全善学校2015—2016学年上期第三次月考初三数学试题(新)含答案
九年级第一学期第三次月考数学试卷(附带有答案)

九年级第一学期第三次月考数学试卷(附带有答案)本试题分选择题和非选择题两部分。
本试题共6页,满分为150分,考试时间为120分钟。
注意事项:第1卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元二次方程x2-x=0的根是()A.x1=0,x2=1B.x1=0,x2=-1C.x=-1D.x=02.下列几何体的左视图为()A. B. C. D.3.已知反比例函数y=﹣2x,下列各点中,在此函数图象上的点的是()A.(一1,1)B.(2,-1)C.(1,2)D.(2,2)4.在一个不透明的盒子中装有n个除颜色外完全相同的球,其中有4个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则n的值大约为()A.16B.18C.20D.245.若两个相似三角形的对应中线比是1:3,则它们的周长比是()A.1:2B.1:3C.1:6D.1:96.矩形具有而菱形不一定具有的性质是()A.对角线相等B.对角线互相平分C.邻边相等D.对角线互相垂直7.如图,在Rt△ABC中,AC=4,BC=3,∠C=90°,则cosA的值为( )A.34B.54C.35D.45(第7题图)(第8题图)8.如图,在平面直角坐标系中,一块污渍遮挡了横轴的位置,只有部分纵轴和部分矩形网格,已知每个小正方形的边长都是1个单位长度,反比例函数y=k x (k ≠0,x >0)的图象恰好经过2个格点A 、B ,则k 的值是( )A.3B.4C.6D.89.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC=2,则sinB 的值是( )A.23B.32C.34D.43(第9题图) (第10题图)10.已知二次函数y=ax 2+bx+c 的图象如图所示,有以下结论:①a+b+c<0;②abc>0:③a -b+c>1:④4a -2b+c<0.正确结论的个数是( )A.1B.2C.3D.4第II 卷(非选择题 共110分)二.填空题:(本大题共6个小题,每小题4分,共24分)11.若a b =53,则aa -b = .12.若反比例函数y=m -1x 的图象在一、三象限,则m 的取值范围为 .13.将抛物线y=x 2+3x -2向右平移3个单位后,再向上平移4个单位,得到新的抛物线 的解析式为 .14.如图,△ABC 与△A'B'C'是位似图形,则△ABC 与△A'B'C'的位似比为 .(第14题图) (第15题图) (第16题图)15.如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠OAC的度数是.16.如图,已知正方形ABCD的边长为12,BE=EC,将正方形CD边沿DE折叠到DF,延长EF 交AB于G,连接DG、BF,现有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF =725,在以上结论中,正确的是.(填写序号)三.解答题:(本大题共10个小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分6分)计算:√3tan60°-2cos30°+4sin30°.18.(本小题满分6分)解方程:x2-5x+6=0.19.(本小题满分6分)如图,在菱形ABCD中,CE=CF.求证:AE=AF.20.(本小题满分8分)一个不透明的口袋中有3个质地和大小相同的小球,球面上分别写有数字1、2、3,从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球。
2015-2016学年九年级9月份月考数学试题及答案

2015-2016学年九年级9月份月考数学试题时间120分钟 满分120分 2015.9.12一、选择题(每小题3分,共计30分)1.在正比例函数y=2x 图象上的点为( )A.(1,2)B. (—1,2)C. (2,1)D. (—2,1) 2.下列计算结果正确的是( )A .63332a a a =+B .632)(a a a -=⋅-C .2222)(b ab a b a +-=-D .1)2(0-=-3.下列汉字或字母中既是中心对称图形又是轴对称图形的是( )A .B .C .D . 4.在矩形ABCD 中,AB=3,BC=4,则点A 到对角线BD 的距离为( )A.512B.2C.25D.513 5.反比例函数xk y 2-=(k 为常数,k ≠0)的图象位于( )A .第一、二象限B .第三、四象限C .第一、三象限D .第二、四象限 6.下列命题是真命题的是( )A .对角线互相平分的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线互相垂直的四边形是菱形D .对角线互相垂直的四边形是正方形 7.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做 涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x ,则x 满足的方程是( ) A .211(1)10x +=B .210(1)9x +=C .1112x += D .1012x += 8.如图,△ABC 中,∠ACB=70°,将△ABC 绕点B 逆时针方向旋转得到△BDE(点D 与点A 点E 与点C 是对应点),且边DE 恰好经过点C ∠ABD 的度数为( )A.30°B.40°C.45°9.如图,在△ABC 中,点D 、E 、F 分别在边BC 、AC 、 AB 上,连接BE 、DF 交于点G ,连接DE ,若四边形A(第8题图)AFDE 是平行四边形,则下列说法错误的是( )A.BE EGAB AF =错误!未找到引用源。
九年级(上)第三次月考数学试卷(带答案)

九年级(上)第三次月考数学试卷一、选择题(每小题3分,共30分)1.(3分)若x:y=1:3,2y=3z,则的值是()A.﹣5B.﹣C.D.52.(3分)如图,直线l1∥l2∥l3,另两条直线分别交l1、l2、l3于点A、B、C及点D、E、F,且AB=3,DE=4,EF=2,则()A.BC:DE=1:2B.BC:DE=2:3C.BC•DE=8D.BC•DE=6 3.(3分)(易错题)如图,▱ABCD中,E是AD延长线上一点,BE交AC于点F,交DC于点G,则下列结论中错误的是()A.△ABE∽△DGE B.△CGB∽△DGE C.△BCF∽△EAF D.△ACD∽△GCF 4.(3分)“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为()A.1.25尺B.57.5尺C.6.25尺D.56.5尺5.(3分)如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.6.(3分)如图,已知△ABC和△DEF,点E在BC边上,点A在DE边上,边EF 和边AC相交于点G.如果AE=EC,∠AEG=∠B,那么添加下列一个条件后,仍无法判定△DEF与△ABC一定相似的是()A.=B.=C.=D.=7.(3分)如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为()A.18B.C.D.8.(3分)在平行四边形ABCD中,点E在AD上,且AE:ED=3:1,CE的延长线与BA的延长线交于点F,则S△AFE :S四边形ABCE为()A.3:4B.4:3C.7:9D.9:79.(3分)如图,在正方形网格中,△ABC和△DEF相似,则关于位似中心与相似比叙述正确的是()A.位似中心是点B,相似比是2:1B.位似中心是点D,相似比是2:1C.位似中心在点G,H之间,相似比为2:1D.位似中心在点G,H之间,相似比为1:210.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为()A.B.C.D.二、填空题(每小题3分,共12分)11.(3分)有一块多边形草坪,在设计图纸上的面积为300cm2,其中一条边的长度为5cm,经测量,这条边的实际长度为15m,则这块草坪的实际面积是.12.(3分)在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC 上,当AE=时,以A、D、E为顶点的三角形与△ABC相似.13.(3分)如图,在五角星中,AD=BC,且C、D两点都是AB的黄金分割点,CD=1,则AB的长是.14.(3分)如图,三个正方形的边长分别为2,6,8;则图中阴影部分的面积为.三、解答题(共78分)15.(12分)解下列方程:(1)3x2﹣5x﹣2=0(2)x2﹣1=2(x+1)(3)4x2+4x+1=3(3﹣x)2(4)(2x+8)(x﹣2)=x2+2x﹣1716.(6分)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,交AC于F点,过点M作ME∥BC,交AB于点E.求证:△ABC∽△MED.17.(6分)如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N 两点之间的直线距离.18.(6分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?19.(6分)关于x的方程(a2﹣4a+5)x2+2ax+4=0:(1)试证明无论a取何实数这个方程都是一元二次方程;(2)当a=2时,解这个方程.20.(8分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?21.(8分)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.22.(8分)如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C 重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.23.(8分)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图,这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率.(2)小明和小亮约定做一个游戏,其规则如下:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形,则小明获胜,否则小亮获胜,这个游戏公平吗?请用列表或画树状图的方法说明.(纸牌用A、B、C、D)24.(10分)某兴趣小组开展课外活动.如图,A,B两地相距12米,小明从点A出发沿AB方向匀速前进,2秒后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2秒到达点F,此时他在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上).