必修5不等式题型总结

必修5不等式题型总结
必修5不等式题型总结

概念、方法、题型、易误点及应试技巧总结

不等式

一.不等式的性质:

1.同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减;

2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:

若0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则a b

c d

>);

3.左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >>

4.若0ab >,a b >,则11a b <;若0ab <,a b >,则11

a b

>。如

练习一、:

(1)对于实数c b a ,,中,给出下列命题:

①22,bc ac b a >>则若; ②b a bc ac >>则若,22;

③22,0b ab a b a >><<则若; ④b

a b a 1

1,0<<<则若;

⑤b

a

a b b a ><<则若,0; ⑥b a b a ><<则若,0;

⑦b c b a c a b a c ->

->>>则若,0; ⑧11

,a b a b

>>若,则0,0a b ><。 其中正确的命题是______

(2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______

(3)已知c b a >>,且,0=++c b a 则a

c

的取值范围是______

二.不等式大小比较的常用方法:

1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法; 5.分子(或分母)有理化;6.利用函数的单调性;

7.寻找中间量或放缩法 ;8.图象法。其中比较法(作差、作商)是最基本的方法。

练习二;(1)设0,10>≠>t a a 且,比较21

log log 21+t t a a 和的大小

(2)设2a >,1

2

p a a =+-,2422-+-=a a q ,试比较q p ,的大小

(3)比较1+3log x 与)10(2log 2≠>x x x 且的大小

三.利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这

17字方针。如

(1)下列命题中正确的是

A 、1y x

x =+的最小值是2 B 、2y =的最小值是2C 、423(0)y x x x =-->的最大值是

2-D 、4

23(0)y x x x

=-->的最小值是2-

(2)若21x y +=,则24x y +的最小值是______

(3)正数,x y 满足21x y +=,则y

x 1

1+的最小值为______

五.证明不等式的方法:比较法、分析法、综合法和放缩法(比较法的步骤是:作差(商)后通过分解

因式、配方、通分等手段变形判断符号或与1的大小,然后作出结论。).

常用的放缩技巧

六.简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一

个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。如 练习三:

(1)解不等式2(1)(2)0x x -+≥。

(2)不等式(0x -≥的解集是____

(3)设函数()f x 、()g x 的定义域都是R ,且()0f x ≥的解集为{|12}x x ≤<,()0g x ≥的解集为?,则不等式()()0f x g x >g 的解集为______

七.分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解

因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。如

练习四:(1)解不等式25123

x

x x -<---

(2)关于x 的不等式0>-b ax 的解集为),1(+∞,则关于x 的不等式02

>-+x b

ax 的解集为____________

八.绝对值不等式的解法:

1.分段讨论法(最后结果应取各段的并集):如解不等式|2

1

|2|432|+-≥-x x

(2)利用绝对值的定义;(3)数形结合;如解不等式|||1|3x x +-> (4)两边平方:如

若不等式|32||2|x x a +≥+对x R ∈恒成立,则实数a 的取值范围为______。

九.含参不等式的解法:求解的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”注意解完之后要写上:“综上,原不等式的解集是…”。注意:按参数讨论,最后应按参数取值分别说明其解集;但若按未知数讨论,最后应求并集. 如

(1)若2

log 13

a <,则a 的取值范围是__________(2)解不等式

2()1ax x a R ax >∈-

十一.含绝对值不等式的性质:

a b 、同号或有0?||||||a b a b +=+≥||||||||a b a b -=-; a b 、异号或有0?||||||a b a b -=+≥||||||||a b a b -=+.

如设2()13f x x x =-+,实数a 满足||1x a -<,求证:|()()|2(||1)f x f a a -<+

十二.(难点)不等式的恒成立,能成立,恰成立等问题:不等式恒成立问题的常规处理方式?(常应用

函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法) 1).恒成立问题

若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >

若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <

如(1)设实数,x y 满足22(1)1x y +-=,当0x y c ++≥时,c 的取值范围是______

(答:)

1,+∞)

(2)不等式a x x >-+-34对一切实数x 恒成立,求实数a 的取值范围_____

(答:1a <);

(3)若不等式)1(122->-x m x 对满足2≤m 的所有m 都成立,则x 的取值范围_____

(答:(712-,31

2

+));

(4)若不等式n

a n n

1

)1(2)1(+-+<-对于任意正整数n 恒成立,则实数a 的取值范围是_____(答:

3

[2,)2

-); (5)若不等式22210x mx m -++>对01x ≤≤的所有实数x 都成立,求m 的取值范围.

(答:1

2

m >-)

2). 能成立问题

若在区间D 上存在实数x 使不等式()A x f >成立,则等价于在区间D 上()max f x A >;

若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上的()min f x B <.如已知不等式a x x <-+-34在实数集R 上的解集不是空集,求实数a 的取值范围____(答:1a >)

3). 恰成立问题

若不等式()A x f >在区间D 上恰成立, 则等价于不等式()A x f >的解集为D ; 若不等式()B x f <在区间D 上恰成立, 则等价于不等式()B x f <的解集为D .

含参数的一元二次不等式的解法

解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元二次不等式常用的分类方法有三种: 一、按2

x 项的系数a 的符号分类,即0,0,0<=>a a a

;

例1 解不等式:()0122

>+++x a ax

分析:本题二次项系数含有参数,()044222

>+=-+=?a a a ,故只需对二次项

系数进行分类讨论。

解:∵()044222

>+=-+=?

a a a

解得方程 ()0122

=+++x a ax 两根,24221a a a x +---=a

a a x 24

222++--=

∴当0>a 时,解集为??

?

???????+---<++-->a a a x a a a x x 242242|22或

当0=a 时,不等式为012>+x ,解集为????

??

>21|x x

当0

?

???????+---<<++--a a a x a a a x 242242|22

例2 解不等式()00652

≠>+-a a ax ax

分析 因为0≠a ,0>?,所以我们只要讨论二次项系数的正负。

解 ()()032)65(2

>--=+-x x a x x a Θ

∴当0>a 时,解集为{}32|>?;

例3 解不等式042

>++ax x

分析 本题中由于2

x 的系数大于0,故只需考虑?与根的情况。

解:∵162-=?

a ∴当()4,4-∈a 即0

?????

∈2a x R x x 且; 当4>a 或4-?,此时两根分别为21621-+-=a a x ,2

16

22---=a a x ,显然21x x >,

∴不等式的解集为??

?

???????----+->21621622a a x a a x x 〈或

例4 解不等式()()R m x x m ∈≥+-+01412

2

解 因,012>+m ()()2

223414)4(m m -=+--=?,所以当3±=m ,即0=?时,解集为????

??=21|x x ;

当33<<-m ,即0>?时,解集为??

?

