高中数学组卷--圆锥曲线(1).

高中数学组卷--圆锥曲线(1).
高中数学组卷--圆锥曲线(1).

高中数学组卷--圆锥曲线(1)

一.选择题(共25小题)

1.(2013?辽宁)已知椭圆C:的左焦点F,C与过原点的直线相交于A,B两点,连结AF,BF,若|AB|=10,|AF|=6,,则C的离心率为()

A.B.C.D.

2.(2012?南充三模)椭圆+=1(a>b>0)上一点A关于原点的对称点为B,F为其右焦点,若AF⊥BF,设∠ABF=a,且a∈[,],则该椭圆离心率的取值范围为()

A.[,1]B.[,]C.[,1)D.[,]

3.(2012?西安一模)椭圆+y2=1上存在一点P,使得它对两个焦点F1,F2的张角∠F1PF2=,则该椭圆的离心率的取值范围是()

A.(0,]B.[,1)C.(0,]D.[,1)

4.已知点P是椭圆上的动点,F1(﹣c,0)、F2(c,0)为椭圆的左、右

焦点,O为坐标原点,若M是∠F1PF2的角平分线上的一点,且F1M⊥MP,则|OM|的取值范围是()A.(0,c)B.(0,a)C.(b,a)D.(c,a)

5.(2012?罗定市校级二模)若AB是过椭圆中心的一条弦,M是椭圆上任意一点,且AM,BM与坐标轴不平行,k AM,k BM分别表示直线AM,BM的斜率,则k AM?k BM=()A.B.C.D.

6.(2012?增城市校级模拟)已知点P是椭圆16x2+25y2=400上一点,且在x轴上方,F1、F2分别是椭圆的左、右焦点,直线PF2的斜率为,则△PF1F2的面积是()

A.B.C. D.

7.(2012?平阴县校级模拟)已知P是椭圆上的点,Q、R分别是圆

上的点,则|PQ|+|PR|的最小值是()

A.B.C.10 D.9

8.(2012?镜湖区校级模拟)设F1、F2分别为椭圆+=1的左、右焦点,c=,若直线x=上

存在点P,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是()

A.(0,]B.(0,]C.[,1)D.[,1)

9.(2012?顺义区二模)已知椭圆G:的离心率为,⊙M过椭圆G的一个顶

点和一个焦点,圆心M在此椭圆上,则满足条件的点M的个数是()

A.4 B.8 C.12 D.16

10.(2012?贺兰县校级一模)已知P为椭圆上一点,F为右焦点,若,且点M满足(其中O为坐标原点),则的值为()

A.1 B.2 C.4 D.8

11.(2012?沙坪坝区校级模拟)以椭圆的右焦点F2为圆心作一个圆,使此圆过椭圆的中心O并交椭圆于点M、N,若过椭圆的左焦点F1的直线MF1是圆F2的切线,则右准线与圆F2()

A.相交 B.相切C.相离D.位置关系随离心率改变

12.(2011?哈尔滨模拟)已知点F1、F2分别是椭圆的左、右焦点,过F1且垂直于x轴的直线与椭圆交于A、B两点,若△ABF2为正三角形,则该椭圆的离心率e是()

A.B.C.D.

13.已知A、B是椭圆长轴的两个端点,M,N是椭圆上关于x轴对称的两点,直线AM,BN的斜率分别为k1,k2,且k1k2≠0.若|k1|+|k2|的最小值为1,则椭圆的离心率()A.B.C.D.

14.已知,M、N是椭圆上关于原点对称的两点,P是椭圆上任意一点,且直线PM、PN的斜率分别为k1、k2(k1k2≠0),若|k1|+|k2|的最小值为1,则椭圆的离心率为()

A.B.C.D.

15.(2011?石狮市校级模拟)椭圆(a>b>0)的四个顶点为A、B、C、D,若四边形ABCD的

内切圆恰好过椭圆的焦点,则椭圆的离心率等于()

A.B.C.D.

16.(2011?定海区校级四模)如图,面ABC⊥α,D为AB的中点,|AB|=2,∠CDB=60°,P为α内的动点,且P到直线CD的距离为,则∠APB的最大值为()

A.30°B.60°C.90°D.120°

17.(2011?鹿城区校级模拟)一个半径为2的球放在桌面上,桌面上的一点A1的正上方有一个光源A,AA1与球相切,AA1=6,球在桌面上的投影是一个椭圆,则这个椭圆的离心率等于()

A.B.C.D.

18.(2011?河北模拟)设a,b均为大于1的正数,且ab+a﹣b﹣10=0,若a+b的最小值为m,则满足3x2+2y2≤m 的整点(x,y)的个数为()

A.5 B.7 C.9 D.11

19.(2011?太原校级模拟)如图,椭圆(a>b>0)的离心率e=,左焦点为F,A,B,C为其三个顶点,直线CF与AB交于D,则tan∠BDC的值等于()

A.3 B.C.﹣D.﹣3

20.(2011?安徽模拟)已知椭圆的左焦点F1,O为坐标原点,点P在椭圆上,点Q 在椭圆的右准线上,若则椭圆的离心率为()A.B.C.D.

21.(2011?涪城区校级模拟)已知直角△FPA,∠FPA=90°,∠PFA=60°.以F为左焦点,A为右顶点的椭圆经过点P,则椭圆的离心率为()

A.B.C.D.

22.(2013春?衡水校级月考)已知椭圆的焦点为F1、F2,在长轴A1A2上任取一点M,过M作垂直于A1A2的直线交椭圆于P,则使得的M点的概率为()

A.B. C.D.

23.(2010?重庆校级模拟)已知F1、F2为椭圆E的左右两个焦点,抛物线C以F1为顶点,F2为焦点,设P 为椭圆与抛物线的一个交点,如果椭圆离心率为e,且|PF1|=e|PF2|则e的值为()

A.B.C.D.

24.(2009?南岸区校级模拟)一系列椭圆都以一定直线l为准线,所有椭圆的中心都在定点M,且点M到l 的距离为2,若这一系列椭圆的离心率组成以为首项,为公比的等比数列,而椭圆相应的长半轴长为a i (i=1,2,…,n),则a1+a2+…+a n=()

A.B.C.D.

25.(2007?江西)设椭圆=1(a>0,b>0)的离心率e=,右焦点F(c,0),方程ax2+bx﹣c=0的

两个根分别为x1,x2,则点P(x1,x2)在()

A.圆x2+y2=2内B.圆x2+y2=2上

C.圆x2+y2=2外D.以上三种情况都有可能

二.填空题(共5小题)

26.(2012?庐阳区校级模拟)如图,椭圆的长轴为A1A2,短轴为B1B2,将坐标平面沿y轴折成一个二面角,使点A2在平面B1A1B2上的射影恰好是该椭圆的左焦点,则此二面角的大小为.

27.(2011?兴化市校级模拟)设P是椭圆上任意一点,A和F分别是椭圆的左顶点和右焦点,则的最小值为.

28.(2010秋?汝阳县校级月考)某宇宙飞船的运行轨道是以地球中心F为焦点的椭圆,测得近地点A距离地面m(km),远地点B距离地面n(km),地球半径为R(km),关于这个椭圆有以下四种说法:

①焦距长为n﹣m;②短轴长为;③离心率;④若以AB方向为x轴正方向,F为坐标原点,则与F对应的准线方程为,其中正确的序号为.

29.(2008?上海)某海域内有一孤岛,岛四周的海平面(视为平面)上有一浅水区(含边界),其边界是长轴长为2a,短轴长为2b的椭圆,已知岛上甲、乙导航灯的海拔高度分别为h1、h2,且两个导航灯在海平面上的投影恰好落在椭圆的两个焦点上,现有船只经过该海域(船只的大小忽略不计),在船上测得甲、乙导航灯的仰角分别为θ1、θ2,那么船只已进入该浅水区的判别条件是.

30.(2004?湖南)设F是椭圆的右焦点,且椭圆上至少有21个不同的点P i(i=1,2,3,…),使|FP1|,|FP2|,|FP3|,…组成公差为d的等差数列,则d的取值范围为.