(1)请在图中画出光源O点的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法);(2)求小明原来的速度.参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:∵x:y=1:3,∴设x=k,y=3k,∵2y=3z,∴z=2k,∴==﹣5.故选:A.2.【解答】解:∵l1∥l2∥l3∴∵AB=3,DE=4,EF=2∴BC•DE=AB•EF=6.故选D.3.【解答】解:∵四边形ABCD是平行四边形∴AB∥CD∴∠EDG=∠EAB∵∠E=∠E∴△ABE∽△DGE(第一个正确)∵AE∥BC∴∠EDC=∠BCG,∠E=∠CBG∴△CGB∽△DGE(第二个正确)∵AE∥BC∴∠E=∠FBC,∠EAF=∠BCF∴△BCF∽△EAF(第三个正确)第四个无法证得,故选D4.【解答】解:依题意有△ABF∽△ADE,∴AB:AD=BF:DE,即5:AD=0.4:5,解得AD=62.5,BD=AD﹣AB=62.5﹣5=57.5尺.故选:B.5.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C.6.【解答】解:当=时,则=,而∠B=∠AEG,所以△ABC∽△EDF;当=,则=,而∠DEF=∠AEG,所以△DEF∽△AEG,又因为AE=EC,所以∠EAG=∠C,而∠AEG=∠B,所以△AEG∽△ABC,所以△ABC∽△EDF;当=,则=,而∠DEF=∠AEG,所以△DEF∽△AEG,又因为AE=EC,所以∠EAG=∠C,而∠AEG=∠B,所以△AEG∽△ABC,所以△ABC∽△EDF.故选:C.7.【解答】解:∵四边形ABCD是正方形,AB=12,BM=5,∴MC=12﹣5=7.∵ME⊥AM,∴∠AME=90°,∴∠AMB+∠CMG=90°.∵∠AMB+∠BAM=90°,∴∠BAM=∠CMG,∠B=∠C=90°,∴△ABM∽△MCG,∴=,即=,解得CG=,∴DG=12﹣=.∵AE∥BC,∴∠E=CMG,∠EDG=∠C,∴△MCG∽△EDG,∴=,即=,解得DE=.故选:B.8.【解答】解:∵在平行四边形ABCD中,∴AE∥BC,AD=BC,∴△FAE∽△FBC,∵AE:ED=3:1,∴=,∴=,∴S△AFE :S四边形ABCE=9:7.故选:D.9.【解答】解:如图,在正方形网格中,△ABC和△DEF相似,连接AF,CE,∴位似中心在点G,H之间,又∵AC=2EF,∴相似比为2:1,故选:C.10.【解答】解:如图,延长FE交AB于点D,作EG⊥BC于点G,作EH⊥AC于点H,∵EF∥BC、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四边形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠DAE=∠HAE,∴四边形BDEG是正方形,在△DAE和△HAE中,∵,∴△DAE≌△HAE(SAS),∴AD=AH,同理△CGE≌△CHE,∴CG=CH,设BD=BG=x,则AD=AH=6﹣x、CG=CH=8﹣x,∵AC===10,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=2,AD=4,∵DF∥BC,∴△ADF∽△ABC,∴=,即=,解得:DF=,则EF=DF﹣DE=﹣2=,故选:C.二、填空题(每小题3分,共12分)11.【解答】解:由题意可知,设草坪的实际面积为x,又图纸与实际的比例为0.05:15=1:300,所以有(1:300)2=300:xx=27000000cm2=2700m2所以草坪的实际面积为2700m2.故答案为:2700m2.12.【解答】解:当=时,∵∠A=∠A,∴△AED∽△ABC,此时AE===;当=时,∵∠A=∠A,∴△ADE∽△ABC,此时AE===;故答案为:或.13.【解答】解:∵C、D两点都是AB的黄金分割点,∴AC=AB,BD=AB,∴AC+BD=(﹣1)AB,即AB+CD=(﹣1)AB,∴AB=+2.故答案为+2.14.【解答】解:如图,根据题意,知△ABE∽△ADG,∴AB:AD=BE:DG,又∵AB=2,AD=2+6+8=16,GD=8,∴BE=1,∴HE=6﹣1=5;同理得,△ACF∽△ADG,∴AC:AD=CF:DG,∵AC=2+6=8,AD=16,DG=8,∴CF=4,∴IF=6﹣4=2;=(IF+HE)•HI∴S梯形IHEF=×(2+5)×6=21;所以,则图中阴影部分的面积为21.三、解答题(共78分)15.【解答】解:(1)3x2﹣5x﹣2=0,(3x+1)(x﹣2)=0,∴3x+1=0或x﹣2=0,∴x1=﹣,x2=2;(2)x2﹣1=2(x+1),(x+1)(x﹣1)﹣2(x+1)=0,(x+1)(x﹣1﹣2)=0,∴x+1=0或x﹣3=0,∴x1=﹣1,x2=3;(3)4x2+4x+1=3(3﹣x)2整理得:x2+22x=26,x2+22x+121=26+121(x+11)2=147,x+11=±7,∴x1=﹣11+7,x2=﹣11﹣7;(4)(2x+8)(x﹣2)=x2+2x﹣17整理得:x2+2x+1=0,∴(x+1)2=0,∴x1=x2=﹣1.16.【解答】证明:∵DM⊥AB,∴∠MDE=∠C=90°,∵EM∥BC,∴∠MED=∠B,∴△ABC∽△MED.17.【解答】解:在△ABC与△AMN中,=,=,∴,又∵∠A=∠A,∴△ABC∽△ANM,∴,即,解得:MN=1500米,答:M、N两点之间的直线距离是1500米;18.【解答】解:(1)恒温系统在这天保持大棚温度18℃的时间为12﹣2=10小时.(2)∵点B(12,18)在双曲线y=上,∴18=,∴解得:k=216.(3)当x=16时,y==13.5,所以当x=16时,大棚内的温度约为13.5℃.19.【解答】解:(1)a2﹣4a+5=(a2﹣4a+4)+1=(a﹣2)2+1,∵(a﹣2)2≥0,∴(a﹣2)2+1≠0,∴无论a取何实数关于x的方程(a2﹣4a+5)x2+2ax+4=0都是一元二次方程;(2)当a=2时,原方程变为x2+4x+4=0,解得x1=x2=﹣2.20.【解答】(1)解:设每千克核桃应降价x元.…1分根据题意,得(60﹣x﹣40)(100+×20)=2240.…4分化简,得x2﹣10x+24=0 解得x1=4,x2=6.…6分答:每千克核桃应降价4元或6元.…7分(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60﹣6=54(元),设按原售价的m折出售,则有:60×=54,解得m=9答:该店应按原售价的九折出售.21.【解答】证明:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.22.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵∠BDE=180°﹣∠B﹣∠DEB,∠CEF=180°﹣∠DEF﹣∠DEB,∵∠DEF=∠B,∴∠BDE=∠CEF,∴△BDE∽△CEF;(2)∵△BDE∽△CEF,∴,∵点E是BC的中点,∴BE=CE,∴,∵∠DEF=∠B=∠C,∴△DEF∽△ECF,∴∠DFE=∠CFE,∴FE平分∠DFC.23.【解答】解:(1)共有4张牌,正面是中心对称图形的情况有2种,所以摸到正面是中心对称图形的纸牌的概率是;(2)列表得:共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=,因此这个游戏公平.24.【解答】解:(1)如图,(2)设小明原来的速度为xm/s,则CE=2xm,AM=AF﹣MF=(4x﹣1.2)m,EG=2×1.5x=3xm,BM=AB﹣AM=12﹣(4x﹣1.2)=13.2﹣4x,∵点C,E,G在一条直线上,CG∥AB,∴△OCE∽△OAM,△OEG∽△OMB,∴=,=,∴=,即=,解得x=1.5,经检验x=1.5为方程的解,∴小明原来的速度为1.5m/s.答:小明原来的速度为1.5m/s.。
2015-2016学年新人教版九年级(上)月考数学试卷及答案(10月份)

2015-2016学年九年级(上)月考数学试卷(10月份)一、选择题(本大题共10小题,每小题3分,共30分)每小题只有一个正确选项,把正确选项的代号填在题后的括号内.1.把方程x(x+2)=5(x﹣2)化成一般式,则a、b、c的值分别是()A.1,﹣3,10 B.1,7,﹣10 C.1,﹣5,12 D.1,3,22.方程3x=x2的解是()A.x=3 B.C.x 1=3,x2=0 D.x=03.8x2﹣(k﹣1)x﹣k﹣7=0的一个根为零,则k=()A.﹣1 B.C.4 D.﹣74.若方程2x2﹣5x+m=0有两个相等实数根,则m=()A.﹣2 B.0 C.2 D.5.用配方法解下列方程时,配方错误的是()A.x2+2x﹣99=0化为(x+1)2=100B.2x2﹣7x﹣4=0化为C.x2+8x+9=0化为(x+4)2=25D.3x2﹣4x﹣2=0化为6.下列关系式中,属于二次函数的是(x为自变量)()A.y=x2B.y=C.y=D.y=a2x27.用换元法解方程(x2+x)(x2+x﹣1)=6,如果设x2+x=y,则原方程可变形为()A.y2+y﹣6=0 B.y2﹣y﹣6=0 C.y2﹣y+6=0 D.y2﹣y﹣6=08.某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是()A.200(1+a%)2=148 B.200(1﹣a%)2=148 C.200(1﹣2a%)=148 D.200(1﹣a2%)=1489.某校组织初中一年级各班同学进行足球赛,实行单循环赛制,结果总共进行了21场比赛,则初中一年级班级数为()A.6 B.7 C.8 D.910.已知α,β是方程x2+2013x+1=0的两个根,则(1+2014a+a2)(1+2014β+β2)的值为()A.1 B.2 C.3 D.4二、填空题(本大题共6小题,每小题3分,共18分)11.关于x的方程(m﹣2)﹣x+3=0是一元二次方程,则m= .12.在实数内定义一种运算“*”,其定义为a*b=a2﹣b2,根据这个定义,(x+3)*5=0的解为.13.关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个实数根,则k的取值范围是.14.若两个连续自然数的积是30,则这两个数是.15.已知x1,x2是方程x2=2x+1的两个根,则的值是.16.如图所示,某小区规划在一个长为40m、宽为26m的矩形场地ABCD上修建三条同样宽的甬路,使其中两条与AB平行,另一条与AD平行,其余部分种草.若使所有草坪的面积和为864m2,求甬路的宽度.若设甬路的宽度为xm,则x满足的方程为.三、解方程(本大题共1小题,每小题20分,共20分)17.(1)x2﹣3x=﹣1(配方法);(2)2x2+7x﹣4=0;(3)3(x﹣2)2=x(x﹣2);(4)(y+2)2=(3y﹣1)2.四、解答题(本大题共6小题,共52分)18.已知关于x的一元二次方程x2+(k+3)x+k=0的一个根是x=﹣2,求k的值以及方程的另一根.19.