???????+--+-+>1321322

222m m x m m x x 〈或; 当33>-

三、按方程02

=++c bx ax 的根21,x x 的大小来分类,即212121,,x x x x x x <=<;

例5 解不等式)0( 01)1(2

≠<++-a x a

a x

分析:此不等式可以分解为:()0)1

(<--a x a x ,故对应的方程必有两解。本题只需讨论两根的大小即可。

解:原不等式可化为:()0)1(<--a x a x ,令a a 1=,可得:1±=a ,∴当1-

a 1

< ,故原不

等式的解集为????

??

<

当01<<-a 或1>a 时, a a 1>,解集为?

??

???<

。 例6 解不等式0652

2>+-a ax x ,0≠a

分析 此不等式()02452

22>=--=?a a a ,又不等式可分解为()0)3(2>--a x a x ,故只需比较两根a 2与a 3的大小.

解 原不等式可化为:()0)3(2>--a x a x ,对应方程()0)3(2=--a x a x 的两根为

a x a x 3,221==,当0a f 时,即23a a p ,解集为{}a x a x x 23|<>或;当0<或

一元二次不等式

1.(1)解不等式

121

≤-x

x (}0,1|{>-≤x x x 或) (2)不等式11<-x ax

的解集为}21|{>

1=a )

2.解下列关于x 的不等式:

(1)01)1(2<++-x a a x (2))23(0)

3)(2(-≠≠<-+-a a x x a

x ,且

}

1|{01,1)3(1)2(}

1

|{10,1)1(a x a

x a a a a

x a x a a <<<<->Φ±=<<<<-<时,或当时,当时,或当 }

3,2|{3)3(}3,2|{32)2(}32,|{2)1(a x x x a x a x x a x a x x a <<-<><<-<<<-<<-<-<或时,当或时,当或时,当

(3)01)1(2

<++-x a ax (4)0)2)(2(>--ax x

}

11

|{1)5(1)4(}1

1|{10)3(}

1|{0)2(}1,1

|{0)1(<<>Φ

=<<<<>=><

x x a x x a x a

x x a 时,当时,当时,

当时,当或时,当 }

2,2

|{,1)5(}

2|{,1)4(}2

,2|{,10)3(}2|{,0)2(}22

|

{,0)1(><>≠=><<<<=<<

x x a x x a a

x x x a x x a x a

x a 或时当时当或时当时当时当

(5)012<++x ax (6))(11

R a a x x

∈-<-

Φ

≥-+-<<---<<-<=--->-+-<

<时,当时,当时,当或时,当4

1

)4(}24112411|{410)3(}1|{0)2(}

2411,2411|{0)1(a a a x a a x a x x a a

a

x a a x x a }

1,1|{0)3(}1|{0)2(}11

|

{0)1(a a x x x a x x a x a

a x a -><<<=<<->或时,当时,

当时,当

3.(1)若不等式04)2(2)2(2

<--+-x a x a 对R x ∈恒成立,求实数a 的取值范围.(22≤<-a )

(2)若不等式13

64222

2<++++x x m mx x 的解集为R ,求实数m 的取值范围.(31<

4.(1)已知}0)1(|{},023|{2

2≤++-=≤+-=a x a x x B x x x A ,

①若

A B ,求实数a 的取值范围.;(2>a )②若A B ?,求实数a 的取值范围.;(21≤≤a )

③若B A I 为仅含有一个元素的集合,求a 的值.(1≤a )

(2)已知}03

1

|

{≤--=x x x A ,B B A a x a x x B =≤++-=I 且},0)1(|{2,求实数a 的取值范围. (31<≤a )

(3) 关于x 的不等式2

)1(|2)1(|22-≤

+-a a x 与0)13(2)1(32

≤+++-a x a x 的解集依次为A 与B , 若B A ?,求实数a 的取值范围. (31,1≤≤-=a a 或)

(4)设全集R U =,集合}3|12||{},01

|{<+=≥+-=x x B x a

x x A ,若R B A =Y , 求实数a 的取值范围. (12≤≤-a )

(5)已知全集R U =,}034|{},082|{},06|{2

222<+-=>-+=<--=a ax x x C x x x B x x x A ,

若C B A ?)(I ,求实数a 的取值范围.( 21≤≤a )

一元二次不等式及其解法

1.二次函数的图象及性质:二次函数c bx ax y ++=2

的图象的对称轴方程是a b

x 2-=,顶点坐标是???

? ??--a b ac a b 4422,.

2.二次函数的解析式的三种形式:

2()f x ax bx c =++(一般式);

12()()()f x a x x x x =-?-(零点式); n m x a x f +-=2)()((顶点式).

3.一元二次不等式的解法 一元二次不等式2

0ax

bx c ++>()200ax bx c a ++<≠或的解集:

设相应的一元二次方程2

0ax bx c ++=0a ≠的两根为x x x x ≤且、,ac b 42-=?,则不等式的解的各种情况如下表:

0>?

0=? 0

二次函数

c bx ax y ++=2

(0>a )的图象

c bx ax y ++=2

c bx ax y ++=2

c bx ax y ++=2

一元二次方程

()的根

00

2>=++a c bx ax

有两相异实根

)(,2121x x x x <

有两相等实根

a

b

x x 221-

==

无实根

的解集)0(02>>++a c bx ax

{}2

1

x x x x x ><或

????

??-≠a b x x 2

R 的解集

)0(02><++a c bx ax

{}21x x x

x <<

?

?

4.解一元二次不等式的步骤: (1)将二次项系数化为“+”:A=c bx ax ++2

>0(或<0)(a >0);

(2)计算判别式?,分析不等式的解的情况;

(3)写出解集. 5.讨论二次函数()02≠++=a c bx ax y 在指定区间[]q p ,上的最值问题:

(1)注意对称轴a b x

2-

=与区间[]q p ,的相对位置.一般分为三种情况讨论,即:①对称轴2b

a -在区间左边,函数在此区间上具有单调性;②对称轴2

b a -在区间之内;③对称轴2b

a

-在区间右边.

(2)函数

()02≠++=a c bx ax y 在区间[]q p ,上的单调性.要注意系数a 的符号对抛物线开口的影响.

6.二次函数的区间根的分布情况一般需从三方面考虑:①判别式;②区间端点的函数值的符号;③对称轴与区间的相对位置. 三、典型例题选讲

题型1:考查一元二次函数的性质 例1 函数

2 ([0,))y x bx c x =++∈+∞是单调函数的充要条件是( )

A .0b ≥

B .0b ≤

C .0b >

D .0b < 解:∵函数2 ([0,))y x bx c x =++∈+∞的对称轴为2

b

x =-

, ∴函数2([0,)y x bx c x =

++∈+∞)是单调函数? -(0,)2

b

?+∞?02b -≤,?0b ≥.故选A .

归纳小结:二次函数的单调区间是(,]2b a -∞-和[,)2b

a

-+∞,结合开口方向就可得出所需的条件,从而求出b 的范围. 例2 已知二次函数的对称轴为2x =x 轴上的弦长为4,且过点(0,1)-,求函数的解析.