11月19日高中数学组卷--圆锥曲线(1)

参考答案与试题解析

一.选择题(共25小题)

1.(2013?辽宁)已知椭圆C:的左焦点F,C与过原点的直线相交于A,B两点,连结AF,BF,若|AB|=10,|AF|=6,,则C的离心率为()

A.B.C.D.

【解答】解:如图所示,在△AFB中,由余弦定理可得|AF|2=|AB|2+|BF|2﹣2|AB||BF|cos∠ABF,

∴,化为(|BF|﹣8)2=0,解得|BF|=8.

设F′为椭圆的右焦点,连接BF′,AF′.根据对称性可得四边形AFBF′是矩形.

∴|BF′|=6,|FF′|=10.∴2a=8+6,2c=10,解得a=7,c=5.∴.故选B.

【点评】熟练掌握余弦定理、椭圆的定义、对称性、离心率、矩形的性质等基础知识是解题的关键.2.(2012?南充三模)椭圆+=1(a>b>0)上一点A关于原点的对称点为B,F为其右焦点,若AF⊥BF,设∠ABF=a,且a∈[,],则该椭圆离心率的取值范围为()

A.[,1]B.[,]C.[,1)D.[,]

【分析】设左焦点为F′,根据椭圆定义:|AF|+|AF′|=2a,根据B和A关于原点对称可知|BF|=|AF′|,推知

|AF|+|BF|=2a,又根据O是Rt△ABF的斜边中点可知|AB|=2c,在Rt△ABF中用α和c分别表示出|AF|和|BF|代入|AF|+|BF|=2a中即可表示出即离心率e,进而根据α的范围确定e的范围.

【解答】解:∵B和A关于原点对称∴B也在椭圆上

设左焦点为F′根据椭圆定义:|AF|+|AF′|=2a

又∵|BF|=|AF′|∴|AF|+|BF|=2a …①

O是Rt△ABF的斜边中点,∴|AB|=2c

又|AF|=2csinα…②

|BF|=2ccosα…③

②③代入①2csinα+2ccosα=2a ∴=

即e==

∵a∈[,],∴≤α+π/4≤∴≤sin(α+)≤1 ∴≤e≤故选B

3.(2012?西安一模)椭圆+y2=1上存在一点P,使得它对两个焦点F1,F2的张角∠F1PF2=,则该椭圆的离心率的取值范围是()A.(0,]B.[,1)C.(0,]D.[,1)

【分析】首先根据椭圆方程,求出它的离心率为:e=,然后设点椭圆上P的坐标为(x0,y0),满足∠F1PF2=,利用数量积为0列出关于x0、y0和a、c的等式.接下来利用椭圆方程消去y0,得到关于

x0的式子,再利用椭圆上点横坐标的范围:﹣a≤x0≤a,建立关于字母a的不等式,最后解此不等式得出a的范围,代入离心率关于a的表达式,即可得到该椭圆的离心率的取值范围.

【解答】解:∵椭圆方程为:+y2=0,∴b2=1,可得c2=a2﹣1,c=

∴椭圆的离心率为e=又∵椭圆上一点P,使得角∠F1PF2=,

∴设点P的坐标为(x0,y0),结合F1(﹣c,0),F2(c,0),

可得=(﹣c﹣x0,﹣y0),=(c﹣x0,﹣y0),

∴=+=0…①

∵P(x0,y0)在椭圆+y2=1上,∴=1﹣,代入①可得+1﹣=0

将c2=a2﹣1代入,得﹣a2﹣+2=0,所以=,

∵﹣a≤x0≤a ∴,即,解之得a2≥2

∴椭圆的离心率e==∈[,1).

4.已知点P是椭圆上的动点,F1(﹣c,0)、F2(c,0)为椭圆的左、右

焦点,O为坐标原点,若M是∠F1PF2的角平分线上的一点,且F1M⊥MP,则|OM|的取值范围是()A.(0,c)B.(0,a)C.(b,a)D.(c,a)

【分析】利用M是∠F1PF2平分线上的一点,且F1M⊥MP,判断OM是三角形F1F2N的中位线,把OM用PF1,PF2表示,再利用椭圆的焦半径公式,转化为用椭圆上点的横坐标表示,借助椭圆的范围即可求出OM 的范围.

【解答】解:如图,延长PF2,F1M,交与N点,∵PM是∠F1PF2平分线,且F1M⊥MP,

∴|PN|=|PF1|,M为F1N中点,连接OM,∵O为F1F2中点,M为F1N中点

∴|OM|=|F2N|=||PN|﹣|PF2||=||PF1|﹣|PF2||

∵在椭圆中,设P点坐标为(x0,y0)

则|PF1|=a+ex0,|PF2|=a﹣ex0,∴||PF1|﹣|PF2||=|a+ex0﹣a+ex0|=|2ex0|=2e|x0|

∵P点在椭圆上,∴|x0|∈(0,a],

又∵当|x0|=a时,F1M⊥MP不成立,∴|x0|∈(0,a)∴|OM|∈(0,c).故选A.

5.(2012?罗定市校级二模)若AB是过椭圆中心的一条弦,M是椭圆上任意一点,且AM,BM与坐标轴不平行,k AM,k BM分别表示直线AM,BM的斜率,则k AM?k BM=()A.B.C.D.

【解答】解:设A(x1,y1),M(x0,y0),则B(﹣x1,﹣y1),则k AM?k BM=

∵A,M在椭圆上,∴,,两式相减,可得KAM?KBM=﹣,故选B.

6.(2012?增城市校级模拟)已知点P是椭圆16x2+25y2=400上一点,且在x轴上方,F1、F2分别是椭圆的左、右焦点,直线PF2的斜率为,则△PF1F2的面积是()

A.B.C. D.

【解答】解:椭圆16x2+25y2=400化成标准形式:

∴a2=25,b2=16,可得c==3所以椭圆的焦点为F1(﹣3,0),F2(3,0)

设位于椭圆x轴上方弧上的点P(m,n),则,

解之得m=,n=2(舍负)∴△PF1F2的面积S=×F1F2×2=6故选C

7.(2012?平阴县校级模拟)已知P是椭圆上的点,Q、R分别是圆

上的点,则|PQ|+|PR|的最小值是()

A. B. C.10 D.9

【解答】解:由题可知两圆的圆心恰为椭圆的两焦点F1(﹣4,0)

和F2(4,0),

由椭圆的定义知|PF1|+|PF2|=2a=10,从而可得|PQ|+|PR|的最小值为

.故选D.

8.(2012?镜湖区校级模拟)设F1、F2分别为椭圆+=1的左、右焦点,c=,若直线x=上存在点P,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是()

A.(0,]B.(0,]C.[,1)D.[,1)

【分析】根据题意,设P的坐标为(,y),进而可得PF1的中点Q的坐标,结合题意,线段PF1的中垂线过点F2,可得y与b、c的关系,又由y2的范围,计算可得答案.

【解答】解:由已知P(,y),所以PF1的中点Q的坐标为(,y ),

由=,由题意可得,

整理可得,=>0

∴当=0时,不存在,此时F2为中点,

∴,综上得≤e<1.故选D.

9.(2012?顺义区二模)已知椭圆G:的离心率为,⊙M过椭圆G的一个顶

点和一个焦点,圆心M在此椭圆上,则满足条件的点M的个数是()

A.4 B.8 C.12 D.16

【分析】以椭圆G的一个顶点和一个焦点构成的线段的垂直平分线与椭圆的交点坐标都是满足条件的点M.【解答】解:设椭圆G:的左、右焦点分别为F1,F2,

左、右顶点分别为A1,A2,下顶点为B1,上顶点为B2,

∵椭圆G:的离心率为,

⊙M过椭圆G的一个顶点和一个焦点,圆心M在此椭圆上,

∴A1F1、A1F2、A2F1、A2F2、B1F1、B2F1的垂直平分线与椭圆G的坐标都是满足条件的点M,

∴满足条件的点M的个数是12个.故选C.