方程x2﹣9x+18=0的两个根分别是等腰三角形的底和腰长,求这个三角形的周长.20.已知a、b均为实数,且,则求ax2﹣bx﹣3=0的根.21.在一幅长8分米,宽6分米的矩形风景画(如图①)的四周镶宽度相同的金色纸边,制成一幅矩形挂图(如图②).如果要使整个挂图的面积是80平方分米,求金色纸边的宽.22.已知x的一元二次方程x2+2(k﹣2)x+k2+4=0有两个实数根,设它的两个根分别为x1、x2.(1)求k的取值范围.(2)若x1、x2满足x1x2﹣(x1+x2)=3,求k的值.23.某商场2014年7月份的营业额为180万元,9月份的营业额达到304.2万元,7月份到9月份的月平均增长率相等.(1)求7月份到9月份的月平均增长率?(2)按照此增长速率,10月份的营业额预计达到多少?2015-2016学年九年级(上)月考数学试卷(10月份)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)每小题只有一个正确选项,把正确选项的代号填在题后的括号内.1.把方程x(x+2)=5(x﹣2)化成一般式,则a、b、c的值分别是()A.1,﹣3,10 B.1,7,﹣10 C.1,﹣5,12 D.1,3,2考点:一元二次方程的一般形式.专题:压轴题;推理填空题.分析: a、b、c分别指的是一元二次方程的一般式中的二次项系数、一次项系数、常数项.解答:解:由方程x(x+2)=5(x﹣2),得x2﹣3x+10=0,∴a、b、c的值分别是1、﹣3、10;故选A.点评:本题考查了一元二次方程的一般形式.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.方程3x=x2的解是()A.x=3 B.C.x 1=3,x2=0 D.x=0考点:解一元二次方程-因式分解法.分析:方程3x=x2的变形成x(x﹣3)=0,即可转化成两个一元一次方程,从而求解.解答:解:移项,得:x2﹣3x=0,即x(x﹣3)=0,则x1=3,x2=0.故选C.点评:本题考查了利用因式分解法解方程,基本思路是依据两个式子的乘积是0,则至少有一个是0转化成一元一次方程.3.8x2﹣(k﹣1)x﹣k﹣7=0的一个根为零,则k=()A.﹣1 B.C.4 D.﹣7考点:一元二次方程的解;一元二次方程的定义.专题:方程思想.分析:把x=0代入方程中,就可以求出k的值.解答:解:∵方程8x2﹣(k﹣1)x﹣k﹣7=0的一个根为0,∴把x=0代入此方程有:﹣k﹣7=0,k=﹣7.故本题选D.点评:本题考查的是一元二次方程的根,把方程的根代入方程就可以求出字母系数k的值.4.若方程2x2﹣5x+m=0有两个相等实数根,则m=()A.﹣2 B.0 C.2 D.考点:根的判别式.专题:计算题.分析:由方程2x2﹣5x+m=0有两个相等实数根,则△=0,得到关于m的方程,解方程即可.解答:解:根据题意得,△=52﹣4×2m=0,∴m=.故选D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了不等式的解法.5.用配方法解下列方程时,配方错误的是()A.x2+2x﹣99=0化为(x+1)2=100B.2x2﹣7x﹣4=0化为C.x2+8x+9=0化为(x+4)2=25D.3x2﹣4x﹣2=0化为考点:解一元二次方程-配方法.分析:根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方分别进行配方,即可求出答案.解答:解:A、由原方程,得x2+2x=99,等式的两边同时加上一次项系数2的一半的平方1,得(x+1)2=100;故本选项正确;B、由原方程,得2x2﹣7x=4,等式的两边同时加上一次项系数﹣7的一半的平方,得,(x﹣)2=,故本选项正确;C、由原方程,得x2+8x=﹣9,等式的两边同时加上一次项系数8的一半的平方16,得(x+4)2=7;故本选项错误;D、由原方程,得3x2﹣4x=2,化二次项系数为1,得x2﹣x=等式的两边同时加上一次项系数﹣的一半的平方,得;故本选项正确.故选C.点评:此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.6.下列关系式中,属于二次函数的是(x为自变量)()A.y=x2B.y=C.y=D.y=a2x2考点:二次函数的定义.分析:根据二次函数的定义判定即可.解答:解:A、y=x2,是二次函数,正确;B、y=,被开方数含自变量,不是二次函数,错误;C、y=,分母中含自变量,不是二次函数,错误;D、a=0时,a2=0,不是二次函数,错误.故选A.点评:本题考查二次函数的定义.7.用换元法解方程(x2+x)(x2+x﹣1)=6,如果设x2+x=y,则原方程可变形为()A.y2+y﹣6=0 B.y2﹣y﹣6=0 C.y2﹣y+6=0 D.y2﹣y﹣6=0考点:换元法解一元二次方程.分析:用y代替方程中(x2+x),然后将其整理为一般式方程即可.解答:解:依题意得:y(y﹣1)=6,整理,得y2﹣y﹣6=0.故选:B.点评:本题主要考查了换元法,即把某个式子看作一个整体,用一个字母去代替它,实行等量替换.8.某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是()A.200(1+a%)2=148 B.200(1﹣a%)2=148 C.200(1﹣2a%)=148 D.200(1﹣a2%)=148考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:主要考查增长率问题,本题可用降价后的价格=降价前的价格×(1﹣降价率),首先用x表示两次降价后的售价,然后由题意可列出方程.解答:解:依题意得两次降价后的售价为200(1﹣a%)2,∴200(1﹣a%)2=148.故选:B.点评:增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.9.某校组织初中一年级各班同学进行足球赛,实行单循环赛制,结果总共进行了21场比赛,则初中一年级班级数为()A.6 B.7 C.8 D.9考点:一元二次方程的应用.分析:赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数=,即可列方程求解.解答:解:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,x(x﹣1)=21,解得:x1=7,x2=﹣6(舍去),故应邀请7个球队参加比赛.故选:B.点评:本题考查了一元二次方程的应用,解决本题的关键是读懂题意,得到总场数的等量关系.10.已知α,β是方程x2+2013x+1=0的两个根,则(1+2014a+a2)(1+2014β+β2)的值为()A.1 B.2 C.3 D.4考点:根与系数的关系;一元二次方程的解.分析:由α,β是方程x2+2013x+1=0的两个根,根据根与系数的关系,可得αβ=1,由一元二次方程的根的定义,可得α2+2013α+1=0,β2+2013β+1=0,继而求得答案.解答:解:∵α,β是方程x2+2013x+1=0的两个根,∴α2+2013α+1=0,β2+2013β+1=0,αβ=1,∴(1+2014a+a2)(1+2014β+β2)=[(1+2013a+a2)+α][(1+2013β+β2)+β]=αβ=1.故选A.点评:此题考查了根与系数的关系以及一元二次方程的解.注意x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)(2013秋•镇康县校级期中)关于x的方程(m﹣2)﹣x+3=0是一元二次方程,则m= ﹣2 .考点:一元二次方程的定义.分析:根据一元二次方程的定义知,m2﹣2=2,且m﹣2≠0,据此可以求得m的值.解答:解:∵关于x的方程(m﹣2)﹣x+3=0是一元二次方程,∴m2﹣2=2,且m﹣2≠0,解得,m=﹣2;故答案是:﹣2.点评:本题考查了一元二次方程的定义.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.12.在实数内定义一种运算“*”,其定义为a*b=a2﹣b2,根据这个定义,(x+3)*5=0的解为﹣8或2 .考点:解一元二次方程-因式分解法;解一元二次方程-公式法.专题:新定义.分析:将a=x+3,b=5代入公式a*b=a2﹣b2进行计算即可.解答:解:∵(x+3)*5=(x+3)2﹣25,∴(x+3)2﹣25=0,∴x+3=±5,∴x=﹣8或2,故答案为﹣8或2.点评:本题是一道新定义的题目,考查了一元二次方程的解法,是基础知识比较简单.13.关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个实数根,则k的取值范围是k≥﹣且k≠0 .考点:根的判别式.分析:在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有两个实数根下必须满足△=b2﹣4ac≥0.解答:解:根据题意列出方程组,解得k≥﹣且k≠0.点评:本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.14.若两个连续自然数的积是30,则这两个数是5和6 .考点:一元二次方程的应用.专题:数字问题.分析:根据连续自然数相差1,设出较小的自然数为x,则较大自然数为x+1,根据两个连续自然数之积是30列出关于x的方程,求出方程的解即可得到x的值,进而确定出连续的两个自然数.解答:解:设两个连续的自然数分别为x,x+1,(x>0),由题意得:x(x+1)=30,即x2+x﹣30=0,因式分解得:(x﹣5)(x+6)=0,可得x﹣5=0或x+6=0,解得:x1=5,x2=﹣6(舍去),则这两个数是5和6.故答案为:5和6点评:此题考查了一元二次方程的应用,其中弄清题意,列出相应的方程是解本题的关键.15.已知x1,x2是方程x2=2x+1的两个根,则的值是﹣2 .考点:根与系数的关系.分析:先把方程化为一般式,再根据根与系数的关系得到x1+x2=2,x1x2=﹣1,然后把通分得到,再利用整体代入的方法计算.解答:解:方程化为一般式x2﹣2x﹣1=0,根据题意得x1+x2=2,x1x2=﹣1,所以===﹣2.故答案为﹣2.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.16.如图所示,某小区规划在一个长为40m、宽为26m的矩形场地ABCD上修建三条同样宽的甬路,使其中两条与AB平行,另一条与AD平行,其余部分种草.若使所有草坪的面积和为864m2,求甬路的宽度.若设甬路的宽度为xm,则x满足的方程为(40﹣2x)(26﹣x)=864 .考点:由实际问题抽象出一元二次方程.专题:几何图形问题.分析:把甬道移到小区的上边及左边,根据草坪的面积得到相应的等量关系即可.解答:解:草坪可整理为一个矩形,长为40﹣2x,宽为26﹣x,即列的方程为(40﹣2x)(26﹣x)=864,故答案为(40﹣2x)(26﹣x)=864.点评:考查列一元二次方程;得到草坪的形状及相应的边长是解决本题的突破点.三、解方程(本大题共1小题,每小题20分,共20分)17.