解:∵二次函数的对称轴为2x

=2()(2)f x a x b =++,∵()f x 截x 轴上的弦长为4,

()f x

过点(2,0)

和(2,0),

()f x 又过点(0,1)-,∴4021a b a b +=??+=-?,解之得122

a b ?=?

??=-?,

21

()(22

f x x =-.

归纳小结:求二次函数的解析式一般采用待定系数法,但要注意根据已知条件选择恰当的解析式形式:一般式、零点式和顶点式,正确的选择会使解题过程得到简化. 题型2:简单不等式的求解问题 例3 求下列不等式的解集. (1)01442

>+-x x

(2)0322

>-+-x x 解法一:因为21

0144,0212=

==+-=?

x x x x 的解是方程.所以,原不等式的解集是?

??

???≠21x x . 解法二:整理,得0322

<+-x x .

因为032,02=+-

x x 方程无实数解,所以不等式0322<+-x x 的解集是?.从而,原不等式的解集是?.

归纳小结:解一元二次不等式要抓住“三个二次”的关系,按照解一元二次不等式的步骤求解,必要时要画出二次函数的图象进行观察. 例4 不等式022

<-+bx ax 的解集为{}21<<-x x ,求a 与b 的值.

解法一:设022

=-+bx ax

的两根为1x 、2x ,由韦达定理得:

??????

?-=?-=+a x x a b x x 22121 由题意得????????-=-+-=-21221a

a b ∴1=a ,1-=b ,此时满足0>a ,0)2(42

>-?-=?a b . 解法二:构造解集为{}21<<-x x 的一元二次不等式:

0)2)(1(<-+x x ,即022<--x x ,此不等式与原不等式022<-+bx ax 应为同解不等式,故1=a ,1-=b .

归纳小结:此题为一元二次不等式逆向思维题,要使解集为

{}21<<-x x ,不等式022<-+bx ax 需满足条件0>a ,0>?,

022=-+bx ax 的两根为11-=x ,22=x .在解题时要抓住一元二次方程、一元二次不等式解集的关系.

题型3:含参不等式的求解问题 例5 解关于x 的不等式01)1(2

<++-x a ax .

证:分以下情况讨论

(1)当0=a 时,原不等式变为:01<+-x ,∴1>x ,即不等式的解集为{|

1}x x >

(2)当0≠a 时,原不等式变为:0)1)(1(<--x ax ① ①当0

(>--x a

x ,∴不等式的解为1>x 或a x 1

<.即不等式的解集为1{|1}x x x a

><或;②当0>a 时,①式变为0)1)(1(<--x a x .②,∵a a a -=

-111, ∴当10<a ,此时②的解为a x 1

1<<.即不等式的解集为1{|1}x x a

<<;当1=a 时,11=a ,此时②的解为?.

当1a >时,

11a <,即不等式的解集为1

{|1}x x a

<<. 归纳小结:解本题要注意分类讨论思想的运用,关键是要找到分类的标准,就本题来说有三级分类:

??

??

???

??????

????????>=<<><≠=∈11100000

a a a a a a a R a 分类应做到使所给参数a 的集合的并集为全集,交集为空集,要做到不重不漏.另外,解本题还要注意在讨论0

<++-x a ax

应首选做到将二次项系数变为正数再求解.

题型4:一元二次不等式的应用

例6 (1)已知函数()??

?≥-<+-=0

1

01

x x x x x f ,则不等式()()111≤+++

x f x x 的解集是( )

A .

{}121|-≤≤-x x B .{}1|≤x x C .{}12|-≤x x

D .{}1

212|-≤≤--x x

解:依题意得11010

(1)()(1)1x x x x x x x x +<+????

++-++?≥≤?

≤或

所以1

1

11R x x x x ≥-∈?<-????≤?

?≤?

或1111x x x ≤≤<-??≤-或,选C . (2)若函数f (x ) =12

22

--+a

ax x 的定义域为R ,则a 的取值范围为_______.

解:Q 函数

()f x =R ,∴对一切x R ∈都有2

221x

ax a

+-≥恒成立,即220x ax a +-≥恒成立,

0∴?≤成立,即2440a a +≤,10a ∴-≤≤,故选A .

归纳小结:解一元二次不等式往往与分段函数、指数函数和对数函数结合进行综合考查,

一般是借助于函数的性质和图象进行转化,再求解一元二次不等式,利用一元二次不等式分析相应一元二次函数的性质,体现“三个二次”之间的紧密联系,这也是一元二次不等式的重要考点之一.

例7 已知函数

21

sin sin 42

a y x a x =-+-

+的最大值为2,求a 的值. 解:令sin t x =,[1,1]t ∈-,∴221()(2)24

a y t a a =--+-+,对称轴为2a t =,当112a

-≤

≤,即22a -≤≤时,2max 1(2)24y a a =-+=,

得2a =-或3a =(舍去).当12a >,即2a >时,函数22

1()(2)24a y t a a =--+-+在[1,1]-上单调递增,由max 111242y a a =-+-+=,得103a =;当12a <-,即2a <-时,函数22

1()(2)24

a y t a a =--+-+在

[1,1]-上单调递减,由max 11

1242y a a =---+=,得2a =-(舍去).

综上可得,a 的值为2a =-或10

3

a =.

归纳小结:令sin t x =,问题就转化为二次函数的区间最值问题,再由对称轴与区间[1,1]-的三种位置关系的讨论就可求得a 的值.此题中要注意0a <的条件.

例8 设不等式2

220x ax a -++≤的解集为M ,如果M ?[1,4],求实数a 的取值范围?

解:M ?[1,4]有两种情况:其一是M =?,此时?<0;其二是M ≠?,此时?=0或?>0,分三种情况计算a 的取值范围.设2()22f x x ax a =-++,有?=2(2)4(2)a a --+=24(2)a a --,当?<0时,-1<a <2,M =??[1,4];当?=0

时,a =-1或2;当a =-1时M ={1

}-?[1,4];当a =2时,m ={2}?[1,4] 当?>0时,a <-1或a >2.设方程()0f x =的两根1x ,2x ,且1x <2x ,那么M =[1x ,2x ],M ?[1,4]?1≤x 1<x 2

4???>?≤≤>>?0,410)4(,0)1(且且a f f ,即30 1870 0 12a a a a a -+>??->??>?

?<->?,

,,或,

解得2<a <718,∴M ?[1,4]时,a 的取值范围是(-1,718

).