【点评】本题考查椭圆的简单性质及其应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.10.(2012?贺兰县校级一模)已知P为椭圆上一点,F为右焦点,若,且点M满足

(其中O为坐标原点),则的值为()

A.1 B.2 C.4 D.8

【分析】设椭圆的左焦点为F',可得△PFF'中,OF'是中位线,有OM=PF'.再用椭圆的定义,得到PF'=2a﹣PF=4,所以OM=PF'=2,即的值为2.

【解答】解:设椭圆的左焦点为F',∵点M满足,∴M是线段PF的中点,又∵△PFF'中,O是FF'的中点∴OM∥PF'且OM=PF',

∵椭圆的长轴2a=10∴根据椭圆的定义得:PF+PF'=10,可得PF'=10﹣PF=4

因此,可得OM=PF'=2,即的值为2 故选B

【点评】本题利用向量的形式,给出椭圆的焦点三角形PFF'中,OM是中位线,并求其长度,着重考查了向量的基本运算和椭圆的定义等知识点,属于中档题.

11.(2012?沙坪坝区校级模拟)以椭圆的右焦点F2为圆心作一个圆,使此圆过椭圆的中心O并交椭圆于点M、N,若过椭圆的左焦点F1的直线MF1是圆F2的切线,则右准线与圆F2()

A.相交 B.相切C.相离D.位置关系随离心率改变

【分析】先根据题意和椭圆定义可知|MF2|=|OF2|=c,|MF1|+|MF2|=2a,|F1F2|=2c 进而根据勾股定理建立等式求得e,利用圆心到直线的距离判断直线与圆的位置关系.

【解答】解:由题意得:|MF2|=|OF2|=c,|MF1|+|MF2|=2a,|F1F2|=2c,

直角三角形MF1F2中,|MF1|2+|MF2|2=|F1F2|2,即(2a﹣c)2+c2=4c2,

整理得2a2﹣2ac﹣c2=0,即e2+2e﹣2=0,解得e=,

圆心到椭圆的右准线l的距离为﹣c,圆的半径为c,∴﹣c<c,

∴椭圆的右准线l与圆F2相交,故选A.

12.(2011?哈尔滨模拟)已知点F1、F2分别是椭圆的左、右焦点,过F1且垂直于x轴的直线与

椭圆交于A、B两点,若△ABF2为正三角形,则该椭圆的离心率e是()

A.B.C.D.

【分析】先求出AF1 的长,直角三角形AF1F2中,由边角关系得tan30°==,建立关于离心率的方程,解方程求出离心率的值.

【解答】解:把x=﹣c代入椭圆的方程可得y=,∴AF1 =,

由tan30°=====,求得3e2+2e﹣3=0,

解得(舍去),或,故选D.

13.已知A、B是椭圆长轴的两个端点,M,N是椭圆上关于x轴对称的两点,直线AM,BN的斜率分别为k1,k2,且k1k2≠0.若|k1|+|k2|的最小值为1,则椭圆的离心率()A.B.C.D.

【分析】先假设出点M,N,A,B的坐标,然后表示出两斜率的关系,再由|k1|+|k2|的最小值为1运用基本不等式的知识可得到当x0=0时可取到最小值,进而找到a,b,c的关系,进而可求得离心率的值.

【解答】解:设M(x0,y0),N(x0,﹣y0),A(﹣a,0),B(a,0)

k1=,k2=

|k1|+|k2|=||+||=2=1

当且仅当=,即x0=0,y0=b时等号成立∴2=2=1∴a=2b

又因为a2=b2+c2∴c=∴e=故选C.

【点评】本题主要考查椭圆的基本性质和基本不等式的应用.圆锥曲线是高考的重点问题,基本不等式在解决最值时有重要作用,所以这两方面的知识都很重要,一定要强化复习.

14.已知,M、N是椭圆上关于原点对称的两点,P是椭圆上任意一点,且直线PM、PN的斜率分别为k1、k2(k1k2≠0),若|k1|+|k2|的最小值为1,则椭圆的离心率为()

A.B.C.D.

【分析】根据题意,设P(acosβ,bsinβ),M(acosα,bsinα),因为M、N是椭圆上关于原点对称的两点,则N(﹣acosα,﹣bsinα),进而由斜率公式表示出k1、k2的值,计算可得k1?k2的值,由基本不等式,可得|k 1|+|k2|的最小值为2,结合题意,|k1|+|k2|的最小值为1,得到=1,计算可得答案.

【解答】解:设P(acosβ,bsinβ),M(acosα,bsinα),则N(﹣acosα,﹣bsinα),

可得,

∴.故选D.

15.(2011?石狮市校级模拟)椭圆(a>b>0)的四个顶点为A、B、C、D,若四边形ABCD的内切圆恰好过椭圆的焦点,则椭圆的离心率等于()

A.B.C.D.

【分析】根据题意,由四边形ABCD的性质,分析可得其内切圆的半径的大小,又有其内切圆内切圆恰好过椭圆的焦点,即c=r,结合a2=b2+c2,计算可得答案.

【解答】解:根据题意,得四边形ABCD为平行四边形,则其内切圆的圆心为坐标原点;

四边形ABCD的内切圆半径为Rt△AOB中,斜边AB上的高,

根据题意,易得,AO=a,OB=b;则r=;

根据题意,其内切圆恰好过椭圆的焦点,即c=r=;

又由a2=b2+c2;联立可得:e==;故选C.

【点评】本小题主要考查椭圆的性质、平行四边形的有关性质、方程式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.

16.(2011?定海区校级四模)如图,面ABC⊥α,D为AB的中点,|AB|=2,∠CDB=60°,P为α内的动点,且P到直线CD的距离为,则∠APB的最大值为()

A.30°B.60°C.90°D.120°

【解答】解:空间中到直线CD的距离为的点构成一个圆柱面,它和面α相交得一椭圆,所以P在α内的轨迹为一个椭圆,D为椭圆的中心,,,则c=1,于是A,B为椭圆的焦点,椭圆上

点关于两焦点的张角

在短轴的端点取得最大,故为60°.故选B.

17.(2011?鹿城区校级模拟)一个半径为2的球放在桌面上,桌面上的一点A1的正上方有一个光源A,AA1与球相切,AA1=6,球在桌面上的投影是一个椭圆,则这个椭圆的离心率等于()

A.B.C.D.

【分析】根据题意作出过圆锥的轴与椭圆长轴AA1的截面,可得直角三角形AOA1,在此三角形中利用切线长定理,利用三角形的面积等式求出A1A2,再根据椭圆的几何性质,求出椭圆的参数a、c,即可求出椭圆的离心率.

【解答】解:如图是过锥体的轴与椭圆长轴A1A2的截面,根据圆锥曲线的定义,

可得球与长轴A1A2的切点是椭圆的焦点F,AA1⊥A1A2

设光线AA1与球相切于点E,AA2与球相切于点D,

且A1F等于内切圆的半径也即球的半径,即A1E=A1F=2,AA1=6,

根据切线长定理得:A1E=A1F=2,AE=AD=AA1﹣A1E=4,

设FA2=x,由三角形面积公式得:(AA1+A1A2+AA2)r=AA1?AA2

∴(2+x+6+4+x)×2=×6×(2+x)?x=6,∴A1A2=8

根据椭圆的几何性质,得长轴A1A2=2a=8,?a=4,

A1F是焦点到长轴顶点的距离A1F=a﹣c=2,∴c=2,

∴,所以所求椭圆的离心率为故选A.

【点评】本题以中心投影及中心投影作图法,考查了椭圆的简单性质,同时考查了椭圆的基本量,属于中档题.深刻理解空间位置关系和椭圆的定义与性质,是解决本题的关键.

18.(2011?河北模拟)设a,b均为大于1的正数,且ab+a﹣b﹣10=0,若a+b的最小值为m,则满足3x2+2y2≤m 的整点(x,y)的个数为()

A.5 B.7 C.9 D.11

【分析】根据题意,对ab+a﹣b﹣10=0变形整理可得a、b间的关系,进而可得a+b的最小值,即m的值;

满足3x2+2y2≤m的点可以看成是椭圆上及其内部的点,结合椭圆的性质,分析可得答案.

