂直的平行六面体。

③直棱柱:侧棱垂直于底面的棱柱。

④正棱柱:底面为正多边形的直棱柱。

例题1 下列四个命题中,假命题为( A )A、棱柱中两个互相平行的平面一定是棱柱的底面(正方体、长方体)B、棱柱的各个侧面都是平行四边形C、棱柱的两底面是全等的多边形D、棱柱的面中,至少有两个面互相平行例题2 下列说法正确的是(D)P8A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.各侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面为平行四边形2、棱锥的结构特征:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。

注意:①底面是多边形;②侧面是三角形;③侧棱交于顶点。

补充:正棱锥:如果一个棱锥的底面是正多边形,并且顶点在底面上的射影是底面的中心,这样的棱锥叫做正棱锥。

特征:①底面是正多边形②侧面是全等等腰三角形,斜高都相等③正棱锥的高、斜高和斜高在底面上的投影组成一个直角三角形,正棱锥的高、侧棱和侧棱在底面上的投影也组成一个直角三角形。

如Rt∆SOM和Rt∆SOC。

例题3 三棱锥P - ABC,PA =PB = CA = CB = 5,AB = 6,PC长度的取值范围是(D )。

A、(0,4)B、(0,5)C(0,6)D(0,8)解析:3、棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。

注意:①两底面平行且相似;②侧面是梯形;③侧棱延长并交于一点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间几何体知识点总结
一、空间几何体的结构特征
1.柱、锥、台、球的结构特征
由若干个平面多边形围成的几何体称之为多面体。围成多面体的各个多边形叫叫做多面体的面,相邻两个
面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。
把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体称之为旋转体,其中定直线称为旋转
体的轴。
(1)柱
棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平
行,由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面,简称为底;其余各面
叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。

底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……
注:相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:

棱柱的性质:
①侧棱都相等,侧面是平行四边形;
②两个底面与平行于底面的截面是全等的多边形;
③过不相邻的两条侧棱的截面是平行四边形;
④直棱柱的侧棱长与高相等,侧面与对角面是矩形。
圆柱:以矩形的一边所在的直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱;旋转轴
叫做圆柱的轴;垂直于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都
叫做圆柱侧面的母线。

圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形。
棱柱与圆柱统称为柱体;
(2)锥
棱锥:一般的有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体
叫做棱锥;这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公
共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱。

底面是三角锥、四边锥、五边锥……的棱柱分别叫做三棱锥、四棱锥、五棱锥……
正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做
正棱锥。
注:棱锥的性质:
①平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;
②正棱锥各侧棱相等,各侧面是全等的等腰三角形;
③正棱锥中六个元素,即侧棱、高、斜高、侧棱在底面内的射影、斜高在底面的射影、底面边长一半,构
成四个直角三角形。
圆锥:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫
做圆锥;旋转轴为圆锥的轴;垂直于轴的边旋转形成的面叫做圆锥的底面;斜边旋转形成的曲面叫做圆锥
的侧面。
圆锥的性质:
①平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比;
②轴截面是等腰三角形;
棱锥与圆锥统称为锥体。
(3)台
棱台:用一个平行于底面的平面去截棱锥,底面和截面之间的部分叫做棱台;原棱锥的底面和截面分
别叫做棱台的下底面和上底面;棱台也有侧面、侧棱、顶点。

正棱台的性质:
①各侧棱相等,各侧面都是全等的等腰梯形;
②正棱台的两个底面以及平行于底面的截面是正多边形;
③棱台经常补成棱锥研究。
圆台:用一个平行于底面的平面去截圆锥,底面和截面之间的部分叫做圆台;原圆锥的底面和截面分
别叫做圆台的下底面和上底面;圆台也有侧面、母线、轴。
圆台的性质:
①圆台的上下底面,与底面平行的截面都是圆;
②圆台的轴截面是等腰梯形;
③圆台经常补成圆锥来研究。

圆台和棱台统称为台体。
(4)球
以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称为球;半圆的圆心
叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径。

注:球的有关问题转化为圆的问题解决。
(5)组合体
由柱、锥、台、球等几何体组成的复杂的几何体叫组合体。
2.空间几何体的三视图
三视图是观测者从不同位置观察同一个几何体,画出的空间几何体的图形。
具体包括:
(1)正视图:物体前后方向投影所得到的投影图;
它能反映物体的高度和长度;
(2)侧视图:物体左右方向投影所得到的投影图;
它能反映物体的高度和宽度;
(3)俯视图:物体上下方向投影所得到的投影图;
它能反映物体的长度和宽度;
3.空间几何体的直观图
(1)斜二测画法
①建立直角坐标系,在已知水平放置的平面图形中取互相垂直的OX,OY,建立直角坐标系;
②画出斜坐标系,在画直观图的纸上(平面上)画出对应的O’X’,O’Y’,使'''XOY=450(或1350),
它们确定的平面表示水平平面;
③画对应图形,在已知图形平行于X轴的线段,在直观图中画成平行于X‘轴,且长度保持不变;在已
知图形平行于Y轴的线段,在直观图中画成平行于Y‘轴,且长度变为原来的一半;
④擦去辅助线,图画好后,要擦去X轴、Y轴及为画图添加的辅助线(虚线)。

结论:一般地,采用斜二测法作出的直观图面积是原平面图形面积的24倍。
注:解决两种常见的题型时应注意
1)由几何体的三视图画直观图时,一般先考虑“俯视图”.
2)由几何体的直观图画三视图时,能看见的轮廓线和棱画成实线,不能看见的轮廓线和棱画成虚线。
(2)平行投影与中心投影
平行投影的投影线是互相平行的,中心投影的投影线相交于一点。
4.知识归纳及拓展
(1)几种常凸多面体间的关系

(2)一些特殊棱柱、棱锥、棱台的概念和主要性质
二、空间几何体的表面积和体积
1.多面体的面积和体积公式
2.旋转体的面积和体积公式
附注:(1)两点的球面距离:
球面上两点之间的最短距离,就是经过两点的大圆在这两点间的一段劣弧的长度,我们把这个弧长叫
做两点的球面距离
两点的球面距离公式:(其中R为球半径,θ为A,B所对应的球心角的弧度数)

(2)正四面体的性质
设正四面体的棱长为a,则这个正四面体的全面积:2=3Sa全;体积:3212Va;对棱中点连线段的
长:22da;内切球半径:612ra;外接球半径64Ra;正四面体内任意一点到四个面的距离
之和为定值(等于正四面体的高)。
(参考教材:人教版必修2A版)

相关文档
最新文档