(1)x2﹣3x=﹣1(配方法);(2)2x2+7x﹣4=0;(3)3(x﹣2)2=x(x﹣2);(4)(y+2)2=(3y﹣1)2.考点:解一元二次方程-因式分解法;解一元二次方程-配方法.分析:(1)利用配方法,首先方程两边同加上一次项系数一半的平方,再开方求解即可求得答案;(2)利用十字相乘法求解,即可求得答案;(3)首先移项,提取公因式(x﹣2),即可利用因式分解的方法求解;(4)移项,利用平方差公式分解因式,继而求得答案.解答:解:(1)∵x2﹣3x=﹣1,∴x2﹣3x+=﹣1+,∴(x﹣)2=,∴x﹣=±,∴x1=,x2=;(2)∵2x2+7x﹣4=0,∴(2x﹣1)(x+4)=0,∴2x﹣1=0或x+4=0,解得:x1=,x2=﹣4;(3)∵3(x﹣2)2=x(x﹣2),∴3(x﹣2)2﹣x(x﹣2)=0,∴(x﹣2)(3x﹣6﹣x)=0,∴x﹣2=0或3x﹣6﹣x=0,解得:x1=2,x2=3;(4)∵(y+2)2=(3y﹣1)2,∴(y+2)2﹣(3y﹣1)2=0,∴(y+2+3y﹣1)(y+2﹣3y+1)=0,∴y+2+3y﹣1=0或y+2﹣3y+1=0,解得:y1=﹣,y2=.点评:此题考查了一元二次方程的解法.注意准确选择解方程的方法是关键.四、解答题(本大题共6小题,共52分)18.已知关于x的一元二次方程x2+(k+3)x+k=0的一个根是x=﹣2,求k的值以及方程的另一根.考点:根与系数的关系;一元二次方程的解.专题:计算题.分析:根据一元二次方程的解的定义把x=﹣2代入方程可得到关于k的一次方程,求出k=﹣2,然后利用根与系数的关系求出另一根.解答:解:把x=﹣2代入原方程得4﹣2(k+3)+k=0,解得k=﹣2,所以原方程为x2+x﹣2=0,设方程另一个根为t,则t+(﹣2)=﹣1,解得t=1,即k的值为﹣2,方程的另一根为1.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程的解.19.方程x2﹣9x+18=0的两个根分别是等腰三角形的底和腰长,求这个三角形的周长.考点:解一元二次方程-因式分解法;三角形三边关系;等腰三角形的性质.专题:计算题.分析:利用因式分解法解方程得到x1=3,x2=6,然后分类讨论:当3和3为腰时,底边为6时不符合三角形三边的关系,舍去;当腰为6,底边为3时,根据三角形周长定义计算.解答:解:(x﹣3)(x﹣6)=0,x﹣3=0或x﹣6=0,所以x1=3,x2=6,当3和3为腰时,底边为6,3+3=6,不符合三角形三边的关系,舍去;当腰为6,底边为3时,三角形的周长=6+6+3=15.点评:本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了三角形三边的关系.20.已知a、b均为实数,且,则求ax2﹣bx﹣3=0的根.考点:解一元二次方程-因式分解法;非负数的性质:偶次方;非负数的性质:算术平方根.专题:计算题.分析:根据非负数的性质得到a﹣1=0,2a+b=0,解得a=1,b=﹣2,则方程ax2﹣bx﹣3=0变形为x2+2x﹣3=0,然后利用因式分解法解方程.解答:解:∵,∴a﹣1=0,2a+b=0,∴a=1,b=﹣2,∴方程ax2﹣bx﹣3=0变形为x2+2x﹣3=0,(x+3)(x﹣1)=0,x+3=0或x﹣1=0,所以x1=﹣3,x2=1.点评:本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了非负数的性质.21.在一幅长8分米,宽6分米的矩形风景画(如图①)的四周镶宽度相同的金色纸边,制成一幅矩形挂图(如图②).如果要使整个挂图的面积是80平方分米,求金色纸边的宽.考点:一元二次方程的应用.专题:几何图形问题.分析:设金色纸边的宽为x分米,则矩形挂图的长为(2x+8)分米,宽为(2x+6)分米,根据等量关系:矩形挂图的长×宽=80,列出方程,从而可求出解.解答:解:设金色纸边的宽为x分米,根据题意,得(2x+6)(2x+8)=80.整理得:x2+7x﹣8=0,∴(x﹣1)(x+8)=0,解得:x1=1,x2=﹣8(不合题意,舍去).答:金色纸边的宽为1分米.点评:对于面积问题,图形的面积公式一般是这类问题的等量关系,是列方程的依据,应熟记各类图形的面积公式.22.已知x的一元二次方程x2+2(k﹣2)x+k2+4=0有两个实数根,设它的两个根分别为x1、x2.(1)求k的取值范围.(2)若x1、x2满足x1x2﹣(x1+x2)=3,求k的值.考点:根的判别式;根与系数的关系.分析:(1)根据判别式的意义得到△=4(k﹣2)2﹣4(k2+4)=﹣16k≥0,然后解不等式即可;(2)根据根与系数的关系得到得x1+x2=﹣2(k﹣2)=﹣2k+4,x1x2=k2+4,将两根之和和两根之积代入代数式求k的值即可.解答:解:(1)∵一元二次方程x2+2(k﹣2)x+k2+4=0有两个实数根,∴△=4(k﹣2)2﹣4(k2+4)=﹣16k≥0,∴k≤0;(2)∵一元二次方程x2+2(k﹣2)x+k2+4=0的两个根分别为x1、x2,∴x1+x2=﹣2(k﹣2)=﹣2k+4,x1x2=k2+4,∴x1x2﹣(x1+x2)=k2+4﹣(﹣2k+4)=k2+2k=3,解得:k1=﹣3,k2=1,∵k≤0,∴k=﹣3.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.23.某商场2014年7月份的营业额为180万元,9月份的营业额达到304.2万元,7月份到9月份的月平均增长率相等.(1)求7月份到9月份的月平均增长率?(2)按照此增长速率,10月份的营业额预计达到多少?考点:一元二次方程的应用.专题:增长率问题.分析:(1)设7月份到9月份的月平均增长率为x,由增长率问题的数量关系建立方程求出其解即可;(2)根据(1)求出的x的值由增长率问题就可以求出结论.解答:解:(1)设7月份到9月份的月平均增长率为x,根据题意可得:则180(1+x)2=304.2,(1+x)2=1.69,1+x=±1.3,x1=0.3=30%,x2=﹣2.3(不合题意,舍去).答:7月份到9月份的月平均增长率为30%;(2)10月份的营业额预计达到:304.2×(1+30%)=395.46(万元).答:10月份的营业额预计达到395.46万元.点评:本题考查了根据增长率问题的数量关系列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时由增长率问题的数量关系建立方程是关键.。
2015-2016学年度第一学期九年级数学第三次月考试题(附答案)

2015-2016学年度第一学期九年级数学第三次月考试题(考试时间:100分钟满分:120分)班级:姓名:座号:成绩:1.已知⊙O的半径为5 cm,点P是⊙O外一点,则OP的长可能是A. 3 cmB. 4 cmC. 5 cmD. 6 cm2. 下列说法中,正确的是( )A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等,所对的圆心角相等3.若⊙O直径为9cm,圆心O到直线AB的距离为5cm,则直线AB与⊙O的位置关系是()A.相切 B.相交 C.相离 D.无法确定4.直线3y x=+上有一点,则点关于原点的对称点在________.A.第一象限 B.第二象限 C.第三象限 D.第四象限5.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()A B C D6.在半径等于5cm的圆内有长为的弦,则此弦所对的圆周角为()A.120 B 30或120 C.60 D60或1207.二次函数y=2x2+3x-9的图象与x轴交点的横坐标是( )A.32和3 B.32和-3 C.-32和2 D.-32和-28. 如图,△ABC内接于⊙O,∠A = 30°,则∠BOC的度数为()A. 20°B. 30°C. 60°D. 80°9.如图,在正方形中,,点在上,且,点是上一动点,连接,将线段绕点逆时针旋转90°得到线段.要使点恰好落在上,则的长是( )A .1B .2C .3D .410.如图P 为⊙O 外一点,PA 、PB 分别与⊙O 相切于A 、B ,CD 与⊙O 相切于点E ,分别交PA 、PB 于点C 、D ,若PA=5,则△PCD 的周长为( )A .5B .7C .8D .1011.在平面直角坐标系中,已知点A (2,-3),若将 绕原点逆时针旋转得到,则点在平面直角坐标系中的位置是在( )A.(2,3)B. (2,-3)C. (-2,-3)D. (-2,3) 12. △ABC 的外心是△ABC 的( )A.三条高的交点B.三条中线的交点C.三条角平分线的交点D.三条边的垂直平分线的交点13. 已知两圆的半径R 、r 分别为方程0652=+-x x 的两根,圆心距为5,这两圆的位置关系是( )A .外离B .内切C .相交D .外切14.如图,圆O 的直径AB 垂直于弦CD ,垂足是E ,∠A=22.5°,OC=2,CD 的长为( )A .2B .4C .4D .8二、填空题(本大题满分16分,每小题4分)15、已知圆的半径等于13,直线与圆只有一个公共点,则圆心到直线的距离是______。
2015届九年级上第三次月考数学试题及答案

2014学年初三数学统练四亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧与收获,希望你能沉着仔细,正常发挥,考出优异成绩! (考生注意:本试卷满分150分,答题时间120分钟).3.中国航母辽宁舰(如图)是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为( ) A .6.75×103吨 B .6.75×10-4吨 C .6.75×105吨D .6.75×104吨4.如图,已知一商场自动扶梯的长l 为13米,高度h 为5米,自动扶梯 与地面所成的夹角为θ,则θtan 的值等于( ) A .125 B .512C .135D .1312 5.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为 ( ) A .15B .25C .35D .456.如果将抛物线22y x =+向下平移1个单位,那么所得新抛物线的表达式是( ) A .23y x =+B .21y x =+C .2(1)2y x =++ D .2(1)2y x =-+7.如图,□ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC=54°,连接AE ,则∠AEB 的度数为 ( ) A .36° B.46° C .27°D .63°8.已知点A (1,y 1)、B (2,y 2)、C (﹣3,y 3)都在反比例函数xy 6=的图象上,则y 1、y 2、y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 1<y 2C .y 3<y 2<y 1D .y 2<y 1<y 3第7题第3题第4题9.若m 是一元二次方程025x 2=--x 的一个实数根,则m 5m -20142+的值是 ( )A . 2011B .2012C .2013D .201410. 如图,边长为a 2的等边三角形ABC 中,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转060得到BN ,连接HN ,则在M 运动过程中,线段HN 长度的最小值是 ( )二、填空题(本题有6小题,每小题5分,共30分) 11.函数xy =中,自变量x 的取值范围是 . 14. 若关于x 的方程2x x a -+=0有两个相等的实数根,则a 的值为 . 15.如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A 、B ,并使AB 与车轮内圆相切于点D ,作CD⊥AB 交外圆与点C ,测得CD =10cm ,AB =60cm ,则这个外圆16. 如图,在ABCRt ∆中,ACB ∠=∠Rt ,22==BC AC ,作内接正方形C D B A 111;在11B AA Rt ∆中,作内接正方形1222A D B A ;在22B AA Rt ∆中,作内接正方形2333A D B A ;……;依次作下去,则第1个正方形C D B A 111的边长三、解答题(本题有8小题,第17~20题每题8分,第21小题l0分,第22、23题每题12第10题第15题第21题图1 第21题图218. 先化简,再求值:)1)(1()2(2+--+a a a ,其中1=a .19. 如图,AC 是⊙O 的直径,弦BD 交AC 于点E 。