【解答】解:由ab+a﹣b﹣10=0可得;即m=6,

满足不等式3x2+2y2≤6的点在椭圆上及其内部,

分析可得其整点共有9个,

分别为(0,0),(0,1),(0,﹣1),(1,0),(﹣1,0),(1,1),(﹣1,1),(﹣1,﹣1),(1,﹣1),

故选C.

19.(2011?太原校级模拟)如图,椭圆(a>b>0)的离心率e=,左焦点为F,A,B,C为其三个顶点,直线CF与AB交于D,则tan∠BDC的值等于()

A.3 B.C.﹣D.﹣3

【分析】根据离心率的值求出和的值,求得tan∠BAO==的值,再求出tan∠OFC==的值,代入tan∠BDC=tan(∠BAO+∠OFC)进行运算.

【解答】解:∵离心率e=,∴===,==.

由图可知,tan∠BDC=tan(∠BAO+∠OFC),∴tan∠BAO===,

tan∠OFC===,代入公式即得

tan∠BDC=tan(∠BAO+∠OFC)==﹣3,故选D.

【点评】本题考查椭圆的简单性质的应用,两角和差的正切函数,判断tan∠BDC=tan(∠BAO+∠OFC),是解题的难点和关键.

20.(2011?安徽模拟)已知椭圆的左焦点F1,O为坐标原点,点P在椭圆上,点Q

在椭圆的右准线上,若则椭圆的离心率为()A.B.C.D.

【分析】由题设条件及,可知PQ平行于x轴,且Q点的横坐标为,又

知Q点在∠PF1O角平分线上由此,推出三角形是等腰三角形,通过椭圆的第二定义求e

【解答】解:∵椭圆的左焦点F1,O为坐标原点,点P在椭圆上,点Q在椭圆的右准线上,,

∴PQ平行于x轴,且P点的横坐标为,Q点的横坐标为,

又知Q点在∠PF1O角平分线上,如图△PF1Q是等腰三角形,所以由椭圆的第二定义可知,解得e=.故选C.

21.(2011?涪城区校级模拟)已知直角△FPA,∠FPA=90°,∠PFA=60°.以F为左焦点,A为右顶点的椭圆经过点P,则椭圆的离心率为()

A.B.C.D.

【分析】由题意画出图形,设出PF,PH,求出EF,AF,通过椭圆的第二定义,求出椭圆的离心率即可.

【解答】解:如图,设PF=1,PH=t,在△PFA中,∠PFA=60°则EF=t﹣,AF==2,

由椭圆的第二定义可知,e==,得得t=,所以e==.故选D.

22.(2013春?衡水校级月考)已知椭圆的焦点为F1、F2,在长轴A1A2上任取一点M,过M作垂直于A1A2的直线交椭圆于P,则使得的M点的概率为()

A.B. C.D.

【分析】当∠F1PF2=90°时,P点坐标为,由,得∠F1PF2≥90°.故的M点的概率.

【解答】解:∵|A1A2|=2a=4,,设P(x0,y0),

∴当∠F1PF2=90°时,,

解得,把代入椭圆得.

由,得∠F1PF2≥90°.

∴结合题设条件可知使得的M点的概率=.故选C.

【点评】作出草图,数形结合,事半功倍.

23.(2010?重庆校级模拟)已知F1、F2为椭圆E的左右两个焦点,抛物线C以F1为顶点,F2为焦点,设P 为椭圆与抛物线的一个交点,如果椭圆离心率为e,且|PF1|=e|PF2|则e的值为()

A.B.C.D.

【分析】先根据抛物线定义可知|PF1|=e|PF2|=d(到抛物线准线的距离)推断出抛物线的准线与椭圆的准线重合,进而分别表示出抛物线和椭圆的准线方程,使其相等求得a和c的关系,则椭圆的离心率可得.

【解答】解:由椭圆第二定义是|PF1|=e(x+)

由抛物线的定义可知到焦点与准线的距离相等|PF1|=e|PF2|=d(d为到抛物线准线的距离)

∴抛物线的准线与椭圆的准线重合,依题意可知抛物线的准线方程为x=﹣3c

椭圆准线为x=﹣﹣∴=3c,即a2=3c2,∴e==故选C

24.(2009?南岸区校级模拟)一系列椭圆都以一定直线l为准线,所有椭圆的中心都在定点M,且点M到l 的距离为2,若这一系列椭圆的离心率组成以为首项,为公比的等比数列,而椭圆相应的长半轴长为a i (i=1,2,…,n),则a1+a2+…+a n=()

A.B.C.D.

【分析】根据椭圆的离心率组成以为首项,为公比的等比数列,得出=?()n﹣1,又点M到l的距离为2,得到==?()n﹣1,最后利用等比数列的求和公式求和即得.

【解答】解:∵椭圆的离心率组成以为首项,为公比的等比数列,

∴=?()n﹣1,又点M到l的距离为2,∴=2,∴=,

∴=?()n﹣1,∴a1+a2+…+a n==.故选D.

25.(2007?江西)设椭圆=1(a>0,b>0)的离心率e=,右焦点F(c,0),方程ax2+bx﹣c=0的

两个根分别为x1,x2,则点P(x1,x2)在()

A.圆x2+y2=2内B.圆x2+y2=2上C.圆x2+y2=2外D.以上三种情况都有可能

【分析】先根据x1+x2=﹣,x1x2=﹣表示出x12+x22,再由e==得到a与c的关系,从而可表示出b与c的关系,然后代入到x12+x22的关系式中可得到x12+x22的范围,从而可确定答案.

【解答】解:∵x1+x2=﹣,x1x2=﹣x12+x22=(x1+x2)2﹣2x1x2=

e==∴a=2c b2=a2﹣c2=3c2 所以x12+x22=<2所以在圆内故选A.

二.填空题(共5小题)

26.(2012?庐阳区校级模拟)如图,椭圆的长轴为A1A2,短轴为B1B2,将坐标平面沿y轴折成一个二面角,使点A2在平面B1A1B2上的射影恰好是该椭圆的左焦点,则此二面角的大小为.

【分析】确定椭圆中的几何量,确定二面角的平面角,利用点A2在平面B1A1B2上的射影恰好是该椭圆的左焦点,可求得cos∠A2OF1=,即可求得结论.

【解答】解:由题意,椭圆中a=4,c=,∠A2OF1为二面角的平面角

∵点A2在平面B1A1B2上的射影恰好是该椭圆的左焦点

∴在直角△A2OF1中,cos∠A2OF1=∴∠A2OF1=即二面角的大小为故答案为:

【点评】本题考查椭圆与立体几何的综合,考查面面角,解题的关键是确定二面角的平面角.27.(2011?兴化市校级模拟)设P是椭圆上任意一点,A和F分别是椭圆的左顶点和右焦点,则的最小值为﹣9.

【分析】先根据椭圆方程设出P的参数坐标,求得A,F的坐标,进而分别表示出,,代入化简整理求得其最小值.

【解答】解:P的参数坐标为(5cosθ,4sinθ);坐标A(﹣5,0);F(3,0);

则=(﹣5﹣5cosθ,0﹣4sinθ);

=(3﹣5cosθ,0﹣4sinθ);

则=(﹣5﹣5cosθ)?(3﹣5cosθ)+16sin2θ+(﹣5﹣5cosθ,﹣4sinθ)?(8,0)

=(﹣5﹣5cosθ)(3﹣5cosθ)+16sin2θ+2(﹣5﹣5cosθ)=9cos2θ﹣9≥﹣9.故答案为:﹣9.

【点评】本题主要考查了椭圆的应用,参数坐标的应用.考查了学生综合分析问题和解决问题的能力.

