高考物理带电粒子在磁场中的运动技巧和方法完整版及练习题

高考物理带电粒子在磁场中的运动技巧和方法完整版及练习题
高考物理带电粒子在磁场中的运动技巧和方法完整版及练习题

高考物理带电粒子在磁场中的运动技巧和方法完整版及练习题

一、带电粒子在磁场中的运动专项训练

1.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为

26qB L

m

;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A

发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.

(1)求碰撞后A 球的速度大小;

(2)若A 从ed 边离开磁场,求k 的最大值;

(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间.

【答案】(1)A 21k qBL v k m =?+(2)1(3)57k =或1

3

k =;32m t qB π=

【解析】 【分析】 【详解】

(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBL v m

= 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222

kmv kmv mv =+ 解得:A 21k qBL v k m

=

?+

(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2

A A mv qv

B R

= 解得:21

k

R L k =

+ 由公式可得R 越大,k 值越大

如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =

(3)令z 点为ed 边的中点,分类讨论如下:

(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有

222()(1.5)2

L

R L R =+-

解得:56

L R = 由21k R L k =

+可得:5

7

k =

(II )由图可知A 球能从z 点离开磁场要满足2

L

R ≥

,则A 球在磁场中还可能经历一次半

圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开. 如图3和如图4,由几何关系有:2

2

23()(3)2

2

L R R L =+- 解得:58L R =或2

L R = 由21k R L k =

+可得:511k =或13

k = 球A 在电场中克服电场力做功的最大值为222

6m q B L W m

=

当511k =时,A 58qBL v m =,由于2222222

A 12521286q

B L q B L mv m m

?=>

当13k =时,A 2qBL v m =,由于2222222

A 1286q

B L q B L mv m m

?=<

综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或1

3

k = A 球在磁场中运动周期为2m

T qB

π= 当13k =时,如图4,A 球在磁场中运动的最长时间34

t T = 即32m

t qB

π=

2.如图所示,在xOy 平面内,以O ′(0,R )为圆心,R 为半径的圆内有垂直平面向外的匀强磁场,x 轴下方有垂直平面向里的匀强磁场,两区域磁感应强度大小相等.第四象限有一与x 轴成45°角倾斜放置的挡板PQ ,P ,Q 两点在坐标轴上,且O ,P 两点间的距离大于2R ,在圆形磁场的左侧0

(1)磁场的磁感应强度B 的大小; (2)挡板端点P 的坐标;

(3)挡板上被粒子打中的区域长度.

【答案】(1)mv

qR (2)(21),0R ??+?? (3)21042R +- 【解析】 【分析】 【详解】

(1)设一粒子自磁场边界A 点进入磁场,该粒子由O 点射出圆形磁场,轨迹如图甲所示,过A 点做速度的垂线长度为r ,C 为该轨迹圆的圆心.连接AO ˊ、CO ,可证得ACOO ˊ为菱形,根据图中几何关系可知:粒子在圆形磁场中的轨道半径r =R ,

由2

v qvB m r

=

得:mv B qR

=

(2)有一半粒子打到挡板上需满足从O 点射出的沿x 轴负方向的粒子、沿y 轴负方向的粒子轨迹刚好与挡板相切,如图乙所示,过圆心D 做挡板的垂线交于E 点

2DP R =(21)OP R =

P 点的坐标为((21)R ,0 )

(3)设打到挡板最左侧的粒子打在挡板上的F 点,如图丙所示,OF =2R ①

过O 点做挡板的垂线交于G 点,

22(21)(1)OG R R =+?

=+② 225-22=2

FG OF OG R

=-③

2

2

EG R =

④ 挡板上被粒子打中的区域长度l =FE =

2R +5-222R =2+10-42R ⑤

3.如图所示,一匀强磁场磁感应强度为B ;方向向里,其边界是半径为R 的圆,AB 为圆的一直径.在A 点有一粒子源向圆平面内的各个方向发射质量m 、电量-q 的粒子,粒子重力不计.

(1)有一带电粒子以的速度垂直磁场进入圆形区域,恰从B 点射出.求此粒子在磁

场中运动的时间.