2016届九年级上学期第三次月考数学试卷资料
2015年秋季第三次月考初三年级数学试卷(试卷满分150分;试卷时间:120分钟)命题者:曾燕柳 审核者:潘凯东一、选择题(每小题3分,共21分)1.下列计算正确的是( ) A-=B2= C= D=2.一元二次方程072-2=+x x 的根的情况是( ) A .有两个不相等的实数根; B .有两个相等的实数根; C .只有一个实数根; D .没有实数根. 3.如果2x =3y,那么yx y x -+的值是 ( ) A . 5 ; B .1; C .-5; D .-1. 4.如图,在△ABC 中,∠C=90o,AB=3,BC=2, 则cos B 的值是( )A .53 ;B .52;C .32 ;D .23.5.某养殖户的养殖成本逐年增长,已知第1年的养殖成本为12万元,第3年的养殖成 本为17万元,设每年平均增长的百分率为x ,则下面所列方程中正确的是( ) A .12=-2)1(x 17 ; B .17=-2)1(x 12; C .17=+2)1(x 12 ; D .12=+2)1(x 17 .6.用配方法解方程0142=-+x x ,下列配方结果正确的是( )A .5)2(2=+x ; B .1)2(2=+x ; C .1)2(2=-x ; D .5)2(2=-x .7 .如图,在△ABC 中,∠ABC=90°,DE 垂直平分AC , 垂足为O ,AD ∥BC ,且AB=3,BC=4,则AD 的长为( )A .425 ;B .825;C .415 ;D .815.二、填空题(每小题4分,共40分)8. 当x 时,二次根式1+x 有意义。
9. 方程0)3(=-x x 的根为 . 10. 如图,D 、E 分别是△ABC 的边AB 和AC 的中点,已知11则该斜坡的坡角为 ° 12. 比较大小:13.如图,已知△ABC ∽△ACP ,∠A =70°,∠APC =65°,则∠B = .第4题EDCBA第10题第7题第13题14. 一只口袋中放着8只红球和16只黑球,这两种球除颜色以外没有任何其他区别.从口袋中随机取出一个球,取出这个球是红球的概率为 .15.两个相似三角形的对应高的比为1:2,它们的面积和为10,那么这两个三角形的面积分别为 。
九年级上月考数学试卷(9月)含答案解析
2015-2016吉林省长春九年级(上)月考数学试卷(9月份)一、选择题1.下列运算正确的是()A.B.C.D.2.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=9 C.(x﹣1)2=6 D.(x﹣2)2=93.下列二次根式中与是同类二次根式的是()A. B.C.D.4.若,则=()A.B.C.D.5.如图,已知D、E分别是△ABC的AB,AC边上的点,DE∥BC,且S△ADE :S四边形DBCE=1:8,那么AE:AC等于()A.1:9 B.1:3 C.1:8 D.1:26.关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,则m等于()A.1 B.2 C.1或2 D.07.如图,等边三角形ABC的边长为4,点P为BC边上一点,且BP=1,点D为AC边上一点.若∠APD=60°,则CD的长为()A.B.C.D.18.如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD•AB.其中单独能够判定△ABC∽△ACD的个数为()A.1 B.2 C.3 D.4二、填空题9.=2x﹣3,x的取值范围是.10.如图,△ABC是一块锐角三角形材料,边BC=80mm,高AD=60mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是mm.11.如图所示,在四边形ABCD中,AD∥BC,如果要使△ABC∽△DCA,那么还要补充的一个条件是.(只要求写出一个条件即可)12.小亮的身高是1.6米,某一时刻他在水平面上的影长是2米,若同一时刻测得附近一古塔在水平地面上的影长为20米,则古塔的高度是米.13.如图(1),在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田,假设试验田面积为570m2,求道路宽为多少?设宽为x m,从图(2)的思考方式出发列出的方程是.14.如图,在△ABC中,∠B=90°,AB=3厘米,BC=4厘米,点P从A沿AB边向点B以1厘米/秒的速度移动,点Q从B沿BC边向点C以2厘米/秒的速度移动,如P与Q同时出发,且当一点移动到端点并停止时,另一点也同时停下,秒后三角形PBQ的面积为2平方厘米.三、解答题15.(1)计算:﹣﹣;(2)计算:()﹣2﹣|2﹣3|+.16.解方程:(1)x2﹣2x=0;(2)30x2﹣45=0.17.解方程:x2+3x+1=0.18.解方程:(x﹣5)(x﹣6)=x﹣5.19.已知y=++3,求﹣的值.20.某企业2012年盈利3000万元,2014年克服全球金融危机的不利影响,仍实现盈利4320万元,从2012年到2014年,如果该企业每年盈利的年增长率相同,求:(1)该企业每年盈利的年增长率?(2)若该企业盈利的年增长率继续保持不变,预计2015年盈利多少万元?21.如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB 和△DCE的顶点都在格点上,ED的延长线交AB于点F.(1)求证:△ACB∽△DCE;(2)求证:EF⊥AB.22.已知▱ABCD的两边AB、AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根,当m为何值时,四边形ABCD是菱形?求出这时菱形的边长.23.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.24.如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF ⊥AE于F.(1)求证:△PFA∽△ABE;(2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,说明理由.2015-2016吉林省长春九年级(上)月考数学试卷(9月份)参考答案与试题解析一、选择题1.下列运算正确的是()A.B.C.D.【考点】二次根式的混合运算.【分析】根据二次根式的混合运算的相关知识进行解答.需要注意的是,无论怎么化简、变形,原式值的符号不能改变.【解答】解:A、原式=6×=3,故A错误;B、原式=﹣,故B错误;C、a2=a2×=a,故C错误;D、原式=3﹣2=,故D正确.故选D.2.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=9 C.(x﹣1)2=6 D.(x﹣2)2=9【考点】解一元二次方程-配方法.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:由原方程移项,得x2﹣2x=5,方程的两边同时加上一次项系数﹣2的一半的平方1,得x2﹣2x+1=6∴(x﹣1)2=6.故选:C.3.下列二次根式中与是同类二次根式的是()A. B.C.D.【考点】同类二次根式.【分析】根据同类二次根式的定义,先化简,再判断.【解答】解:A、=2,与的被开方数不同,不是同类二次根式,故A选项错误;B、=,与的被开方数不同,不是同类二次根式,故B选项错误;C、=,与的被开方数不同,不是同类二次根式,故C选项错误;D、=3,与的被开方数相同,是同类二次根式,故D选项正确.故选:D.4.若,则=()A.B.C.D.【考点】比例的性质.【分析】由题干可得2b=3a﹣3b,根据比等式的性质即可解得a、b的比值.【解答】解:∵,∴5b=3a,∴,故选D.5.如图,已知D、E分别是△ABC的AB,AC边上的点,DE∥BC,且S△ADE :S四边形DBCE=1:8,那么AE:AC等于()A.1:9 B.1:3 C.1:8 D.1:2 【考点】相似三角形的判定与性质.【分析】由题可知:△ADE∽△ABC,相似比为AE:AC,由S△ADE :S四边形DBCE=1:8,得S△ADE :S△ABC=1:9,根据相似三角形面积的比等于相似比的平方.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴S△ADE :S△ABC=AE2:AC2,∵S△ADE :S四边形DBCE=1:8,∴S△ADE :S△ABC=1:9,∴AE:AC=1:3.故选B.6.关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,则m等于()A.1 B.2 C.1或2 D.0【考点】一元二次方程的一般形式.【分析】根据一元二次方程成立的条件及常数项为0列出方程组,求出m的值即可.【解答】解:根据题意,知,,解方程得:m=2.故选:B.7.如图,等边三角形ABC的边长为4,点P为BC边上一点,且BP=1,点D为AC边上一点.若∠APD=60°,则CD的长为()A.B.C.D.1【考点】相似三角形的判定与性质;等边三角形的性质.【分析】根据等边三角形性质求出AB=BC=AC=4,∠B=∠C=60°,推出∠BAP=∠DPC,证△BAP∽△CPD,得出=,代入求出即可.【解答】解:∵△ABC是等边三角形,∴AB=BC=AC=4,∠B=∠C=60°,∴∠BAP+∠APB=180°﹣60°=120°,∵∠APD=60°,∴∠APB+∠DPC=180°﹣60°=120°,∴∠BAP=∠DPC,即∠B=∠C,∠BAP=∠DPC,∴△BAP∽△CPD,∴=,∵AB=BC=4,CP=BC﹣BP=4﹣1=3,BP=1,即=,解得:CD=,故选C.8.