28.(2010秋?汝阳县校级月考)某宇宙飞船的运行轨道是以地球中心F为焦点的椭圆,测得近地点A距离地面m(km),远地点B距离地面n(km),地球半径为R(km),关于这个椭圆有以下四种说法:

①焦距长为n﹣m;②短轴长为;③离心率;④若以AB方向为x轴正方向,F为坐标原点,则与F对应的准线方程为,其中正确的序号为①③④.

【分析】由题意,n+R=a+c,m+R=a﹣c,

①焦距长为n﹣m,直接求n﹣m的表达式即可;

②短轴长为,求出a,c,计算出b,进行验证;

③离心率,求出a,c,计算出e进行验证;

④若以AB方向为x轴正方向,F为坐标原点,则与F对应的准线方程为,在规

定的坐标系下求出其准线方程对照即可.

【解答】解:由题意n+R=a+c,m+R=a﹣c,

①可解得n﹣m=2c,故①正确;

②由n+R=a+c,m+R=a﹣c,得a=,c=∴=,故此命题不对;

③由②知故此命题正确;

④由于左焦点在原点,故左准线方程为x=c﹣=﹣=,此命题正确.

综上知①③④正确故答案为①③④

【点评】本题考查椭圆的应用,综合考查了椭圆的长轴、短轴、以及离心率和准线等性质,本题建立的坐标系原点在焦点上,这无形中给求准线方程带来了一个小问题,要注意通过平移的相关规则得出正确的答案.

29.(2008?上海)某海域内有一孤岛,岛四周的海平面(视为平面)上有一浅水区(含边界),其边界是长轴长为2a,短轴长为2b的椭圆,已知岛上甲、乙导航灯的海拔高度分别为h1、h2,且两个导航灯在海平面上的投影恰好落在椭圆的两个焦点上,现有船只经过该海域(船只的大小忽略不计),在船上测得甲、乙导航灯的仰角分别为θ1、θ2,那么船只已进入该浅水区的判别条件是h1?cotθ1+h2?cotθ2≤2a.

【分析】先根据题意分别表示出|MF1|和|MF2|,只要令|MF1|+|MF2|小于或等于椭圆的长轴即可.

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

高中数学人教版选修1-1(文科) 第二章 圆锥曲线与方程 2.2.1 双曲线及其标准方程(I)卷

高中数学人教版选修1-1(文科)第二章圆锥曲线与方程 2.2.1 双曲线及其标准方 程(I)卷 姓名:________ 班级:________ 成绩:________ 一、选择题 (共8题;共16分) 1. (2分)过已知双曲线-=1(b>0)的左焦点F1作⊙O2:x2+y2=4的两条切线,记切点为A,B,双曲线的左顶点为C,若∠ACB=120°,则双曲线的离心率为() 【考点】 2. (2分)(2018·石嘴山模拟) 已知双曲线的左、右焦点分别为,以 为直径的圆与双曲线渐近线的一个交点为,则双曲线的方程为() A . B . C . D . 【考点】 3. (2分) (2019高二上·四川期中) 已知圆:(为圆心),点,点 是圆上的动点,线段的垂直平分线交线段于点,则动点的轨迹是() A . 两条直线 B . 椭圆 C . 圆 D . 双曲线 【考点】 4. (2分) (2017高二下·新疆开学考) 过椭圆的左焦点F1作直线l交椭圆于A,B两点,F2是椭圆右焦点,则△ABF2的周长为() A . 8

B . 4 C . 4 D . 【考点】 5. (2分)(2017·常德模拟) 已知双曲线C: =1(a>0,b>0)的渐近线方程为y=± x,则双曲线C的离心率为() A . B . C . D . 【考点】 6. (2分)“”是“直线与圆相切”的() A . 充分不必要条件 B . 必要不充分条件 C . 充分必要条件 D . 既不充分也不必要条件 【考点】 7. (2分)双曲线的渐近线方程是() 【考点】 8. (2分) (2019高二下·南山期末) 直线l过点且与双曲线仅有一个公共点,这样的直线有()条. A . 1 B . 2

2019-2020年高中数学选修2-1圆锥曲线

2019-2020年高中数学选修2-1圆锥曲线 教学目标 (1)通过用平面截圆锥面,经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义; (2)通过用平面截圆锥面,感受、了解双曲线的定义; (3)能用数学符号或自然语言描述双曲线的定义. 教学重点,难点 (1)椭圆、抛物线、双曲线的定义; (2)用数学符号或自然语言描述三种曲线的定义. 教学过程 一.问题情境 1.情境: 我们知道,用一个平面截一个圆锥面,当平面经过圆锥面的顶点时,可得到两条相交直线,当平面与圆锥面的轴垂直时,截得的图形是一个圆,试改变平面的位置,观察截得的图形的变化情况。提出问题: 2.问题: 用平面去截圆锥面能得到哪些曲线?这些曲线具有哪些几何特征? 二.学生活动 学生讨论上述问题,通过观察,可以得到以下三种不同的曲线: 对于第一种情况,可在圆锥截面的两侧分别放置一球,使它们 都与截面相切(切点分别为,),且与圆锥面的侧面相切, 两球与圆锥面的侧面的公共点分别构成圆和圆. (图) 设点是平面与圆锥面的截线上任意一点,过M点作圆锥面的一条母 线,分别交圆,圆与,两点,则和,和分别是上下两球的切线.因 为过球外一点作球的切线长相等,所以,, 所以 12 MF MF MP MQ PQ +=+=. 因为,而,是常数,所以是一个常数.即截线上任意一点到两个定 点,的距离的和等于常数. 可直接给出放进双球后的图形,再由学生发现"到感知、认同即可. 三.建构数学 1.椭圆的定义: 平面内到两定点,的距离和等于常数(大于)的点的轨迹叫做椭圆,两个定点,叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距. 说明: 图

圆锥曲线综合试题(全部大题目)含答案

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线 22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB 的交点为Q 。 (1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112|||| PC PD PQ +=. 2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==? (1)动点N 的轨迹方程; (2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=?AB OB OA 且,求直线l 的斜率k 的取值范围. 3. 如图,椭圆13 4: 2 21=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积 相等,求直线PD 的斜率及直线CD 的倾斜角. 4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||PM PN -=记动点P 的轨迹为W . (Ⅰ)求W 的方程;

(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ?的最小值. 5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围; (Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。 6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN += (1)求点P 的轨迹方程; (2)若2 ·1cos PM PN MPN -∠=,求点P 的坐标. 7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线 12 2 2=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3 MON π∠= ,双曲线的焦距为4。求椭圆方程。 (II )若0OM MN ?=(O 为坐标原点),1 3 FA AN =,求椭圆的离心率e 。

2019年爱云校西藏高考模拟高中数学试卷(12月份组卷)(四)

2019年爱云校西藏高考模拟高中数学试卷(12月份组卷)(四) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1. 设集合M ={m ∈Z|?3b >c B.b >c >a C.a >c >b D.c >b >a

高考文科数学真题大全圆锥曲线老师版

试题解析:(Ⅰ)椭圆C 的标准方程为2 213x y +=.所以3a =,1b =,2c =.所以椭圆C 的 离心率6 3 c e a = = . (Ⅱ)因为AB 过点(1,0)D 且垂直于x 轴,所以可设1(1,)A y ,1(1,)B y -. 直线AE 的方程为11(1)(2)y y x -=--.令3x =,得1(3,2)M y -. 所以直线BM 的斜率11 2131 BM y y k -+= =-. 17.(2015年安徽文)设椭圆E 的方程为22 221(0),x y a b a b +=>>点O 为坐标原点,点A 的坐标 为(,0)a ,点B 的坐标为(0,b ),点M 在线段AB 上,满足2,BM MA =直线OM 的斜率为510 。 (1)求E 的离心率e; (2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB 。 ∴a b 3 231=5525451511052 222222=?=?=-?=?e a c a c a a b (Ⅱ)由题意可知N 点的坐标为(2,2b a -)∴a b a b a a b b K MN 56 65232213 1==-+=

a b K AB -= ∴1522-=-=?a b K K AB MN ∴MN ⊥AB 18.(2015年福建文)已知椭圆22 22:1(0)x y E a b a b +=>>的右焦点为F .短轴的一个端点为M ,直线 :340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于 4 5 ,则椭圆E 的离心率的取值范围是( A ) A . 3(0, ]2 B .3(0,]4 C .3[,1)2 D .3[,1)4 1 19.(2015年新课标2文)已知双曲线过点() 4,3,且渐近线方程为1 2 y x =±,则该双曲线的标 准方程为 .2 214 x y -= 20.(2015年陕西文)已知抛物线22(0)y px p =>的准线经过点(1,1)-,则抛物线焦点坐标为( B ) A .(1,0)- B .(1,0) C .(0,1)- D .(0,1) 【解析】试题分析:由抛物线22(0)y px p =>得准线2 p x =- ,因为准线经过点(1,1)-,所以2p =, 所以抛物线焦点坐标为(1,0),故答案选B 考点:抛物线方程. 21.(2015年陕西文科)如图,椭圆22 22:1(0)x y E a b a b +=>>经过点(0,1)A -,且离心率为22. (I)求椭圆E 的方程;2 212 x y +=