(2)若磁场的边界是绝缘弹性边界(粒子与边界碰撞后将以原速率反弹),某粒子沿半径方向射入磁场,经过2次碰撞后回到A 点,则该粒子的速度为多大?

(3)若R =3cm 、B =0.2T ,在A 点的粒子源向圆平面内的各个方向发射速度均为3×105m /s 、比荷为108C /kg 的粒子.试用阴影图画出粒子在磁场中能到达的区域,并求出该区域的面积(结果保留2位有效数字).

【答案】(1)(2)(3)

【解析】

【分析】

(1)根据洛伦兹力提供向心力,求出粒子的半径,通过几何关系得出圆弧所对应的圆心角,根据周期公式,结合t=T求出粒子在磁场中运动的时间.

(2)粒子径向射入磁场,必定径向反弹,作出粒子的轨迹图,通过几何关系求出粒子的半径,从而通过半径公式求出粒子的速度.

(3)根据粒子的半径公式求出粒子的轨道半径,作出粒子轨迹所能到达的部分,根据几何关系求出面积.

【详解】

(1)由得r1=2R

粒子的运动轨迹如图所示,则α=

因为周期.

运动时间.

(2)粒子运动情况如图所示,β=.

r2=R tanβ=R

由得

(3)粒子的轨道半径r3==1.5cm

粒子到达的区域为图中的阴影部分

区域面积为S=πr32+2×π(2r3)2?r32=9.0×10-4m2

【点睛】

本题考查了带电粒子在磁场中的运动问题,需掌握粒子的半径公式和周期公式,并能画出粒子运动的轨迹图,结合几何关系求解.该题对数学几何能力要求较高,需加强这方面的训练.

4.在水平桌面上有一个边长为L 的正方形框架,内嵌一个表面光滑的绝缘圆盘,圆盘所在区域存在垂直圆盘向上的匀强磁场.一带电小球从圆盘上的P 点(P 为正方形框架对角线AC 与圆盘的交点)以初速度v 0水平射入磁场区,小球刚好以平行于BC 边的速度从圆盘上的Q 点离开该磁场区(图中Q 点未画出),如图甲所示.现撤去磁场,小球仍从P 点以相同的初速度v 0水平入射,为使其仍从Q 点离开,可将整个装置以CD 边为轴向上抬起一定高度,如图乙所示,忽略小球运动过程中的空气阻力,已知重力加速度为g .求:

(1)小球两次在圆盘上运动的时间之比; (2)框架以CD 为轴抬起后,AB 边距桌面的高度.

【答案】(1)小球两次在圆盘上运动的时间之比为:π:2;(2)框架以CD 为轴抬起

后,AB 边距桌面的高度为

2

22v .

【解析】 【分析】 【详解】

(1)小球在磁场中做匀速圆周运动,

由几何知识得:r 2+r 2=L 2, 解得:r =

2

2

L , 小球在磁场中做圆周运的周期:T =

2r

v ,

小球在磁场中的运动时间:t1

=1 4 T

=

2

4

L

v

π

小球在斜面上做类平抛运动,

水平方向:x=r=v0t2,

运动时间:t2=

2

2

L

v

则:t1:t2=π:2;

(2)小球在斜面上做类平抛运动,沿斜面方向做初速度为零的匀加速直线运动,

位移:r=2

2

1

2

at,解得,加速度:a=

2

22v

L

对小球,由牛顿第二定律得:a=

mgsin

m

θ

=g sinθ,

AB边距离桌面的高度:h=L sinθ=

2

22v

g

5.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t0;:当在两板间加最大值为U0、周期为2t0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L,电子的质量为m、电荷量为e,其重力不计.

(1)求电子离开偏转电场时的位置到OO ’的最远位置和最近位置之间的距离 (2)要使所有电子都能垂直打在荧光屏上, ①求匀强磁场的磁感应强度B

②求垂直打在荧光屏上的电子束的宽度△y 【答案】(1)2010U e y t dm ?= (2)①00U t B dL =②2

010U e y y t dm

?=?= 【解析】 【详解】

(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:

2222

000max 00000311222y U e U e U e y at v t t t t dm dm dm

=

+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:

220min 001122U e y at t dm

=

= 最远位置和最近位置之间的距离:1max min y y y ?=-,

2

010U e y t dm

?=

(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:

sin L R θ

=

设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1

sin y v v θ=,

式中00y U e

v t dm

= 又:1

mv R Be =

解得:00U t

B dL

=

②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.