一元二次不等式解法应试能力测试

1.不等式0x

2x 62

<--的解集是( )

A .}2x 23|x {<<-

B .}23x 2|x {<<-

C .}2x 2

3

x |x {>-<或 D .}23x 2x |x {>-<或

2.设集合M ={x|0≤x<2},}03x 2x |x {N 2

<--=,则有M ∩N =( )

A .{x|0≤x<1}

B .{x|0≤x<2}

C .{x|0≤x ≤1}

D .{x|0≤x ≤2} 3.对于任意实数x ,不等式0)2a (ax 2ax

2

<+-+恒成立,则实数a 的取值范围是( )

A .-1≤a ≤0

B .-1≤a<0

C .-1

D .-1

4.不等式0)6x )(4x

(22

≤--的解集为( )

A .{x|-2≤x ≤2}

B .{x|x ≤-2或x ≥2}

C .{x|-2≤x ≤2或x =6}

D .{x|x ≥2} 5.已知}Z x 04x 3x

|x {A 2

∈≤--=,,}Z x 06x x 2|x {B 2∈>--=,,则A ∩B 的非空真子集个数为( ) A .2 B .3 C .7 D .8 6.已知}0q px x

|x {A 2

≤++=,}01

x 3

x |

x {B >+-=,且A ∪B =R ,A ∩B ={x|3

<++的解集是{x|-7

8.不等式ax

<++同解,则( )

A .a =0且b ≤0

B .b =0且a>0

C .a =0且b>0

D .b =0且a<0

1.不等式035|x |3x

22

>--的解为_______________.

2.使函数|

x |313x 2x y 2

-+--=有意义的x 的取值范围是_______________.

3.已知}02x 3x

|x {A 2

≤+-=,}0a x )1a (x |x {B 2≤++-=,若B A ≠?,则a 的取值范围是_______________;

若B A ?,则a 的取值范围是_______________. 4.关于x 的不等式0b

x x

a <+-(a +b>0)的解集是_______________.

1.为使周长为20cm 的长方形面积大于2

cm 15,不大于2

cm 20,它的短边要取多长?

2.解不等式x 21

|x 2x

|2

<

-. 3.解关于x 的不等式04x )1a (2ax 2

>++-(a>0).

4.k 为何值时,关于x 的不等式

13

x 6x 4k

kx 2x 222<++++对一切实数x 恒成立.

参考答案

一、

1.D 2.B 3.C 4.C 5.A 提示:因为A ∩B ={3,4}

6.A 提示:因B ={x|x<-1或x>3},由已知得A ={x|-1≤x ≤4}∴-1,4是0q px x 2

=++的两根,∴p =-3,q =-4.

7.C 8.A ,提示:因01x x 2

<++的解为?,只有a =0且b ≤0时,ax

二、

1.x<-5或x>5 提示:原不等式化为035|x |3|x |22

>--,∴|x|>5

2.{x|-32,1≤a ≤2 ,提示:∵A ={x|1≤x ≤2},B ={x|(x -1)(x -a)≤0},∵B A ≠?,∴a>2 4.{x|x<-b 或x>a},提示:原不等式可化为(a -x)(x +b)<0,即(x -a)(x +b)>0,∵a +b>0,∴a>-b ,∴x>a 或x<-b . 三、

1.设长方形较短边长为x cm ,则其邻边长(10-x)cm ,显然0-20)x 10(x 15)x 10(x ,∴?????-≤+≥+<<-5

5x 55x 10

5x 105或

∴55x 105-≤<-

. 2.当x ≤0时,不等式无解,当x>0时,不等式化为x 21|2x |x <

-,即2

1

|2x |<- 解得:25x 23<< 3.原不等式化为(ax -2)(x -2)>0 ,∵a>0,∴0)2x )(a 2x (>--,当a =1时,2a

2=,∴0)2x (2

>-,∴{x|x ∈R

且x ≠2},当a ≠1时:若a>1,则2a 2<,∴}2x a 2x |x {><或,若0

>,∴}22|{a

x x x ><或.

4.∵3x 6x 42++恒正,∴不等式化为3x 6x 4k kx 2x 22

2++<++,即0)k 3(x )k 26(x 22>-+-+恒成立

∴⊿0)k 3(8)k 26(2

<---=,∴03k 4k 2<+-,∴1

高中数学必修五基本不等式题型(精编)

高中数学必修五基本不等式题型(精编) 变 2.下列结论正确的是 ( ) A .若a b >,则ac bc > B .若a b >,则22a b > C .若a c b c +<+,0c <,则a b > D >a b > 3. 若m =(2a -1)(a +2),n =(a +2)(a -3),则m ,n 的大小关系正确的是 例2、解下列不等式 (1)2230x x --≥ (2)2280x x -++> (3) 405x x ->- (4)405 x x -≥- (5)112x ≥ (6)已知R a ∈,解关于x 的不等式()()01<--x x a .

变、若不等式02<--b ax x 的解集为{} 32<

例5、 1. 积为定值 (1)函数1y x x =+ (x >0)的最小值是 . (2)设2a >,12 p a a =+-的最大值是 . (3)函数1y x x =+ (x <0)的最小值是 . (4) 变、 (1 )2y = 的最小值是 . (2) . 2. 和为定值 (1) ,y=x(4-x) 的最大值是 . (2), 的最大值是 . 例6、“1”的妙用 1. 2.已知正数,x y 满足21x y +=,则 y x 11+的最小值为______

必修五-不等式知识点总结

不等式总结 一、不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>, (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0 (5)倒数法则:b a a b b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法 有两相异实根 有两相等实根注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间 三、均值不等式

1.均值不等式:如果a,b 是正数,那么 ).""(2 号时取当且仅当==≥+b a ab b a 2、使用均值不等式的条件:一正、二定、三相等 3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数),即 2112a b a b +≥+(当 a = b 时取等) 四、含有绝对值的不等式 1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 2、则不等式:如果,0>a a x a x a x -<><=>>或|| a x a x a x -≤≥<=>≥或|| a x a a x <<-<=><|| a x a a x ≤≤-<=>≤|| 3.当0c >时, ||ax b c ax b c +>?+>或ax b c +<-, ||ax b c c ax b c +?∈,||ax b c x φ+?-<<,|| (0)x a a x a >>?>或x a <-. (2)定义法:零点分段法; (3)平方法:不等式两边都是非负时,两边同时平方. 五、其他常见不等式形式总结: ①分式不等式的解法:先移项通分标准化,则 ()()0() () 0()()0;0()0 () ()f x g x f x f x f x g x g x g x g x ≥?>?>≥??≠? ②无理不等式:转化为有理不等式求解 ()0()0()()f x g x f x g x ?≥????≥?? ?>? 定义域 ???<≥?????>≥≥?>0 )(0)()] ([)(0)(0)()()(2x g x f x g x f x g x f x g x f 或 ??? ??<≥≥?<2 )] ([)(0 )(0 )()()(x g x f x g x f x g x f

最新高一下学期期末复习之——必修五不等式知识点及主要题型-讲义含解答

不等式的基本知识 (一)不等式与不等关系 1、应用不等式(组)表示不等关系; 不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>,(同向可加) (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0(同向同正可乘) (5)倒数法则:b a a b b a 1 10,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论) 3、应用不等式性质证明不等式 (二)解不等式 1、一元二次不等式的解法 一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、, ac b 42-=?, 0>? 0=? 0a )的图象 c bx ax y ++=2 c bx ax y ++=2 c bx ax y ++=2