如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD•AB.其中单独能够判定△ABC∽△ACD的个数为()A.1 B.2 C.3 D.4【考点】相似三角形的判定.【分析】由图可知△ABC与△ACD中∠A为公共角,所以只要再找一组角相等,或一组对应边成比例即可解答.【解答】解:有三个.①∠B=∠ACD,再加上∠A为公共角,可以根据有两组角对应相等的两个三角形相似来判定;②∠ADC=∠ACB,再加上∠A为公共角,可以根据有两组角对应相等的两个三角形相似来判定;③中∠A不是已知的比例线段的夹角,不正确④可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定;故选:C.二、填空题9.=2x﹣3,x的取值范围是x≥.【考点】二次根式的性质与化简.【分析】根据公式=|a|,可得出x的取值范围.【解答】解:∵=2x﹣3,∴3﹣2x≤0,解得x≥,∴x的取值范围是x≥,故答案为x≥.10.如图,△ABC是一块锐角三角形材料,边BC=80mm,高AD=60mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是mm.【考点】相似三角形的应用.【分析】如图,设正方形EFGH的边长为x,EF与AD交于点K.由EF∥BC,得到△AEF∽△ABC,得到=,得=,列方程即可.【解答】解:如图,设正方形EFGH的边长为x,EF与AD交于点K.∵EF∥BC,∴△AEF∽△ABC,∴=,∴=,∴x=,故答案为.11.如图所示,在四边形ABCD中,AD∥BC,如果要使△ABC∽△DCA,那么还要补充的一个条件是∠B=∠DCA或∠BAC=∠D或.(只要求写出一个条件即可)【考点】相似三角形的判定.【分析】本题主要根据平行推出角的等量关系,再根据对应边的关系,利用两三角形相似的判定定理,做题即可.【解答】解:∵AD∥BC∴∠DAC=∠ACB∴当∠B=∠DCA或∠BAC=∠D或AD:AC=AC:BC∴都可得相似.答案不唯一,如∠B=∠DCA或∠BAC=∠D或AD:AC=AC:BC.12.小亮的身高是1.6米,某一时刻他在水平面上的影长是2米,若同一时刻测得附近一古塔在水平地面上的影长为20米,则古塔的高度是16米.【考点】相似三角形的应用;平行投影.【分析】利用相似及投影知识解题,因为某一时刻,实际高度和影长之比是一定的,进而得出答案.【解答】解:由题意可得:=,解得:古塔的高=16,故答案为:16.13.如图(1),在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田,假设试验田面积为570m2,求道路宽为多少?设宽为x m,从图(2)的思考方式出发列出的方程是(32﹣2x)(20﹣x)=570.【考点】由实际问题抽象出一元二次方程.【分析】设宽为xm,从图(2)可看出剩下的耕田面积可平移成长方形,且能表示出长和宽,从而根据面积可列出方程.【解答】解:设宽为xm,(32﹣2x)(20﹣x)=570.故答案为:(32﹣2x)(20﹣x)=570.14.如图,在△ABC中,∠B=90°,AB=3厘米,BC=4厘米,点P从A沿AB边向点B以1厘米/秒的速度移动,点Q从B沿BC边向点C以2厘米/秒的速度移动,如P与Q同时出发,且当一点移动到端点并停止时,另一点也同时停下,1秒或2秒后三角形PBQ的面积为2平方厘米.【考点】一元二次方程的应用.【分析】根据题意表示出BP,BQ的长,进而利用三角形面积求出答案.【解答】解:设x秒后三角形PBQ的面积为2平方厘米,根据题意可得:BP=3﹣x,BQ=2x,故×2x(3﹣x)=2,解得:x1=1,x2=2,故1或2秒后三角形PBQ的面积为2平方厘米.故答案为:1或2.三、解答题15.(1)计算:﹣﹣;(2)计算:()﹣2﹣|2﹣3|+.【考点】实数的运算;负整数指数幂.【分析】(1)原式化简后,合并即可得到结果;(2)原式利用负整数指数幂法则,绝对值的代数意义,以及分母有理化计算即可得到结果.【解答】解:(1)原式=3﹣﹣2=﹣;(2)原式=4﹣3+2+=1+.16.解方程:(1)x2﹣2x=0;(2)30x2﹣45=0.【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法.【分析】(1)原方程有公因式x,先提取公因式,然后再分解因式求解;(2)系数化为1后,利用直接开平方法求出方程的解.【解答】解:(1)∵x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴x1=0,x2=2.(2)∵30x2﹣45=0,∴x2=,∴x=±,∴x1=,x2=﹣17.解方程:x2+3x+1=0.【考点】解一元二次方程-公式法.【分析】先找出a,b,c,再求出△,代入求根公式即可.【解答】解:a=1,b=3,c=1,…∴△=b2﹣4ac=9﹣4×1×1=5>0,…∴x=﹣3±,…∴x1=﹣3+,x2=﹣3﹣….18.解方程:(x﹣5)(x﹣6)=x﹣5.【考点】解一元二次方程-因式分解法.【分析】方程整理后,利用因式分解法求出解即可.【解答】解:方程整理得:(x﹣5)(x﹣6)﹣(x﹣5)=0,分解因式得:(x﹣5)(x﹣7)=0,可得x﹣5=0或x﹣7=0,解得:x1=5,x2=7.19.已知y=++3,求﹣的值.【考点】分式的化简求值;二次根式有意义的条件.【分析】先算括号里面的,再算除法,最后求出x、y的值代入进行计算即可.【解答】解:原式=﹣==,∵与有意义,∴,解得x=2,∴y=3,∴原式==﹣9.20.某企业2012年盈利3000万元,2014年克服全球金融危机的不利影响,仍实现盈利4320万元,从2012年到2014年,如果该企业每年盈利的年增长率相同,求:(1)该企业每年盈利的年增长率?(2)若该企业盈利的年增长率继续保持不变,预计2015年盈利多少万元?【考点】一元二次方程的应用.【分析】(1)设每年盈利的年增长率为x,就可以表示出2014年的盈利,根据2014年的盈利为4320万元建立方程求出x的值即可;(2)根据(1)求出的年增长率就可以求出结论.【解答】解:(1)设每年盈利的年增长率为x,根据意,得3000(1+x)2=4320解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得4320(1+0.2)=5184万元答:预计2015年该企业盈利5184万元.21.如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB 和△DCE的顶点都在格点上,ED的延长线交AB于点F.(1)求证:△ACB ∽△DCE ;(2)求证:EF ⊥AB .【考点】相似三角形的判定与性质;三角形内角和定理.【分析】(1)从图中得到AC=3,CD=2,BC=6,CE=4,∠ACB=∠DCE=90°,故有,所以△ACB ∽△DCE ;(2)由1知,∠B=∠E ,可得∠B +∠A=∠E +A=180°﹣∠AFE=90°,即∠EFA=90°,故EF ⊥AB .【解答】证明:(1)∵,,∴. 又∵∠ACB=∠DCE=90°,∴△ACB ∽△DCE .(2)∵△ACB ∽△DCE ,∴∠ABC=∠DEC .又∵∠ABC +∠A=90°,∴∠DEC +∠A=90°.∴∠EFA=90°.∴EF ⊥AB .22.已知▱ABCD 的两边AB 、AD 的长是关于x 的方程x 2﹣mx +﹣=0的两个实数根,当m 为何值时,四边形ABCD 是菱形?求出这时菱形的边长.【考点】菱形的判定;根的判别式.【分析】由题意可知:AB 、AD 的长是关于x 的方程x 2﹣mx +﹣=0的两个实数根,也就是方程有两个相等的实数根,利用根的判别式为0即可求得m ,进而求得方程的根即为菱形的边长.【解答】解:∵四边形ABCD 是菱形,∴AB=AD ,∴△=0,即m 2﹣4(﹣)=0,整理得:(m ﹣1)2=0,解得m=1,当m=1时,原方程为x2﹣x+=0,解得:x1=x2=0.5.故当m=1时,四边形ABCD是菱形,菱形的边长是0.5.23.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.【考点】一元二次方程的应用.【分析】可设矩形草坪BC边的长为x米,则AB的长是,根据长方形的面积公式列出一元二次方程求解.【解答】解:设BC边的长为x米,则AB=CD=米,根据题意得:×x=120,解得:x1=12,x2=20,∵20>16,∴x2=20不合题意,舍去,答:矩形草坪BC边的长为12米.24.如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF ⊥AE于F.(1)求证:△PFA∽△ABE;(2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,说明理由.【考点】相似三角形的判定;正方形的性质.【分析】(1)在△PFA与△ABE中,易得∠PAF=∠AEB及∠PFA=∠ABE=90°;故可得△PFA∽△ABE;(2)根据题意:若△EFP∽△ABE,则∠PEF=∠EAB;必须有PE∥AB;分两种情况进而列出关系式.【解答】(1)证明:∵AD∥BC,∴∠PAF=∠AEB.∵∠PFA=∠ABE=90°,∴△PFA∽△ABE.(2)解:若△EFP∽△ABE,则∠PEF=∠EAB.∴PE∥AB.∴四边形ABEP为矩形.∴PA=EB=2,即x=2.若△PFE∽△ABE,则∠PEF=∠AEB.∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点.∵AE==2,∴EF=AE=.∵,即,∴PE=5,即x=5.∴满足条件的x的值为2或5.2016年12月12日。
重庆市巴南区全善学校2013届九年级上学期第三次月考数学试题(无答案)
全善中学2012-2013学年上期 第三次月考初三数学试题总分:150分 120分完卷 命题人:彭鑫参考公式:抛物线y =ax 2+bx +c (a ≠0)的顶点坐标为(—b 2a ,4ac —b 24a ),对称轴公式为x =—b2a.一、选择题:(本大题10个小题,每小题4分,共40分) 1.下列各式中,一定是二次根式的是( ) A .32 B .10- C .21a + D .a 2.计算82-的结果是( ) A .6 B .6C .2D .23.下列图形中,既是轴对称图形,又是中心对称图形的是( )4. 在直角坐标系中,点(31)-,关于坐标原点的对称点的坐标为( ) A.(31)--,B.(31)-, C.(31)-, D.(31), 5.气象台预报“本市明天降水概率是80%”.对此信息,下列说法正确的是( ) A.本市明天将有80%的地区降水 B .本市明天将有80%的时间降水 C.明天降水的可能性比较大 D. 明天肯定下雨6.如图,已知:△ABC 内接于⊙O ,∠OBC=25°, 则∠BAC 的度数是( )A.60°B. 65°C. 70°D.75°7.已知 -4是关于x 的一元二次方程02=-+a x x 的一个根,则a 的值是( ) A. 12 B.-20 C. 20 D.-128. 某农家前年水蜜桃亩产量为800千克,今年的亩产量为1200千克。