由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2

010U e y y t dm

?=?=

6.如图所示,荧光屏MN 与x 轴垂直放置,与x 轴相交于Q 点,Q 点的横坐标

06x cm =,在第一象限y 轴和MN 之间有沿y 轴负方向的匀强电场,电场强度

51.610/E N C =?,在第二象限有半径5R cm =的圆形磁场,磁感应强度0.8B T =,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴

上方180°范围内的各个方向发射比荷为

81.010/q

C kg m

=?的带正电的粒子,已知粒子的发射速率6

0 4.010/v m s =?.不考虑粒子的重力、粒子间的相互作用.求:

(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点间的最远距离. 【答案】(1)5cm (2)010y cm ≤≤ (3)9cm 【解析】 【详解】

(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动

2

0v qv B m r

=

解得:0

5mv r cm qB

=

= (2)由(1)问中可知r R =,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示,由几何关系可知四边形1PO FO '为菱形,所以1//FO O P ',又O P '垂直于x 轴,粒子出射的速度方向与轨迹半径1FO 垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为010y cm ≤≤.

(3)假设粒子没有射出电场就打到荧光屏上,有

000x v t =

2

012

h at =

qE a m

=

解得:18210h cm

R cm =>=,

说明粒子离开电场后才打到荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则

0x v t =

212

y at =

代入数据解得2x y =

设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出的电场时速度方向与x 轴正方向间的夹角为θ,

000

tan 2y qE x v m v y

v v θ===,

所以()()

00tan 22H x x x y y θ=-=-,

由数学知识可知,当()

022x y y -=时,即 4.5y cm =时H 有最大值,

所以max 9H cm =

7.如图所示,在不考虑万有引力的空间里,有两条相互垂直的分界线MN 、PQ ,其交点为O .MN 一侧有电场强度为E 的匀强电场(垂直于MN ),另一侧有匀强磁场(垂直纸面向里).宇航员(视为质点)固定在PQ 线上距O 点为h 的A 点处,身边有多个质量均为m 、电量不等的带负电小球.他先后以相同速度v0、沿平行于MN 方向抛出各小球.其中第1个小球恰能通过MN 上的C 点第一次进入磁场,通过O 点第一次离开磁场,OC=2h .求:

(1)第1个小球的带电量大小; (2)磁场的磁感强度的大小B ;

(3)磁场的磁感强度是否有某值,使后面抛出的每个小球从不同位置进入磁场后都能回到宇航员的手中?如有,则磁感强度应调为多大.

【答案】(1) 20

12mv q Eh

=;(2) 02E B v =;(3)存在,0E B v '=

【解析】 【详解】

(1)设第1球的电量为1q ,研究A 到C 的运动:

2

112q E h t m

=

02h v t =

解得:20

12mv q Eh

=;

(2)研究第1球从A 到C 的运动:

12

y q E

v h m

= 解得:0y v v =

tan 1y v v θ=

=,45o θ=,02v v =;

研究第1球从C 作圆周运动到达O 的运动,设磁感应强度为B

由21v q vB m R =得

1

mv

R q B = 由几何关系得:22sin R h θ= 解得:0

2E B v =

; (3)后面抛出的小球电量为q ,磁感应强度B '

①小球作平抛运动过程

002hm

x

v t v qE

== 2

y qE v h m

= ②小球穿过磁场一次能够自行回到A ,满足要求:sin R x θ=,变形得:sin mv

x qB θ'

= 解得:0

E B v '=

8.如图,PQ 分界线的右侧空间有一垂直纸面向里、磁感应强度为B 的匀强磁场。一质量为m 、电荷量为q 的粒子以速度v 0沿AC 方向由A 点射入。粒子经D 点时速度的偏向角(偏离原方向的夹角)θ=60°。(不计重力)

(1)试求AD 间的距离;