一元二次方程 ()的根 2 > = + + a c bx ax 有两相异实根 ) ( , 2 1 2 1 x x x x< 有两相等实根 a b x x 2 2 1 - = =无实根的解集 )0 ( 2 > > + + a c bx ax{} 2 1 x x x x x> <或 ? ? ? ? ? ? - ≠ a b x x 2 R 的解集 )0 ( 2 > < + + a c bx ax{} 2 1 x x x x< ?>≥?? ≠ ? 4、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题 若不等式()A x f>在区间D上恒成立,则等价于在区间D上() min f x A >若不等式()B x f<在区间D上恒成立,则等价于在区间D上() max f x B < (三)线性规划 1、用二元一次不等式(组)表示平面区域 二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 2、二元一次不等式表示哪个平面区域的判断方法 由于对在直线Ax+By+C=0同一侧的所有点(y x,),把它的坐标(y x,)代入

高中数学必修五教案-基本不等式

第一课时 3.4基本不等式 2a b +≤(一) 教学要求:通推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等; 教学重点: 2 a b +≤的证明过程; 教学难点:理解“当且仅当a=b 时取等号”的数学内涵 教学过程: 一、复习准备: 1. 回顾:二元一次不等式(组)与简单的线形规划问题。 2. 提问:如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗? 二、讲授新课: 1. 教学:基本不等式 2a b +≤ ①探究:图形中的不等关系,将图中的“风车”抽象成如图,在 正方形ABCD 中右个全等的直角三角形。设直角三角形的两条直角边长为a,b 那么正方形的 4个直角三角形的面积的和是2ab ,正方形的面积为22a b +。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥。当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。(教师提问→学生思考→师生总结) ②思考:证明一般的,如果)""(2R,,2 2号时取当且仅当那么==≥+∈b a ab b a b a ③基本不等式:如果a>0,b>0,我们用分别代替a 、b ,可得a b +≥, (a>0,b>0)2a b +≤ 2 a b +≤ : 用分析法证明:要证 2a b +≥, 只要证 a+b ≥ (2), 要证(2),只要证 a+b- ≥0(3)要证(3), 只要证( - )2(4), 显然,(4)是成立的。当且仅当a=b 时,(4)中的等号成立。 ⑤练习:已知x 、y 都是正数,求证:(1)y x x y +≥2;(2)(x +y )(x 2+y 2)(x 3+y 3)≥8 x 3y 3.

必修5--基本不等式几种解题技巧及典型例题

均值不等式应用(技巧)技巧一:凑项 1、求y = 2x+ 1 x - 3 (x > 3)的最小值 2、已知x > 3 2 ,求y = 2 2x - 3 的最小值 3、已知x < 5 4 ,求函数y = 4x – 2 + 1 4x - 5 的最大值。 技巧二:凑系数 4、当0 < x < 4时,求y = x(8 - 2x)的最大值。 5、设0 < x < 3 2 时,求y = 4x(3 - 2x)的最大值,并求此时x的值。 6、已知0 < x < 1时,求y = 2x(1 - x) 的最大值。 7、设0 < x < 2 3 时,求y = x(2 - 3x) 的最大值 技巧三:分离 8、求y = x2 + 7x + 10 x + 1 (x > -1)的值域; 9、求y = x2 + 3x + 1 x (x > 0)

的值域 10、已知x > 2,求y = x2 - 3x + 6 x - 2 的最小值 11、已知a > b > c,求y = a - c a - b + a - c b - c 的最小值 12、已知x > -1,求y = x + 1 x2 + 5x + 8 的最大值 技巧四:应用最值定理取不到等号时利用函数单调性 13、求函数y = x2 + 5 x2 + 4 的值域。 14、若实数满足a + b = 2,则3a + 3b的最小值是。 15、若 + = 2,求1 x + 1 y 的最小值,并求x、y的值。 技巧六:整体代换 16、已知x > 0,y > 0,且1 x + 9 y = 1,求x + y的最小值。

17、若x、y∈R+且2x + y = 1,求1 x + 1 y 的最小值 18、已知a,b,x,y∈R+ 且a x + b y = 1,求x + y的最小值。 19、已知正实数x,y满足2x + y = 1,求1 x + 2 y 的最小值 20、已知正实数x,y,z满足x + y + z = 1,求1 x + 4 y + 9 z 的最小值 技巧七:取平方 21、已知x,y为正实数,且x2 + y2 2 = 1,求x 1 + y2的最大值。 22、已知x,y为正实数,3x + 2y = 10,求函数y = 3x + 2y的最值。 23、求函数y = 2x - 1 + 5 - 2x(1 2 < x < 5 2 )的最大值。 技巧八:已知条件既有和又有积,放缩后解不等式 24、已知a,b为正实数,2b + ab + a = 30,求函数y = 1 ab 的最小值。

必修五基本不等式题型分类(绝对经典)

一对一个性化辅导教案课题基本不等式复习 教学 重点 基本不等式 教学 难点 基本不等式的应用 教学目标掌握利用基本不等式求函数的最值学会灵活运用不等式 教学步骤及教学内容一、教学衔接: 1、检查学生的作业,及时指点; 2、通过沟通了解学生的思想动态和了解学生的本周学校的学习内容。 二、内容讲解: 1.如果那么当且仅当时取“=”号). 2.如果那么(当且仅当时取“=”号) 3、在用基本不等式求函数的最值时,应具备三个条件:一正二定三相等。 ①一正:函数的解析式中,各项均为正数; ②二定:函数的解析式中,含变数的各项的和或积必须有一个为定值; ③三取等:函数的解析式中,含变数的各项均相等,取得最值。 三、课堂总结与反思: 带领学生对本次课授课内容进行回顾、总结 四、作业布置: 见讲义 管理人员签字:日期:年月日 作1、学生上次作业评价:○好○较好○一般○差 备注:

基本不等式复习

知识要点梳理 知识点:基本不等式 1.如果(当且仅当时取“=”号). 2.如果(当且仅当时取“=”号). 在用基本不等式求函数的最值时,应具备三个条件:一正二定三取等。 ①一正:函数的解析式中,各项均为正数; ②二定:函数的解析式中,含变数的各项的和或积必须有一个为定值; ③三取等:函数的解析式中,含变数的各项均相等,取得最值。 类型一:利用(配凑法)求最值 1.求下列函数的最大(或最小)值. (1)求的最小值; (2)若 (3)已知,,且. 求的最大值及相应的的值变式1:已知 类型二:含“1”的式子求最值