高中数学选修2-1 圆锥曲线的定义

高中数学选修2-1 圆锥曲线定义练习卷 一、选择题(本大题共10小题,每小题5分,共50分。在每小题给出 的四个选项中,只有一个选项是符合题目要求的) 1.已知为椭圆的焦点,为椭圆上一点, 垂直于x轴,且,则椭圆的离心率为()A.B.C.D. 2.方程表示的曲线是() A.一条直线和一双曲线B.两条直线 C.两个点D.圆 3.已知点(4,2)是直线被椭圆所截得的线段的中点,则的 方程是() A.B. C.D. 4.若不论k为何值,直线与曲线总有公共点, 则的取值范围是( ) A.B. C. D. 5.过抛物线的焦点作一条直线与抛物线相交于两点,它们的 横坐标之和等于5,则这样的直线() A.有且仅有一条B.有且仅有两条 12 F F , 22 22 1(0) x y a b a b +=>>M 2 MF 12 60 F MF ∠= 1 2232 22 ()(1)0 x y xy -+-= l 22 1 369 x y +=l 20 x y -= 240 x y +-= 2340 x y ++=280 x y +-= (2) y k x b =-+221 x y -= b ([ (22) -,[22] -, 24 y x =A B , 姓 名 : _ _ _ _ _ _ _ _ _ _ 班 级 : _ _ _ _ _ _ _ _ _ _ 考 号 : _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - 线 - - - - - - - - - - - - - - 内 - - - - - - - - - - - - - - 请 - - - - - - - - - - - - - - 不 - - - - - - - - - - - - - - 要 - - - - - - - - - - - - - - 答 - - - - - - - - - - - - - - 题 - - - - - - - - - - - - - - - - - - - - - - - - - ●

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

数列高中数学组卷

SM数列高中数学组卷1 一.选择题(共1小题) 1.已知定义在R上的函数f(x)对任意的实数x1,x2满足f(x1+x2)=f(x1)+f (x2)+2,数列{a n}满足a1=0,且对任意n∈N*,a n=f(n),则f(2010)=()A.4012 B.4018 C.2009 D.2010 二.填空题(共4小题) 2.记集合P={ 0,2,4,6,8 },Q={ m|m=100a1+10a2+a3,且a1,a2,a3∈P },将集合Q中的所有元素排成一个递增的数列,则此数列的第68项是.3.在等差数列{a n}中,a1=3,其前n项和为S n,等比数列{b n}的各项均为正数,b1=1,公比为q,且b2+S2=12,. (Ⅰ)求a n与b n; (Ⅱ)求数列{c n}满足,求{c n}的前n项和T n. 4.已知数列{a n}满足a1=33,a n+1﹣a n=2n,则的最小值为. 5.已知数列{a n}满足a1=1,a n+1=,则a n= 三.解答题(共25小题) 6.已知f(x)=(x﹣1)2,g(x)=4(x﹣1).数列{a n}中,对任何正整数n,﹣a n)g(a n)+f(a n)=0都成立,且a1=2,当n≥2时,a n≠1;设b n=a n 等式(a n +1 ﹣1. (Ⅰ)求数列{b n}的通项公式; (Ⅱ)设S n为数列{nb n}的前n项和,,求的值.7.设正项等比数列{a n}的首项a1=,前n项和为S n,且210S30﹣(210+1)S20+S10=0.(Ⅰ)求{a n}的通项;

(Ⅱ)求{nS n}的前n项和T n. 8.已知{a n}是等差数列,{b n}是等比数列,其中n∈N*. (1)若a1=b1=2,a3﹣b3=9,a5=b5,试分别求数列{a n}和{b n}的通项公式;(2)设A={k|a k=b k,k∈N*},当数列{b n}的公比q<﹣1时,求集合A的元素个数的最大值. 9.已知数列{a n}是公差为d(d≠0)的等差数列,数列{b n}是公比为q的(q∈R)的等比数列,若函数f(x)=x2,且a1=f(d﹣1),a5=f(2d﹣1),b1=f(q﹣2),b3=f(q). (1)求数列{a n}和{b n}的通项公式; (2)设数列{c n}的前n项和为S n,对一切n∈N*,都有 成立,求S n. 10.已知函数f(x)=x2+2x. (Ⅰ)数列a n满足:a1=1,a n+1=f'(a n),求数列a n的通项公式; (Ⅱ)已知数列b n满足b1=t>0,b n+1=f(b n)(n∈N*),求数列b n的通项公式;(Ⅲ)设的前n项和为S n,若不等式λ<S n对所有的正整数n恒成立,求λ的取值范围. 11.设等比数列{a n}的前n项和为S n=2n+1﹣2;数列{b n}满足6n2﹣(t+3b n)n+2b n=0(t∈R,n∈N*). (1)求数列{a n}的通项公式; (2)①试确定t的值,使得数列{b n}为等差数列; ②在①结论下,若对每个正整数k,在a k与a k+1之间插入b k个2,符到一个数列{c n}.设T n是数列{c n}的前n项和,试求满足T m=2c m+1的所有正整数m.12.已知函数f (x)=log a x (a>0且a≠1),若数列:2,f (a1),f (a2),…,f (a n),2n+4 (n∈N﹡)为等差数列. (1)求数列{a n}的通项公式a n; (2)若a=2,b n=a n?f (a n),求数列{b n}前n项和S n; (3)在(2)的条件下对任意的n∈N﹡,都有b n>f ﹣1(t),求实数t的取值范

(完整word版)高中数学圆锥曲线结论(最完美版本)

椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦 点在直线PT 上的射影H 点的轨迹是以 长轴为直径的圆,除去长轴的两个端 点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0 P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过 Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是 00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点 分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为1 2 2tan 2 F PF S b γ ?=. 8. 椭圆 22 22 1x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、 Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于 两点P 、Q, A 1、A 2为椭圆长轴上的顶 点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴 的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22 221x y a b -=(a >