(2)若去除磁场,改为纸平面内垂直于AC 方向的匀强电场,要想由A 射入的粒子仍然能经过D 点,试求该电场的强度的大小及方向;粒子此时经D 点时速度的偏向角比60°角大还是小?为什么? 【答案】(1)o

mv R=Bq

(2)a<60? 【解析】 【详解】

(1)带电粒子在磁场中做匀速圆周运动,速度偏角为60?,则粒子转过的圆心角为60?, 即AD=R

由20

0v qv B m R

=

得AD =0

mv R Bq

=

(2)经D点

3

cos30

x R R =

?=,

1

sin30

2

y R R

=?=

而0

x v t

=,2

1

2

y at

=,

qE

a

m

=

解得

4

3

E Bv

=,方向垂直AC向上

速度偏向角y

x

v

v

tana=,

y

v at

=

解得

2

tan2tan303

3

α=?=

而tan60=3

?,即tan tan60

α

α?

9.如图甲所示,边长为L的正方形ABCD区域内(含边界)有垂直纸面向里的匀强磁场。在正方形的几何中心O处有一粒子源,垂直磁场沿各个方向发射速率为v0的带电荷量为-q 的粒子,粒子质量为m。图中x、y轴分别过正方形四边的中点E、F、G、H不计粒子重力及相互作用。

(1)为了使粒子不离开正方形ABCD区域则磁感应强度B1应该满足什么条件?

(2)改变磁场的强弱,若沿与y轴成60°(如图乙所示)方向发射的粒子在磁场中运动时间最短,求磁感应强度B2的大小;

(3)若磁感应强度大小为(2)中B2,则粒子离开磁场边界的范围。(结果可用根号表示)

【答案】(1) (2) (3)从AB边射出的坐标为

从BD边射出的坐标为

从CD边射出的坐标为

从AC边射出的坐标为

【解析】

【分析】

(1)粒子经过磁场后恰好不飞出,则临界情况是粒子与磁场边界相切,画出轨迹,根据几何关系求出轨迹半径,再由牛顿第二定律求出B的值.(2)运动时间最短应找最小的圆心角,则找劣弧中弦长最短的轨迹;(3)由轨迹与边界相切或相交的各种情况找到临界半径,从而得到飞出的边界范围.

【详解】

(1)为使粒子不离开正方形ABCD区域,则粒子在磁场中圆周运动的半径需满足如下关系:

联立解得:

(2)由分析可知,所有粒子中,过正方形边长中点的粒子所需时间最短,

由几个关系得:

(3)从AB边出射的粒子,轨迹如图所示:

分析可知,

解得:

当粒子运动轨迹与BG相切时,打到右边最远处,由几何关系得,

解得:

综上粒子从AB边射出的坐标为

同理求得,从BD边射出的粒子,位置坐标为

同理求得,从CD边射出的粒子,位置坐标为

同理求得,从AC边射出的粒子,位置坐标为

【点睛】

解答带电粒子在磁场中运动的习题,关键是画出粒子的运动轨迹,尤其是临界轨迹,然后由几何关系求出圆周运动的半径从而可以顺利求解速度大小.

10.如图所示,平面直角坐标系xoy的第二、三象限内有方向沿y轴正向的匀强电场,第

一、四象限内有圆形有界磁场,有界磁场的半径为当

2

2

L,磁扬场的方向垂直于坐标平面向里,磁场边界与y轴相切于O点,在x轴上坐标为(-L,0)的P点沿与x轴正向成θ=45°方向射出一个速度大小为v0的带电粒子,粒子的质量为m,电荷量为q,粒子经电场偏转垂直y轴射出电场,粒子进人磁场后经磁场偏转以沿y轴负方向的速度射出磁场,不计粒子的重力.求

(1)粒子从y轴上射出电场的位置坐标;

(2)匀强电场电场强度大小及匀强磁场的磁感应强度大小;

(3)粒子从P点射出到出磁场运动的时间为多少?

【答案】(1)(0,

1

2

L)(2)

2

2

mv

E

qL

=0

2

2

mv

B

qL

=(3)

00

2(1)

2

L L

t

v v

π

+

=+

【解析】

【分析】

(1)粒子在电场中的运动为类平抛运动的逆过程,应用类平抛运动规律可以求出粒子出射位置坐标.

(2)应用牛顿第二定律求出粒子在电场中的加速度,应用位移公式求出电场强度;粒子在磁场中做圆周运动,应用牛顿第二定律可以求出磁感应强度.