2.已知且,求的最小值. 变式1:若 变式2: 变式3:求函数 类型三:求分式的最值问题 3. 已知,求的最小值 变式1:求函数

必修5-第三章不等式知识点总结

不等式知识总结 一、不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>, (4)乘法法则:bc ac c b a >?>>0,;bc ac c b a 0,;bd ac d c b a >?>>>>0,0 (5)倒数法则:b a a b b a 1 10,>; (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 二、一元二次不等式02>++c bx ax (0>a )和)0(02><++a c bx ax 及其解法 有两相异实根 )(x x < 有两相等实根b x - == 顺口溜:在二次项系数为正的前提下:大于取两边,小于取中间 三、均值不等式:若0a >,0b >,则a b +≥,即).""(2 号时取当且仅当==≥+b a ab b a 1. 使用均值不等式的条件:一正、二定、三相等 2、常用的基本不等式:①()2 2 2,a b ab a b R +≥∈;②()22 ,2 a b ab a b R +≤∈; ③()20,02a b ab a b +?? ≤>> ???;④()2 22,22a b a b a b R ++??≥∈ ? ?? ;⑤)0(2>≥+ab b a a b 3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数),即 211 2 a b a b +≥≥ ≥ +(当a = b 时取等)

必修5数学不等式典型例题解析(整理)

不等式 一.不等式的性质: 1.同向不等式可以相加;异向不等式可以相减:若,a bc d >>,则a c b d +>+(若,a b c d ><,则a c b d ->-), 但异向不等式不可以相加;同向不等式不可以相减; 2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若 0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则 a b c d >); 3.左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >> 4.若0ab >,a b >,则11a b <;若0ab <,a b >,则11 a b >。如 (1)对于实数c b a ,,中,给出下列命题: ①22,bc ac b a >>则若; ②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若; ④b a b a 11,0<<<则若; ⑤b a a b b a ><<则 若,0; ⑥b a b a ><<则若,0; ⑦b c b a c a b a c ->->>>则若,0; ⑧11 ,a b a b >>若,则0,0a b ><。 其中正确的命题是______ (答:②③⑥⑦⑧); (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______ (答:137x y ≤-≤); (3)已知c b a >>,且,0=++c b a 则 a c 的取值范围是______ (答:12,2??-- ??? ) 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法; 4.平方法; 5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ; 8.图象法。其中比较法(作差、作商)是最基本的方法。如 (1)设0,10>≠>t a a 且,比较 2 1log log 21+t t a a 和的大小 (答:当1a >时,11log log 22a a t t +≤(1t =时取等号);当01a <<时,11 log log 22 a a t t +≥(1t =时取等号)); (2)设2a >,12 p a a =+-,2 422-+-=a a q ,试比较q p ,的大小 (答:p q >); (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小 (答:当01x <<或43x >时,1+3log x >2log 2x ;当413x <<时,1+3log x <2log 2x ;当4 3 x =时,1+3 log x =2log 2x ) 三.利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方针。如

高中数学必修五 第3章 不等式 同步练习 3.4基本不等式(含答案)

《基本不等式》同步测试 一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若a ∈R ,下列不等式恒成立的是 ( ) A .21a a +> B .2111 a <+ C .296a a +> D .2lg(1)lg |2|a a +> 2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( ) A.12 B.22a b + C.2ab D.a 3. 设x >0,则133y x x =--的最大值为 ( ) A.3 B.3- C.3- D.-1 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( ) A. 10 B. C. D. 5. 若x , y 是正数,且141x y +=,则xy 有 ( ) A.最大值16 B.最小值 116 C.最小值16 D.最大值116 6. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( ) A .2222a b c ++≥ B .2 ()3a b c ++≥ C .1 1 1 a b c ++≥ D .a b c ++≤ 7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( ) A .114x y ≤+ B .111x y +≥ C 2≥ D .11xy ≥ 8. a ,b 是正数,则 2,2a b ab a b ++三个数的大小顺序是 ( ) A. 22a b ab a b ++ 22a b ab a b +≤+ C.22ab a b a b ++ D.22 ab a b a b +≤+ 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p q x += B.2p q x +< C.2p q x +≤ D.2 p q x +≥ 10. 下列函数中,最小值为4的是 ( ) A.4y x x =+ B.4sin sin y x x =+ (0)x π<<

基本不等式的应用(适合高二必修五)

基本不等式的应用 一.基本不等式 1.(1)若R b a,,则ab b a 22 2 (2)若R b a,,则2 2 2 b a ab (当且仅当b a 时取“=”)2. (1) 若* ,R b a ,则 ab b a 2 (2) 若 * ,R b a ,则a b b a 2(当且仅当 b a 时取“=”) (3)若 * ,R b a ,则2 2 b a ab (当且仅当b a 时取“=”) 3.若0x ,则12x x (当且仅当1x 时取“=”);若0x ,则12x x (当且仅当1x 时取“=”) 若0x ,则11122-2x x x x x x 即或 (当且仅当b a 时取“=”) 4.若0ab ,则2a b b a (当且仅当b a 时取“=”)若0ab ,则 22-2a b a b a b b a b a b a 即 或 (当且仅当b a 时取“=”) 5.若R b a,,则2 ) 2 (2 2 2 b a b a (当且仅当b a 时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大” . (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、 证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域 (1)y =3x 2 +1 2x 2 (2)y =x + 1 x 解:(1)y =3x 2 + 1 2x 2≥23x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1 x ≥2 x · 1x =2; 当x <0时,y =x + 1x = -(-x -1 x )≤-2x · 1x =-2 ∴值域为(-∞,- 2]∪[2,+∞) 解题技巧:技巧一:凑项例1:已知54 x ,求函数142 45 y x x 的最大值。 解:因45 0x ,所以首先要“调整”符号,又1(42) 45 x x 不是常数,所以对42x 要进行拆、凑项, 5,5 404 x x , 1142 5 43 45 5 4y x x x x 231 当且仅当15454x x ,即1x 时,上式等号成立,故当1x 时,max 1y 。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

最新高一数学必修5不等式知识点总结优秀名师资料

高一数学必修5不等式知识点总结 精品文档 高一数学必修5不等式知识点总结 不等式是高一数学必修5非常重要的概念,有哪些知识点需要了解?下面学习 啦小编给大家带来高一数学必修5不等式知识点,希望对你有帮助。 高一数学必修5不等式知识点不等式(inequality) 用不等号将两个解析式连结起来所成的式子。例如2x+2y?2xy,sinx?1, ex>0 ,2xx是超越不等式。 通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)?G(x,y,……,z )(其中不等号也可以为中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。 不等式的最基本性质有:?如果x>y,那么yy;?如果x>y,y>z;那么x>z;?如果x>y,而z为任意实数,那么x+z>y+z;? 如果x>y,z>0,那么xz>yz;?如果x>y,z 由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式,其中比较有名的有: 柯西不等式:对于2n个任意实数x1,x2,…,xn和y1,y2,…,yn,恒有 (x1y1+x2y2+…+xnyn)2?(x12+x22+…+xn2)(y12+y22+…+yn2)。 排序不等式:对于两组有序的实数x1?x2?…?xn,y1?y2?…?yn,设yi1, yi2,…,yin是后一组的任意一个 1 / 7 精品文档