排列组合高中数学组卷

排列组合高中数学组卷 一.选择题(共9小题) 1.(2016?衡阳校级一模)3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有() A.90种B.180种C.270种D.540种 2.(2016?黄冈校级自主招生)方程3x2+y2=3x﹣2y的非负整数解(x,y)的组数为()A.0 B.1 C.2 D.3 3.(2016?新余二模)7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法种数为()A.120 B.240 C.360 D.480 4.(2016?内江四模)4名大学生到三家企业应聘,每名大学生至多被一家企业录用,则每家企业至少录用一名大学生的情况有() A.24种B.36种C.48种D.60种 5.(2016?邯郸一模)现有6个白球、4个黑球,任取4个,则至少有两个黑球的取法种数是() A.90 B.115 C.210 D.385 6.(2016?成都校级模拟)用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有()个. A.324 B.216 C.180 D.384 7.(2016?湖南校级模拟)某中学拟安排6名实习老师到高一年级的3个班实习,每班2人,则甲在一班、乙不在一班的不同分配方案共有() A.12种B.24种C.36种D.48种 8.(2016?陕西模拟)某校开设A类选修课2门,B类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有() A.3种B.6种C.9种D.18种 9.(2016?福建模拟)四位男生和两位女生排成一排,男生有且只有两位相邻,则不同排法的种数是() A.72 B.96 C.144 D.240 二.填空题(共3小题) 10.(2016?黄冈校级自主招生)若p和q为质数,且5p+3q=91,则p=, q=. 11.(2016?黄冈校级自主招生)设整数a使得关于x的一元二次方程5x2﹣5ax+26a﹣143=0的两个根都是整数,则a的值是. 12.(2016?绵阳模拟)从数字0、1、2、3、4、5这6个数字中任选三个不同的数字组成的三位偶数有个.(用数字作答) 三.解答题(共4小题) 13.(2016?新余三模)如图,四棱锥P﹣ABCD的底面ABCD是正方形,PA⊥底面ABCD,E,F分别是AC,PB的中点. (1)证明:EF∥平面PCD;

高二数学圆锥曲线专题((文科)

高二数学(文科)专题复习(十二)圆锥曲线 一、选择题 1. 设双曲线以椭圆19 252 2=+y x 长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为( ) A.2± B.34± ?C.2 1± D.4 3 ± 2. 过抛物线x y 42 =的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( ) A.有且仅有一条 B.有且仅有两条 C.有无穷多条 D.不存在 3.从集合{1,2,3…,11}中任选两个元素作为椭圆方程122 22=+n y m x 中的m 和n,则能组 成落在矩形区域B ={(x ,y)| |x |<11且|y|<9}内的椭圆个数为( )?? A.43 B. 72 C. 86 D. 90 4. 设椭圆的两个焦点分别为F 1、、F2,过F 2作椭圆长轴的垂线交椭圆于点P,若△F 1P F2 为等腰直角三角形,则椭圆的离心率是( ) (A) 2 (B )12 (C)2 1 5. 已知双曲线22 163 x y -=的焦点为1F 、2F ,点M 在双曲线上且1MF x ⊥轴,则1F 到直 线2F M 的距离为( ) (A) ?(B ) (C) 65?(D) 5 6 6.已知双曲线22a x -22 b y =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A, △OAF的面积为2 2 a (O 为原点),则两条渐近线的夹角为( )

7.直线y=x +b (b ≠0)交抛物线2 12 y x =于A、B 两点,O 为抛物线的顶点,OA OB ?=0,则b =_______. 8.椭圆22 1mx ny +=与直线10x y +-=相交于,A B 两点,过AB 中点M与坐标原点的 直线的斜率为 2,则m n 的值为 9.过抛物线2 4y x =的焦点作直线交抛物线于1122(,),(,)A x y B x y 两点,若 12y y +=则AB 的值为 10.以下四个关于圆锥曲线的命题中: ①设A 、B为两个定点,k 为非零常数,||||PA PB k -=,则动点P的轨迹为双曲线; ②过定圆C上一定点A作圆的动点弦AB,O为坐标原点,若1 (),2 OP OA OB =+则动点P 的轨迹为椭圆; ③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率; ?④双曲线 135 192522 22=+=-y x y x 与椭圆有相同的焦点. ?其中真命题的序号为 (写出所有真命题的序号) 三、解答题 11.抛物线顶点在原点,它的准线过双曲线22 221(0,0)x y a b a b -=>> 的一个焦点,且抛 物线与双曲线的一个交P( 3 2 点,求抛物线和双曲线方程。 12.已知抛物线y2 =2px (p>0)的焦点为F,A 是抛物线上横坐标为4、且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B,OB 的中点为M.

高中数学选修圆锥曲线复习

1 / 8 选修2-1圆锥曲线与方程(复习) 编者:史亚军 1. 掌握椭圆、双曲线、抛物线的定义及标准方程;椭圆、双曲线、抛物线的几何性质; 2. 能解决直线与圆锥曲线的一些问题; 3.激情投入,积极思考,勇于发言,培养科学的态度和正确的价值观。 学习重点:椭圆、双曲线、抛物线的定义、标准方程及几何性质 学习难点:椭圆、双曲线、抛物线的定义、标准方程及几何性质 使用说明: (1)快速阅读教材第二章和所学导学案; (2)用严谨认真的态度完成导学案中要求的内容,用红色笔画出疑惑之处,并尝试完成下 列问题,总结规律方法; (3)不做标记的为C 级,标记★为B 级,标记★★为A 级。 预习案(20分钟) 一.知识再现 问题1:回忆椭圆、双曲线、抛物线的第一定义及标准方程? (1)椭圆的定义: 椭圆的标准方程: (2)双曲线的定义: 双曲线的标准方程: (3)抛物线的定义: 抛物线的标准方程: 组长评价: 教师评价:

问题2:根据下面的标准方程,作出相应椭圆、双曲线、抛物线的图形,并说明图像具有的几何性质? (1)2212516x y += (2)22 12516 x y -= (3)28y x = 问题3:回忆椭圆、双曲线、抛物线的第二定义? 一动点M 到定点F 的距离和它到一条定直线l 的距离的比是一个常数e , 如果常数e ∈ ,那么这个点的轨迹是椭圆; 如果常数e ∈ ,那么这个点的轨迹是双曲线; 如果常数e = ,那么这个点的轨迹是抛物线; 其中定点叫做焦点,定直线叫做准线,常数e 就是离心率。 请用第二定义推导焦半径公式:(12,F F 分别为左右焦点) (1)点P 是椭圆上一动点:1PF = ;2PF = ; (2)点P 是双曲线左支上一动点:1PF = ;2PF = ; (3)点P 是抛物线上一动点:1PF = ;2PF = ;

高中数学选修圆锥曲线基本知识点与典型题举例

高中数学选修圆锥曲线基本知识点与典型题举例 一、椭圆 1.椭圆的定义: 第一定义:平面内到 点的轨迹叫做椭圆,这两个定点叫做椭圆的 ,两焦点的距离叫做 第二定义: 平面内到 的距离之比是常数 的点的轨迹是椭圆,定点叫做椭圆的焦点,定直线l 叫做椭圆的 ,常数e 叫做椭圆的离心率. 2.椭圆的标准方程及其几何性质(如下表所示) 标准方程 图形 顶点 对称轴 焦点 焦距 离心率 例1. F 1,F 2是定点,且|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则M 点的轨迹方程是( ) (A)椭圆 (B)直线 (C)圆 (D)线段 例2. 已知ABC ?的周长是16,)0,3(-A ,B )0,3(, 则动点的轨迹方程是( ) (A) 1162522=+y x (B))0(1162522≠=+y y x (C)1251622=+y x (D))0(125 162 2≠=+y y x

例3. 若F (c ,0)是椭圆22 221x y a b +=的右焦点,F 与椭圆上点的距离的最大值为M ,最小值为m ,则椭圆上与F 点的距离等于 2 M m +的点的坐标是( ) (A)(c ,2b a ±) 2 ()(,)b B c a -± (C)(0,±b ) (D)不存在 例4 设F 1(-c ,0)、F 2(c ,0)是椭圆22x a +2 2y b =1(a >b >0)的两个焦点,P 是以F 1F 2为直径的圆与椭圆的一个交点,若∠PF 1F 2=5 ∠PF 2F 1,则椭圆的离心率为( ) (A)32 (B)63 (C)22 (D)23 例5. P 点在椭圆 120 452 2=+y x 上,F 1、F 2是两个焦点,若21PF PF ⊥,则P 点的坐标是 . 例6. 写出满足下列条件的椭圆的标准方程: (1)长轴与短轴的和为18,焦距为6; . (2)焦点坐标为)0,3(-,)0,3(,并且经过点(2,1); . (3)椭圆的两个顶点坐标分别为)0,3(-,)0,3(,且短轴是长轴的3 1 ; ____. (4)离心率为2 3 ,经过点(2,0); 二、双曲线 1.双曲线的定义: 第一定义:平面内到 等于定值 的点的轨迹叫做双曲线,这两个定点叫做双曲线的 ,两焦点的距离叫做双曲线的 第二定义: 平面内到 距离之比是常数 的点的轨迹是双曲线,定点叫做双曲线的焦点,定直线l 叫做双曲线的 ,常数e 叫做双曲线的离心率 标准方程