(3)根据粒子运动过程,求出粒子在各阶段的运动时间,然后求出总的运动时间.

【详解】

(1)粒子在电场中的运动为类平抛运动的逆运动,

水平方向:L=v0cosθ?t1,

竖直方向:y=1 2 v0

sinθ?t1,

解得:y=

1

2

L,

粒子从y轴上射出电场的位置为:(0,

1

2

L);

(2)粒子在电场中的加速度:a=qE

m

竖直分位移:y=

1

2

a t12,

解得:

2

2

mv

E

qL

=;

粒子进入磁场后做匀速圆周运动,粒子以沿y轴负方向的速度射出磁场,粒子运动轨迹运动轨迹如图所示,

由几何知识得:AC与竖直方向夹角为45°,

2y=

2

2

L,

因此AAC刚好为有界磁场边界圆的直径,粒子在磁场中做圆周运动的轨道半径:r=L,

粒子在磁场中做圆周运动,由牛顿第二定律得:qvB=m

2

v

r

其中,粒子的速度:v=v0cosθ,

解得:0

2

2

mv

B

qL

=;

(3)粒子在电场中的运动时间:

1

00

2

L L

t

v cos v

θ

==,

粒子离开电场进入磁场前做匀速直线运动,位移:

21

2

x L L

=-,

粒子做运动直线运动的时间:

2

(22)

2

x L

t

v v

==,

粒子在磁场中做圆周运动的时间:

3

1122

442

m L

t T

qB v

ππ

==?=,

粒子总的运动时间:t=t1+t2+t3=

()

00

21

2

L

L

v v

π

+

+;

【点睛】

本题考查了带电粒子在磁场中运动的临界问题,粒子在磁场中的运动运用洛伦兹力提供向心力结合几何关系求解,类平抛运动运用运动的合成和分解牛顿第二定律结合运动学公式求解,解题关键是要作出临界的轨迹图,正确运用数学几何关系,分析好从电场射入磁场衔接点的速度大小和方向,运用粒子在磁场中转过的圆心角,结合周期公式,求解粒子在磁场中运动的时间.

11.如图为一装放射源氡的盒子,静止的氡核经过一次α衰变成钋Po,新核Po的速率约为2×105m/s.衰变后的α粒子从小孔P进入正交的电磁场区域Ⅰ,且恰好可沿中心线匀速通过,磁感应强度B=0.1T.之后经过A孔进入电场加速区域Ⅱ,加速电压U=3×106V.从区域Ⅱ射出的α粒子随后又进入半径为r=

3

m的圆形匀强磁场区域Ⅲ,该区域磁感应强度B0=0.4T、方向垂直纸面向里.圆形磁场右边有一竖直荧光屏与之相切,荧光屏的中心点M 和圆形磁场的圆心O、电磁场区域Ⅰ的中线在同一条直线上,α粒子的比荷为

q

m

=5×107C/kg.

(1)请写出衰变方程,并求出α粒子的速率(保留一位有效数字);

(2)求电磁场区域Ⅰ的电场强度大小;

(3)粒子在圆形磁场区域Ⅲ的运动时间多长?

(4)求出粒子打在荧光屏上的位置.

【答案】(1)2222184

86842

Rn Po He

→+1×107 m/s

(2)1×106V/m

(3)

6

π

×10-7s

(4)打在荧光屏上的M点上方1 m处

【解析】

【分析】

(1)根据质量数守恒和电荷数守恒写出方程,根据动量守恒求解速度;

(2)根据速度选择器的原理求解电场强度的大小;

(3)粒子在磁场中匀速圆周运动,并结合几何知识进行求解即可; 【详解】

(1)根据质量数守恒和电荷数守恒,则衰变方程为:

2222184

86

842Rn Po He →

+ ①

设α粒子的速度为0v ,则衰变过程动量守恒:100Po He m v m v =- ②

联立①②可得:7

0110/v m s =? ③

(2)α粒子匀速通过电磁场区域Ⅰ:0qE qv B =④ 联立③④可得:6110/E V m =? ⑤ (3)α粒子在区域Ⅱ被电场加速:2201122

qU mv mv =- 所以得到:7210/v m s =?⑥

α粒子在区域Ⅲ中做匀速圆周运动: 2v qvB m R

= 所以轨道半径为:1R m =⑦ 而且:2R

T v

π=

⑧ 由图根据几何关系可知:α粒子在磁场中偏转角60θ=?,所以α粒子在磁场中的运动时

间1

6

t T =

⑨ 联立⑧⑨可得:7106

t s π

=

?-;

(4)α粒子的入射速度过圆心,由几何关系可知,出射速度方向也必然过圆心O ,几何关系如图: 60x

tan r

?=

,所以1x m =,α粒子打在荧光屏上的M 点上方1m 处.