假设从前年到今年平均增长率都为A BCDx,则可列方程( )A.800(1+2x)=1200B.800(1+x 2)=1200C.800(1+x)2=1200D.800(1+x)=12009下图是某同学在沙滩上用石子摆成的小房子.观察图形的变化规律,第7 个小房子用的石子数量为( )A. 77B.72C.66D. 6010.已知二次函数)0(2≠++=a c bx ax y 的图象如图所示对称轴为21-=x 。
2015初三数学3月月考试题及标准答案
武汉市梅苑学校2014—2015学年度毕业年级三月月考数 学 试 题一、选择题(共10小题,每小题3分,共30分) 1.在实数-2、-1、0、2中,最小的实数是( )A .2B .0C .-1D .-22.式子1+x 在实数范围内有意义,则x 的取值范围是( )A .x ≥-1B .x >-1C .x ≠-1D .x ≤-13.据统计,我国2014年全年完成造林面积约609000公顷.609000用科学记数法可表示为( )A .6.09×610B.60.9×510 C .609×410D .6.09×5104.下列代数运算正确的是( )A. 66x x x =⋅ B .=32)x (6x C.33x 2)x 2(= D.4x )2x (22+=+5.下图是一些大小相同的小正方体组成的几何体,则其俯视图是( )6.如图,⊙O 是△ABC 的外接圆,∠BOC =3∠AOB ,若∠ACB =20°,则∠BAC 的度数是( )A.120°B .80°C .60°D .30°第6题图 第7题图7.如图,线段CD 两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD 放大得到线段AB ,若点B 坐标为(5,0),则点A 的坐标为( )A .(2,5)B .(2.5,5)C .(3,5)A .B .C .D .D .(3, 6)8.小明想了解全校3000名同学对新闻、体育、音乐、娱乐、戏曲五类电视节目的喜爱况,从中抽取了一部分同学进行了一次抽样调查,利用所得数据绘制成下面的统计图:根据图中所给信息,全校喜欢娱乐类节目的学生大约有( )人A .1080B .900C .600D .420 9.如图所示,已知在△ABC 中,(00)A ,,(30)B ,,(01)C ,,在ABC △内依次作等边三角形,作出的等边三角形分别是第1个11AA B △,第2个122B A B △,第3个233B A B △,…,使B 1、B 2、B 3、…在x 轴上,A 1、A 2、A 3、…在BC 边上,则第n 个等边三角形的边长等于( ) A .3 B .3 C .32n D .132n - 10.如图,P 为等边△ABC 的中线AD 上一点,AD =3AP ,在边AB 、AC 上分别取点M 、N ,使△PMN 为以MN 为底的等腰直角三角形,若AP =31+,则MN 的长为( )A. 23+6B.32+6C.22+6D.6+2第10题图二、填空题(共6小题,每小题3分,共18分) 11.计算:(- 4 ) + 9 =_________. 12.分解因式:3a 2x -3a=_________.13. 在一个不透明的袋子中装有5个完全相同的小球,在它们上面分别标上字母A ,C ,F ,I ,M ,从中随机摸出一个小球,则摸到的小球上所标字母为元音字母的概率是_________.14.甲、乙两车都从同一地点沿同一路线驶向同一目的地,甲车先行,一段时间后,乙车开始行驶,甲车到达目的地后,乙车走完了全程的49,下图反应的是从甲车开始行驶到乙车到达目的地整个过程中两车之间的距离与时间的函数关系图象,则a=.15.如图,以原点O为顶点的等腰直角三角形ABO中,∠BAO=90°,反比例函数kyx=过A、B两点,若点A的横坐标为2,则k=.16.如图,已知△ABC,外心为O,BC=10,∠BAC=60°,分别以AB,AC为要腰向形外作等腰直角三角形△ABD与△ACE,连接BE,CD交于点P,则OP的最小值是.PEDCBA第14题图第15题图第16题图三、解答题(共9小题,共72分)17.(本题8分)已知直线2y x b=+经过点(3,5),求关于x的不等式bx+2≥0的解集.18.(本题8分)如图,在四边形ABCD中,AD∥BC,对角线AC,BD交于点O,过点O作直线EF交AD于点E,交BC于点F. OE=OF.(1)求证:AE=CF.(2)当EF与BD满足什么位置关系时,四边形BFDE是菱形?请说明理由.OABDCE19.(本题8分)如图10,在平面直角坐标系中,△ ABC的三个顶点的坐标分别为A(0,1),B(-1,1),C(-1,3).OPACB(1)画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点C 1的坐标;(2)画出△ABC 绕原点O 顺时针方向旋转90°后得到的△A 2B 2C 2,并写出点C 2的坐标;,(3)将△ABC 先向上平移1个单位,接着再右平移3个单位得到△A 3B 3C 3,使点A 2的对应点是A 3, 点B 2的对应点是B 3,点C 2的对应点是C 3,在 坐标系中画出△A 3B 3C 3,此时我们发现△A 3B 3C 3可以由△A 2B 2C 2经过旋转变换得到.其变换过程是将△A 2B 2C 2 . 20.(本题8分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.(1)随机摸取一个小球然后放回,再随机摸出一个小球.①求两次取出的小球的标号的和等于4的概率;②求第一次取出的小球标号能被第二次取出的小球标号整除的概率; (2)随机摸取一个小球然后不放回,再随机摸出一个小球,求两次取出的小球的标号的和等于4的概率是多少?请直接写出结果. 21.(本题8分)如图,PA 是⊙O 的切线,A 为切点,AC 是⊙O 的直径,点B 为⊙O 上一点,满足BC ∥OP.(1)求证:PB 是⊙O 的切线; (2)若cos ∠ACB=53,求sin ∠APB 的值.22.(本题10分)某商店购进A 型和B 型两种电脑进行销售,已知B 型电脑比A 型电脑的每台进价贵500元,若商店用3万元购进的A 型电脑与用4.5万元购进的B 型电脑的数量相等.A 型电脑每台的售价为1800元,B 型电脑每台的售价为2400元.(1)求A 、B 两种型号的电脑每台的进价各是多少元?(2)该商店计划用不超过12.5万元购进两种型号的电脑共100台,且A 型电脑的进货量不超过B 型电脑的56.① 该商店有哪几种进货方式?② 若该商店将购进的电脑全部售出,请你用所学的函数知识求出获得的最大利润. 23.(本题10分)如图,等腰R t △ABC 中,∠ACB=90°,A C BC ,D 为AC 边上一点, 以BD 为边作正方形BDEF. (1)求证: AE ⊥AB ;(2)如图2,P 为正方形BDEF 的对角线的中点,直线CP 分别交BD 、EF 于M 、N 两点.①求证: △BC M ∽△PFN ;②若32=AD DC,则=FN EN. (直接写出结果,不需要过程)24.(本题12分)已知二次函数C 1:22)12(m x m x y +++=的图象与y 轴交于点C ,顶点为D .(1)若不论m 为何值,二次函数C 1图象的顶点D 均在某一函数的图象上,直接写出此函数的解析式;(2)若二次函数C 1的图象与x 轴的交点分别为M ,N ,设△MNC 的外接圆的圆心为P .试说明⊙P 与y 轴的另一个交点Q 为定点,并判断该定点Q 是否在(1)中所求函数的图象上;(3)当m =1时,将抛物线C 1向下平移n (n >0)个单位,得到抛物线C 2,直线D C 与抛物线C 2交于A ,B 两点,若AD +CB =DC ,求n 的值.图2MNPFE A B CD海量课件、教案、试题免费下载,尽在 课件下载网!武汉市梅苑学校2014—2015学年度毕业年级三月月考数学试题答题卡一、选择题(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(每题3分,共18分)题号 11 1213 1415 16 答案三、解答题(共72分)17、(8分)18、(8分) (1) (2)学校 考号 姓名 班级--------------------------------------密--------------------------------------封-----------------------------------线------------------------------OPACB(1)(2)(3)20、(8分) (1) (2)21、(8分) (1)(2)图10图2M NPFEA BCD(1)(2)23、(10分)(1)(2)24、(12分)(1)(2)(3)第一课件网系列资料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全善学校2015—2016学年上期第三次月考初三数学试题 总分150分 120分钟完卷一、选择题(每小题4分,共48分)1.实数 3的倒数是( )A .31- B. 31C. -3D. 32.计算()322a -正确的是( )A 、68a -B 、68aC 、69a -D 、66a -3.下列说法中,正确的是( )A.“打开电视,正在播放重庆新闻节目”是必然事件 B .某种彩票中奖概率为10%是指买十张一定有一张中奖 C.神州飞船发射前需要对零件进行抽样调查 D .了解某种节能灯的使用寿命适合抽样调查4. 如图,AB//CD,BD 平分∠ABC ,若∠D=40o ,则∠DCB 的度数是( )A .100° B.110° C.120° D.130°5.下列函数中,图象经过原点的是( ) A 、31y x =-B 、2y x =-C 、3y x=-D 、21y x =-+6. 一元二次方程0)2(=-x x 的解为( )A .1x =B .122,1x x ==C . 0x =D . 122,0x x == 7.如图,⊙O 是ABC ∆ 的外接圆,连接OA 、OB ,∠OBA=50o ,则∠C 的度数为( )A. 30oB. 40oC. 50oD. 80o(第9题图)(第7题图) (第4题图) A B C DA .5B .-5C .6D .-69. 如图,在△ABC 中,点D 在边AB 上,BD =2AD ,DE //BC 交AC 于点E ,若1=∆AD E S ,则ABC S ∆为( )A .3B .4C .8D .910.小明同学有急事准备从全善学校打车去南坪,出校门后发现道路拥堵使得车辆停滞不前,等了几分钟后他决定步行前往地铁站乘地铁直达南坪站(忽略中途等站和停靠站的时间),在此过程中,他离南坪站的距离()y km 与时间()x h 的函数关系的大致图象是( )11.下图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,第10个小房子需要的石子数量为 ( )(1) (2) (3) (4)A .130B .140C .150D .16012.