排列,记S=x1yn+x2yn-1+…+xny1,M=x1yi1+x2yi2+…+xnyin, L=x1y1+x2y2+…+xnyn,那么恒有S?M?L。 根据不等式的基本性质,也可以推出解不等式可遵循的一些同解原理。主要的有:?不等式F(x)F(x)同解。?如果不等式F(x) 0与不等式同解;不等式F(x)G(x) 不等式分为严格不等式与非严格不等式。一般地,用纯粹的大于号、小于号―>‖― ―?‖―?‖连接的不等式称为非严格不等式,或称广义不等式。 在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式. 如:甲大于乙(甲>乙),就是一个不等式.不等式不一定只有「>」,「0,即A>B.又同理可证:A>C,A>D.所以,A最大. 不等式是不包括等号在内的式子比如:(不等号大于等于号,小于等于号)只要用这些号放在式子里就是不等式咯.. 1.符号: 不等式两边都乘以或除以一个负数,要改变不等号的方向。 .确定解集: 比两个值都大,就比大的还大; 比两个值都小,就比小的还小; 比大的大,比小的小,无解; 比小的大,比大的小,有解在中间。 2 / 7 精品文档 三个或三个以上不等式组成的不等式组,可以类推。 .另外,也可以在数轴上确定解集: 把每个不等式的解集在数轴上表示出来,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集

高一数学必修5不等式题型总结

含参数的一元二次不等式的解法 解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元二次不等式常用的分类方法有三种: 一、按2 x 项的系数a 的符号分类,即0,0,0<=>a a a ; 例1 解不等式:()0122 >+++x a ax 分析:本题二次项系数含有参数,()04422 2 >+=-+=?a a a ,故只需对二次项 系数进行分类讨论。 解:∵()04422 2 >+=-+=?a a a 解得方程 ()0122 =+++x a ax 两根,24 22 1a a a x +- --= a a a x 24 22 2++ --= ∴当0>a 时,解集为?? ? ???????+---<++-->a a a x a a a x x 242242|22或 当0=a 时,不等式为012>+x ,解集为? ?? ???> 21|x x 当0+-a a ax ax 分析 因为0≠a ,0>?,所以我们只要讨论二次项系数的正负。 解 ()()032)65(2 >--=+-x x a x x a ∴当0>a 时,解集为{}32|>?; 例3 解不等式042 >++ax x 分析 本题中由于2 x 的系数大于0,故只需考虑?与根的情况。 解:∵162 -=?a ∴当()4,4-∈a 即0a 或4-?,此时两根分别为2 162 1-+-= a a x ,2 162 2---= a a x ,显然21x x >, ∴不等式的解集为?? ? ???? ? ??----+-> 21621622a a x a a x x 〈或 例4 解不等式( ) ()R m x x m ∈≥+-+01412 2 解 因,012 >+m ( )( )2 2 2 3414)4(m m -=+--=?,所以当3± =m ,即0=?时,解集为???? ?? =21|x x ; 当33< <-m ,即0>?时,解集为?? ? ????? ??+--+-+>1321322 222m m x m m x x 〈或; 当33> -

《基本不等式》典型例题

高中数学必修五典题精讲 典题精讲 例1(1)已知0<x < 31,求函数y=x(1-3x)的最大值; (2)求函数y=x+x 1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论. (1)解法一:∵0<x < 3 1,∴1-3x >0. ∴y=x(1-3x)= 31·3x(1-3x)≤31[2)31(3x x -+]2=121,当且仅当3x=1-3x ,即x=6 1时,等号成立.∴x=61时,函数取得最大值12 1. 解法二:∵0<x <31,∴3 1-x >0. ∴y=x(1-3x)=3x(31-x)≤3[2 31x x -+]2=121,当且仅当x=31-x,即x=61时,等号成立. ∴x=61时,函数取得最大值121. (2)解:当x >0时,由基本不等式,得y=x+x 1≥2x x 1?=2,当且仅当x=1时,等号成立. 当x <0时,y=x+x 1=-[(-x)+)(1x -]. ∵-x >0,∴(-x)+ )(1x -≥2,当且仅当-x=x -1,即x=-1时,等号成立. ∴y=x+x 1≤-2. 综上,可知函数y=x+ x 1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备. 变式训练1当x >-1时,求f(x)=x+ 1 1+x 的最小值. 思路分析:x >-1?x+1>0,变x=x+1-1时x+1与11+x 的积为常数. 解:∵x >-1,∴x+1>0.

高中数学必修5第三章不等式复习知识点总结与练习

高中数学必修5__第三章《不等式》复习知识点总结与练习(一) 第一节不等关系与不等式 [知识能否忆起] 1.实数大小顺序与运算性质之间的关系 a - b >0?a >b ;a -b =0?a =b ;a -b <0?a <b . 2.不等式的基本性质 1.在使用不等式时,一定要搞清它们成立的前提条件.不可强化或弱化成立的条件.如“同向不等式”才可相加,“同向且两边同正的不等式”才可相乘;可乘性中“c 的符号”等也需要注意. 2.作差法是比较两数(式)大小的常用方法,也是证明不等式的基本方法.要注意强化化归意识,同时注意函数性质在比较大小中的作用. 高频考点 1. 比较两个数(式)的大小 [例1]已知等比数列{a n }中,a 1>0,q >0,前n 项和为S n ,试比较S 3a 3与S 5 a 5的大小. [自主解答]当q =1时,S 3a 3=3,S 5a 5=5,所以S 3a 3<S 5 a 5; 当q >0且q ≠1时,

S 3a 3-S 5a 5=a 1(1-q 3)a 1q 2(1-q )-a 1(1-q 5)a 1q 4(1-q )=q 2(1-q 3)-(1-q 5 )q 4(1-q ) =-q -1q 4<0,所以S 3a 3<S 5a 5. 综上可知S 3a 3<S 5a 5. 由题悟法 比较大小的常用方法 (1)作差法: 一般步骤是:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差. (2)作商法: 一般步骤是:①作商;②变形;③判断商与1的大小;④结论. (3)特值法: 若是选择题、填空题可以用特值法比较大小;若是解答题,可先用特值探究思路,再用作差或作商法判断. [注意]用作商法时要注意商式中分母的正负,否则极易得出相反的结论. 以题试法 1.(2012·吉林联考)已知实数a 、b 、c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a 、b 、c 的大小关系是( ) A .c ≥b >a B .a >c ≥b C .c >b >a D .a >c >b 解析:选A c -b =4-4a +a 2=(2-a )2≥0, ∴c ≥b .将题中两式作差得2b =2+2a 2,即b =1+a 2. ∵1+a 2-a =????a -122+3 4>0,∴1+a 2>a . ∴b =1+a 2>a .∴c ≥b >a . 2. 不等式的性质 (2012·包头模拟)若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +b c <0;③a -c >b -d ;④a ·(d -c )>b (d -c )中成立的个数是( ) A .1 B .2