【点睛】

本题实质是考查带电粒子在电场和磁场中的运动,解决类似习题方法是洛伦兹力提供向心力,同时结合几何知识进行求解,同时画出图形是解题的关键.

12.如图所示,直径分别为D 和2D 的同心圆处于同一竖直面内,O 为圆心,GH 为大圆的水平直径。两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁

高中物理运动学经典习题30道 带答案

一.选择题(共28小题) 1.(2014?陆丰市校级学业考试)某一做匀加速直线运动的物体,加速度是2m/s2,下列关于该物体加速度的理解 D 9.(2015?沈阳校级模拟)一物体从H高处自由下落,经时间t落地,则当它下落时,离地的高度为() D 者抓住,直尺下落的距离h,受测者的反应时间为t,则下列结论正确的是()

∝ ∝ 光照射下,可观察到一个下落的水滴,缓缓调节水滴下落的时间间隔到适当情况,可以看到一种奇特的现象,水滴似乎不再下落,而是像固定在图中的A、B、C、D四个位置不动,一般要出现这种现象,照明光源应该满足(g=10m/s2)() 地时的速度之比是 15.(2013秋?忻府区校级期末)一观察者发现,每隔一定时间有一滴水自8m高的屋檐落下,而且看到第五滴水 D

17.(2014秋?成都期末)如图所示,将一小球从竖直砖墙的某位置由静止释放.用频闪照相机在同一底片上多次曝光,得到了图中1、2、3…所示的小球运动过程中每次曝光的位置.已知连续两次曝光的时间间隔均为T,每块砖的厚度均为d.根据图中的信息,下列判断正确的是() 小球下落的加速度为 的速度为 :2 D: 2 D O点向上抛小球又落至原处的时间为T2在小球运动过程中经过比O点高H的P点,小球离开P点至又回到P 23.(2014春?金山区校级期末)一只气球以10m/s的速度匀速上升,某时刻在气球正下方距气球6m处有一小石 2

v0v0D 27.(2013?洪泽县校级模拟)一个从地面竖直上抛的物体,它两次经过同一较低a点的时间间隔为T a,两次经 g(T a2﹣T b2)g(T a2﹣T b2)g(T a2﹣T b2)D g(T a﹣T b) 28.(2013秋?平江县校级月考)在以速度V上升的电梯内竖直向上抛出一球,电梯内观者看见小球经t秒后到 h=

高考物理直线运动知识点归纳

2019-2019高考物理直线运动知识点归纳对于查字典物理网整理的这篇直线运动知识点,希望大家认真阅读,好好感受,勤于思考,多读多练,从中吸取精华。 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式.为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动. 2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。 3.位移和路程:位移描述物体位置的变化,是从物体运动的初位置指向末位置的有向线段,是矢量.路程是物体运动轨迹的长度,是标量. 路程和位移是完全不同的概念,仅就大小而言,一般情况下位移的大小小于路程,只有在单方向的直线运动中,位移的大小才等于路程. 4.速度和速率 (1)速度:描述物体运动快慢的物理量.是矢量. ①平均速度:质点在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间(或位移)的平均速度v,即v=s/t,

平均速度是对变速运动的粗略描述. ②瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧.瞬时速度是对变速运动的精确描述. (2)速率:①速率只有大小,没有方向,是标量. ②平均速率:质点在某段时间内通过的路程和所用时间的比值叫做这段时间内的平均速率.在一般变速运动中平均速度的大小不一定等于平均速率,只有在单方向的直线运动,二者才相等. 10.运动图像 (1)位移图像(s-t图像):①图像上一点切线的斜率表示该时刻所对应速度; ②图像是直线表示物体做匀速直线运动,图像是曲线则表示物体做变速运动; ③图像与横轴交叉,表示物体从参考点的一边运动到另一边. (2)速度图像(v-t图像):①在速度图像中,可以读出物体在任何时刻的速度; ②在速度图像中,物体在一段时间内的位移大小等于物体的速度图像与这段时间轴所围面积的值. ③在速度图像中,物体在任意时刻的加速度就是速度图像上所对应的点的切线的斜率. ④图线与横轴交叉,表示物体运动的速度反向.