高考数学圆锥曲线综合题型归纳解析

圆锥曲线综合题型归纳解析 【知识点精讲】 一、定值问题 解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量——函数——定值”,具体操作程序如下: (1)变量——选择适当的量为变量; (2)函数——把要证明为定值的量表示成变量的函数; (3)定值——化简得到函数的解析式,消去变量得到定值。 求定值问题常见的方法有两种: (1)从特殊情况入手,求出定值,在证明定值与变量无关; (2)直接推理、计算,并在计算过程中消去变量,从而得到定值。 二、求最值问题常用的两种方法 (1)几何法:题中给出的条件有明显的几何特征,则考虑用几何图形的性质来解决。 (2)代数法:题中给出的条件和结论的几何特征不明显,则可以建立目标函数,在求该函数的最值。求函数的最值常见的方法有基本不等式法、单调性法、导数法、和三角换元等,这是代数法。 三、求定值、最值等圆锥曲线综合问题的“三重视” (1)重视定义在解题中的应用(优先考虑); (2)重视曲线的几何特征特别是平面几何的性质与方程的代数特征在解题中的作用; (3)重视根与系数的关系(韦达定理)在解题中的应用(涉及弦长、中点要用)。 四、求参数的取值范围 根据已知条件及题目要求建立等量或不等量关系,再求参数的范围。 题型一、平面向量在解析几何中的应用 【思路提示】解决平面向量在解析几何中的应用问题要把几何特征转化为向量关系,并把向量用坐标表示。常见的应用有如下两个: (1)用向量的数量积解决有关角的问题: ①直角12120a b x x y y ?=+=r r g ; ②钝角10||||a b a b ?-<= == r r r r g r r g 。

高中数学经典高考难题集锦(解析版)

2015年10月18日杰的高中数学组卷 一.解答题(共10小题) 1.(2012?宣威市校级模拟)设点C为曲线(x>0)上任一点,以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B. (1)证明多边形EACB的面积是定值,并求这个定值; (2)设直线y=﹣2x+4与圆C交于点M,N,若|EM|=|EN|,求圆C的方程. 2.(2010?模拟)已知直线l:y=k(x+2)与圆O:x2+y2=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S. (Ⅰ)试将S表示成的函数S(k),并求出它的定义域; (Ⅱ)求S的最大值,并求取得最大值时k的值. 3.(2013?越秀区校级模拟)已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x﹣2y=0的距离为.求该圆的方程. 4.(2013?柯城区校级三模)已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).(Ⅰ)求抛物线的标准方程; (Ⅱ)是否存在直线l:y=kx+t,与圆x2+(y+1)2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角时,有S△MON=48成立?若存在,求出直线的方程,若不存在,说明理由. 5.(2009?)(1)已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标. (2)已知直线l:3x+4y﹣12=0与圆C:(θ为参数)试判断他们的公共点个数; (3)解不等式|2x﹣1|<|x|+1. 6.(2009?东城区一模)如图,已知定圆C:x2+(y﹣3)2=4,定直线m:x+3y+6=0,过A (﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.(Ⅰ)当l与m垂直时,求证:l过圆心C; (Ⅱ)当时,求直线l的方程; (Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理由.

高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反; ②标准方程中一次项的字母与对称轴和准线方程的字母一

致; ③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像; 二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

高中数学+选修2-1+(精)几类很经典的圆锥曲线问题

几类圆锥曲线问题 一、弦长问题 圆锥曲线的弦长求法 设圆锥曲线C ∶f(x ,y)=0与直线l ∶y=kx+b 相交于A(11,y x )、B(22,y x )两点,则弦长|AB|为: (2)若弦AB 过圆锥曲线的焦点F ,则可用焦半径求弦长,|AB|=|AF|+|BF|. 例1 过抛物线2 4 1x y - =的焦点作倾斜角为α的直线l 与抛物线交于A 、B 两点,旦|AB|=8,求倾斜角α. 分析一:由弦长公式易解.解答为: ∵ 抛物线方程为y x 42 -=, ∴焦点为(0,-1). 设直线l 的方程为y-(-1)=k(x-0),即y=kx-1. 将此式代入y x 42 -=中得:0442 =-+kx x .∴k x x x x 442121-=+-=, 由|AB|=8得:()()41441822 -??--?+=k k ∴1±=k 又有1tan ±=α得:4π α= 或4 3πα= . 分析二:利用焦半径关系.∵2 ,221p y BF p y AF +-=+ -= ∴|AB|=-(1y +y 2)+p=-[(kx 1-1)+(kx 2-1)]+p=-k(1x +x 2)+2+p .由上述解法易求得结果,可由同学们自己试试完成. 二、最值问题 方法1:定义转化法 ①根据圆锥曲线的定义列方程;②将最值问题转化为距离问题求解. 例2、已知点F 是双曲线x 24-y 2 12=1的左焦点,定点A 的坐标为(1,4),P 是双曲线右支上的动点,则|PF |+ |PA |的最小值为________. 解析 如图所示,根据双曲线定义|PF |-|PF ′|=4, 即|PF |-4=|PF ′|.又|PA |+|PF ′|≥|AF ′|=5, 将|PF |-4=|PF ′|代入,得|PA |+|PF |-4≥5, 即|PA |+|PF |≥9,等号当且仅当A ,P ,F ′三点共线, 即P 为图中的点P 0时成立,故|PF |+|PA |的最小值为9.故填9.

高中数学经典高考难题集锦解析版

2015年10月18日姚杰的高中数学组卷 一.解答题(共10小题) 1.(2012?宣威市校级模拟)设点C为曲线(x>0)上任一点,以点C为圆心的圆与x 轴交于点E、A,与y轴交于点E、B. (1)证明多边形EACB的面积是定值,并求这个定值; (2)设直线y=﹣2x+4与圆C交于点M,N,若|EM|=|EN|,求圆C的方程.2.(2010?江苏模拟)已知直线l:y=k(x+2)与圆O:x2+y2=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S. (Ⅰ)试将S表示成的函数S(k),并求出它的定义域; (Ⅱ)求S的最大值,并求取得最大值时k的值. 3.(2013?越秀区校级模拟)已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x﹣2y=0的距离为.求该圆的方程. 4.(2013?柯城区校级三模)已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).(Ⅰ)求抛物线的标准方程; (Ⅱ)是否存在直线l:y=kx+t,与圆x2+(y+1)2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角时,有S△MON=48成立?若存在,求出直线的方程,若不存在,说明理由. 5.(2009?福建)(1)已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标. (2)已知直线l:3x+4y﹣12=0与圆C:(θ为参数)试判断他们的公共 点个数; (3)解不等式|2x﹣1|<|x|+1. 6.(2009?东城区一模)如图,已知定圆C:x2+(y﹣3)2=4,定直线m:x+3y+6=0,过A (﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.(Ⅰ)当l与m垂直时,求证:l过圆心C; (Ⅱ)当时,求直线l的方程; (Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理 由. 7.(2009?天河区校级模拟)已知圆C:(x+4)2+y2=4,圆D的圆心D在y 轴上且与圆C 外切,圆D与y 轴交于A、B两点,定点P的坐标为(﹣3,0). (1)若点D(0,3),求∠APB的正切值; (2)当点D在y轴上运动时,求∠APB的最大值; (3)在x轴上是否存在定点Q,当圆D在y轴上运动时,∠AQB是定值?如果存在,求出Q点坐标;如果不存在,说明理由. 8.(2007?海南)在平面直角坐标系xOy中,已知圆x2+y2﹣12x+32=0的圆心为Q,过点P (0,2)且斜率为k的直线与圆Q相交于不同的两点A,B.

相关文档
最新文档