高中数学必修五第三章复习知识点及题型

必修五第三章 不等式 一.不等关系与不等式 1、0a b a b ->?>;0a b a b -=?=;0a b a b -?<;②,a b b c a c >>?>;③a b a c b c >?+>+; ④,0a b c ac bc >>?>,,0a b c ac bc >>?+>+; ⑥0,0a b c d ac bd >>>>?>;⑦()0,1n n a b a b n n >>?>∈N >; ⑧()0,1n n a b a b n n >>?>∈N >. 例1 对于实数判断下列命题真假:,,,c b a (1)若;,bc ac b a <>则 (2);,2 2b a bc ac >>则若 (3)22,0b ab a b a >><<则若 (4) .0,0,1 1, <>>>b a b a b a 则若 例2(1).已知x ∈R,则22+x 与2的大小关系是?( ). A.22 +x >2 B.222 ≥+x C.22 +x <2 D.222≤+x (2).2)2(-≥n m 等价的是( ). A.2)2(-≤n m B.m n ≥-2)2( C.m n ≤-2)2( D.2)2(-n ? 0=? 0a 的图象 方程02 =++c bx ax )0(>a 的根 有两相异实根 )(,2121x x x x < 有两相等实根 a b x x 221- == 没有实数根 )0(02>>++a c bx ax )0(02 ><++a c bx ax 例3(1)2. 函数122-+=x x y 的定义域是 ( ) A.{} 34>-++bx ax 的解为3 12 1<<-x ,则b a +等于 ( ) A.10 B.-10 C.14 D.-14 (3) 对于任意的实数x ,不等式04)2(2)2(2 <----x a x a 恒成立,实数a 的取值范围是( ) A.()2,∞- B.(]2,∞- C.()22,- D.(]22,- (4) 解关于的不等式)0(01)1(2 ><++-a x a ax . 例4.解不等式(1)()()()0321≥-+-x x x (2)()()()0321>-+-x x x (3)() ()()()032112≤-+-+-x x x x x (4)()()()()032112 >-+-+x x x x (5)012<-+x x (6)221≤-+x x (7)027313222 ≥+-+-x x x x 例5(1).已知不等式22 622 >++++x x kx kx 对任意R x ∈恒成立,求k 的取值范围。 (2)函数()()862++-=k kx kx x f 的定义域为R ,求k 的取值范围 。 (3)若不等式0122 ≤--+a x x 对一切[]0,2-∈x 恒成立,求实数a 的取值范围 。

高中数学人教版-必修五-不等式-知识点最完全精炼总结

2012.3.26 1.两实数大小的比较 ?? ? ??<-?<=-?=>-?>0b a b a 0b a b a 0b a b a 一.不等式(淮上陌客) 2.不等式的性质:8条性质.

4.公式: 3.解不等式 (1)一元一次不等式 (2)一元二次不等式: 3.基 本不等式定理 ? ???? ??????? ? ?????????????????-≤+?<≥+?>≥+ ??? ????+≤+≥+?? ?? ???????? ?+≤??? ??+≤+≥+≥+2a 1a 0a 2a 1a 0a b ,a (2b a a b )b a (2b a ab 2 b a 2b a ab 2b a ab ) b a (2 1b a ab 2b a 2 22222 2 222倒数形式同号)分式形式根式形式整式形式11 22a b a b --+≤≤≤+??? ? << >> ≠>)0a (b x )0a (a b x )0a (b ax

一元二次不等式的求解流程: 一化:化二次项前的系数为正数. 二判:判断对应方程的根.

三求:求对应方程的根. 四画:画出对应函数的图象. 五解集:根据图象写出不等式的解集. (3)解分式不等式: 高次不等式: (4)解含参数的不等式:(1) (x – 2)( – 2)>0 (2)x 2 – (2 )3 >0; (3)2x 2 +2 > 0; 注:解形如2>0的不等式时分类讨 论的标准有: 1、讨论a 与0的大小; 2、讨论⊿与0的大小; 3、讨论两根的大小; 二、运用的数学思想: 1、分类讨论的思想; 2、数形结合的思想; 3、等与不等的化归思想 (4)含参不等式恒成立的问题: ??? ??用图象 分离参数后用最值函数、、、3 21 例1.已知关于x 的不等式 22(3)210x a x a +-+-??>0)x (g 0)x (g )x (f 0) x (g )x (f 0)x (g )x (f 0)x (g ) x (f 0)())((21>---n a x a x a x

(完整word版)高中数学必修五基本不等式练习题

基本不等式练习题 一、单项选择 1. 已知0x >,函数4y x x =+的最小值是( ) A . 4 B .5 C . 6 D .8 3. 在下列函数中,最小值为2的是( ) A x x y 1+= B x x y -+=33 C )101(lg 1lg <<+=x x x y D )2 0(sin 1sin π<<+=x x x y 4. 已知)0,0(135>>=+y x y x ,则xy 的最小值是 ( ) A .15 B .6 C .60 D .1 5. 已知 1,1x y >> 且16xy =,则22log log x y ?( ) A .有最大值2 B .等于4 C .有最小值3 D .有最大值4 6. 若R b a ∈,,且0>ab ,则下列不等式中恒成立的是( ) A .ab b a 222>+ B .ab b a 2≥+ C .ab b a 211>+ D .2≥+b a a b 7. 若正数b a 、满足3++=b a ab ,则b a +的取值范围是( ) A .),9[+∞ B.),6[+∞ C .]9,0( D .)6,0( 8. 已知正项等比数列{}n a 满足7652a a a =+.若存在两项,m n a a 使得14m n a a a =,则 19m n +的最小值为( ) A 83 B 114 C 145 D 176 9.设0=+b a b a ,则ab 的最大值为( )

① b a ab ab +>2,② b b a a -->,③ 22234b ab b a ->+,④ 22>+ab ab 恒成立的序号为 23.(,)x y 在直线23x y +=上移动,则24x y +的最小值为 24.知0,0,8x y x y xy >>++=,则x y +的最小值是__________. 25.)21(,2 10x x x -<<则的最大值是_________. 26.>0,则= y 24x x +的最大值是___________. 27.实数,x y 满足2244x y x y +=+,则88x y +的取值范围是________ 28.知b a ,都是正实数,函数b ae y x +=2的图像过点(0,1),则b a 11+的最小值是 . 29.实数,a b 满足221a b +=且 c a b <+,恒成立,则c 的取值范围是____________. 30.若x 、y 为正整数,且满足4161x y +=,则x y +的最小值为_________; 31.)0,0(1>>=+b a b a ,则 b a 11+的最小值为 32.y x ,均为正实数,且33122x y +=++,则xy 的最小值为 . 三、解答题 33.知,a b 是不相等的正常数,实数,(0,)x y ∈+∞. (Ⅰ)求证:222 ()a b a b x y x y ++≥+,并指出等号成立的条件; (Ⅱ)求函数211(),(0,)122 f x x x x =+∈-的最小值,并指出此时x 的值. 34.制作一个如图的框架(单位:米),要求所围成的总面积为19.5(米2),其中ABCD 是一个矩形,EFCD 是一个等腰梯形,梯形高h=AB ,tan ∠FED=,设AB=x 米,BC=y 米.

相关文档
最新文档