如图,在Rt ABC ∆中,90,30ACB ABC ∠=∠= ,B 、C 均在y 轴上,且B点坐标为(0,,2AD BD =,若反比例函数ky x=的图象刚好过A 、D 两点,则k 的值为( ) A、-、- C、- D 、3-(第12题图)(第16题图)FE DCA二、填空题(每小题4分,共24分)13. 钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,将数据4400000用科学记数法表示为_____________平方米. 14.函数53y -=x 中自变量x 的取值范围是 . 15.将抛物线5)1y 2+-=x (向左平移1个单位,得到的抛物线与y 轴的交点坐标是 .16.如图,在矩形ABCD 中,AD=32,以D 为圆心,DC 为半径的圆弧交AB 于点E ,交DA的延长线于点F ,∠ECD=060,则图中阴影部分的面积为 (结果保留π). 17. 有5张正面分别写有数字 23-,-1,0,1 ,45的卡片,它们除数字不同外全部相同.将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a .则使以x 为自变量的一次函数2)1(+-=x a y 经过第二、四象限,且关于x 的不等式组⎩⎨⎧≤-≤+221x a ax 有解的概率是 .18. 如图,正方形ABCD 中,P 在对角线BD 上,E 在CB 的延长线上,且PE PC =,过点P作PF AE F ⊥于点,若BE=1,AB=3,则PF 的长为 .(第18题图)EFPDCBA三.解答题(本大题共8小题,共78分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分6分)计算: 201502)1-(-)23(9)21-(-⨯+-20.(本小题满分8分)如图,一次函数b ax y +=的图象与反比例函数xky =的图象交于A (-2,m ), B (5,-2)两点,与x 轴交于C 点,过A 作AD ⊥x 轴于D.(1)求一次函数与反比例函数的解析式; (2)连接DB ,求△ADB 的面积.35%21. (本小题满分10分)先化简,再求值:2212(2)(1)1121x x x x x x x +++-÷+--+ 其中x 是不等式3(2)24x x -<-的非负整数解.22.(本小题满分10分)为了解我校初三学生体育达标情况,现对初三部分同学进行了跳绳,立定跳远,实心球, 三项体育测试,按A (及格),B (良好),C (优秀),D (满分)进行统计,并根据测试的结果绘制了如下两幅不完整的统计图,请你结合所给信息解答下列问题:(1)本次共调查了 名学生,请补全折线统计图;(2)我校初三年级有680名学生,根据这次统计数据,估计全年级有多少同学获得满分; (3)在接受测试的学生中,“优秀”中有1名是女生,现从获得“优秀”的学生中选出两名学生交流经验,请用画树状图或列表的方法求出刚好选中两名男生的概率.EH F D B A “铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时. (1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速要比设计时速减少%m ,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加m 101,求m 的值.24. (本小题满分10分)如图,△ABC 中,AB=AC ,AD =BC,AD 平分∠BAC ,交BC 于点D.延长BC 使得BC=2CE ,过点E 作EF ⊥CE 且EF=CE.连接AF ,点H 在线段AF 上,且满足∠ACD=∠HCE. (1)若CE=2,求AB 的长;(2)求证:①AB=AF ;②CH ⊥AF.如图,在平面直角坐标系中,△ABC的边AB在x轴上,∠AB C=90°,AB=BC,OA=1,OB=4,抛物线2y x bx c=++经过A、C两点.(1)求抛物线的解析式及其顶点坐标;(2)如图①,点P是抛物线上位于x轴下方的一点,点Q与点P关于抛物线的对称轴对称,过点P、Q分别向x轴作垂线,垂足为点D、E,记矩形DPQE的周长为d,求d的最大值,并求出使d最大值时点P的坐标;(3)如图②,点M是抛物线上位于直线AC下方的一点,过点M作MF⊥AC于点F,连接MC,作MN//BC交直线AC于点N,若MN将△MFC的面积分成相等的两部分,请确定M点的坐标.图①图②MCBA备用图如图Rt △ABC,AC=BC=8,正方形DEFG 的边长为2,把正方形DEFG 按如图1位置摆放(点E 与点B 重合,其中F 、E 、B 、C 在同一直线上)。
M 为线段AC 的中点,正方形DEFG 按如图1的起始位置沿射线..BM的方向以每秒设移动的时间为t 秒。
当点F 在线段AC 上时,正方形DEFG 停止移动(如图2)。
(1)正方形DEFG 移动多少秒时点D 在线段AB 上;(2)在移动过程中,正方形DEFG 和△ABM 重叠部分的面积为S ,请直接写出面积S 与运动时间t 之间的函数关系式,并写出自变量t 的取值范围;(3)如图2,当点F 在AC 上时,将正方形DEFG 沿CA 平移至点G 与点A 重合,将正方形DEFG 绕点A 旋转,在旋转过程中,设直线DE 交射线..BA 于点P ,交射线..BC 于点Q ,当△BPQ 为等腰直角三角形时,直接写出BP 的长度.(E)MG FDCBA图1EMG F DCBA 图2全善学校2015——2016学年上期第三次月考初三数学试题参考答案一、选择题(每小题4分,共48分)1.B 2. A 3.D 4. A 5. B 6. D 7. B 8. C 9. D 10.D 11. B 12.B 二、填空题(每小题4分,共24分)13. 6104.4⨯ 14. 5≠x 15.(0,5)16. 32-34π 17. 5218.210三、解答题(共78分)19.(6分)计算: 201502)1-(-)23(9)21-(-⨯+-解:原式=)(1--134⨯+ ————4分=4+3+1 ————5分 =8 ————6分20.(8分)(1)把B (5,-2)代入反比例函数中得:反比例函数解析式:xy 10-= ————2分把A (-2,m )代入反比例函数得:A (-2,5) ————3分一次函数解析式:3+-=x y ————4分(2)过B 作B M ⊥x 轴于点M.在一次函数3+-=x y 中:令y=0,得:x=3 ∴C (3,0)————5分B C D A D C A D B S S S ∆∆∆+==BM DC 21AD DC 21⋅⋅+⋅⋅=25215521⨯⨯+⨯⨯=17.5 ————8分21.(10分)解:原式=2)1(111+--+x x x =2)1(2+x ————6分 解不等式得:x<2 ————8分 x 为非负整数,∴x=0,101≠-x1≠∴x ————9分∴把x=0代入原式得:原式=2 ————10分M22. (10分)(1)本次共调查了 20 名学生. ————1分 补充折线图 ————2分(2)获得满分的同学: 136680204=⨯(人) 答:全年级获得满分的同学有136人. ————4分 (3)解设用A 代表女生,B 1、B 2代表男生,则画树状图如下:第一名:A B 1 B 2第二名: B 1 B 2 A B 2 A B 1 ————8分∴刚好选中两名男生(记为事件A )有2种情况,故 P (A )=3162=. ————10分23.(10分)(1) 解:设通车后运速为x 千米/小时,路程为y 千米,则原铁路运速为(x-120)千米/小时,原铁路为(y+320)千米⎩⎨⎧+=-+=320)120)168(8y x y x ( 解得:⎩⎨⎧==1600200y x 答:重庆到上海的列车设计运行里程是1600千米. ————5分(2)16001018%)-1200=+⨯⨯)((m m —————8分 整理得:0202=-m m解得:m=20 或m=0(不符合题意,舍去)答:m 的值为20. ————10分.24.(10分)(1)∵BC=2CE=2×2=4 ————1分AB=AC,AD 平分∠BAC∴ DB=DC=12BC=2AD ⊥BC∴ AD=BC=4 ————2分 在R t △ABD 中: = ————3分(2)延长EF ,过A 作AM ⊥EF 于点M. ————4分 ∠ADE=∠E=∠AME=900∴四边形ADEM 为矩形. ————5分 ∴AD=AM DE=EM∴DE-CE=EM-EF 即:DC=MF ∵∠ADC=∠M∴△ADC ≌△AMF (SAS ) ————6分 ∴AC=AF ∵AC=AB∴AB=AF ————7分 ②∵△ADC ≌△AMF ∴∠ACD=∠AFM ∵ ∠ACD=∠ECH∴∠ECH=∠AFM ————8分 又∵∠EFH+∠AFM=1800∠HCE+∠EFH=1800 ————9分 ∴∠CHF=900∴CH ⊥AF ————10分25. (12分)解:(1)由已知得:A (-1,0)、C (4,5) ————1分∵二次函数2y x bx c =++的图像经过点A (-1,0)C (4,5)∴101645b c b c -+=⎧⎨++=⎩ 解得⎩⎨⎧-=-=32c b ————2分 ∴抛物线解析式为223y x x =-- ————3∵4)1(3222--=--=x x x y∴顶点坐标为(1,-4) ———— (2)由(1)知抛物线的对称轴为直线x=1 设点P 为((t ,223t t --),31<<-t∵P 、Q 为抛物线上的对称点 ∴12-=t PQ ————5分 当1>t 时,[])32()1(222++-+-=t t t d10)2(228222+--=++-=t t t ————6分∵02<-∴当t=2使,d 有最大值为10,即点P 为(2,-3) ————7分当1<t 时,由抛物线的轴对称性得,点P 为(0,-3)时,d 有最大值10 ————8分 综上,当P 为(0,-3)或(2,-3)时,d 有最大值10(3)过点F 作FH ⊥MN 于H ,过C 作CG ⊥MN 于G ,则∠ANM =∠ACB=45° ∵MF ⊥AC∴)4321MN 21FH FMN 2++-==∆m m (为等腰直角三角形, ————9分 ∵A (-1,0),C (4,5)∴直线AC 解析式为y=x +1 ————10分 设点M 为(m ,322--m m ),其中41<<-m ,则CG=4-m 由MN ∥BC 得点N 为(m ,m +1)∴43)32()1(22++-=---+=m m m m m MN ————11分∴CMN FMN S S ∆∆=∴MN CG MN FH ⋅⋅=⋅2121 m m m -=++-∴4)43212(m=1 或 m=4(舍去)∴点M 为(1,-4) ————26.(12分)(1) 2 ————2分(2) 如图① 221t S = (20≤<t ) ————4分如图② 4421-2-+=t t S (42≤<t ) ————6分如图③ 204-+=t S (54≤<t ) ————8分图① 图② 图③⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<-+-≤<=)54(204)42(4421)20(2122t t t t t t t S (3) P 为直角顶点时:2-28228或+=BPQ 为直角顶点时:21026或=BP ————12分。