2021届高考物理人教版二轮复习 计算题精解训练 机械波 作业(12) 含解析

2021届高考物理二轮复习计算题精解训练 (12)机械波 1.如图是一列横波在某一时刻的波形图像。已知这列波的频率为5 Hz ,此时0.5 m x =处的质点正向 y 轴正方向振动,可以推知: (1)这列波正在沿轴哪个方向方向传播; (2)波速大小是多少; (3)该质点1 s 内通过的路程是多少。 2.一列沿 x 轴传播的简谐横波,在0t =时刻的波形如图实线所示,在1=0.2 s t 时刻的波形如图虚线所示: (1)若波向 x 轴负方向传播,求该波的最小波速; (2)若波向 x 轴正方向传播,且1t T <,求 2 m x =处的 P 质点第一次出现波峰的时刻。 3.简谐横波沿 x 轴传播,M N 、是 x 轴上两质点,如图甲是质点 N 的振动图象.图乙中实线是 3 s t =时刻的波形图象,质点 M 位于8 m x =处,虚线是再过t ?时间后的波形图象.图中两波峰间距离7.0 m x ?=.求 (1)波速大小和方向; (2)时间t ?.

4.如图所示、一列简谐横波沿 x 轴正方向传播,实线和虚线分别为10 s t =时与2 2 s t =时的波形图像,已知该波中各个质点的振动周期大于4 s 。求: (i)该波的传播速度大小; (ii)从10 s t =开始计时,写出 1 m x =处质点的振动方程。 5.如图,在平静的湖面上有相距12 m 的B C 、两片小树叶,将一枚小石子投到B C 、连线左侧的 O 点, 6 m OB =,经过24 s ,第1个波峰传到树叶 B 时,第13个波峰刚好在 O 点形成。求: (ⅰ)这列水波的波长和水波的频率; (ⅱ)从第1个波峰传到树叶 B 算起,需要多长时间 C 树叶开始振动。 6.如图所示,图甲为一列简谐横波在2s t =时的图象,Q 为4m x =处的质点,P 为11m x =处的质点,图乙为质点P 的振动图象。 (1)求质点P 的振动方程及该波的传播速度; (2)2s t =后经过多长时间Q 点位于波峰?

高中物理 运动学经典试题

1.如图所示,以匀速行驶的汽车即将通过路口,绿灯还有2 s 将熄灭,此时汽车距离 停车线18m 。该车加速时最大加速度大小为,减速时最大加速度大小为。 此路段允许行驶的最大速度为,下列说法中正确的有 A .如果立即做匀加速运动,在绿灯熄灭前汽车可能通过停车线 B .如果立即做匀加速运动,在绿灯熄灭前通过停车线汽车一定超速 C .如果立即做匀减速运动,在绿灯熄灭前汽车一定不能通过停车线 D .如果距停车线处减速,汽车能停在停车线处 2.甲、乙两车在公路上沿同一方向做直线运动,它们的 v -t 图象如图所示.两图象在t =t 1时 相交于P 点,P 在横轴上的投影为Q ,△OPQ 的面积为S .在t =0时刻,乙车在甲车前面,相距为 d .已知此后两车相遇两次,且第一次相遇的时刻为t ′,则下面四组t ′和d 的组合可能的是 ( ) A . B . C . D . 3.A 、B 两辆汽车在笔直的公路上同向行驶,当B 车在A 车前84 m 处时,B 车速度为4 m/s ,且以2 m/s 2的加速度做匀加速运动;经过一段时间后,B 车加速度突然变为零.A 车一直以20 m/s 的速度做匀速运动,经过12 s 后两车相遇.问B 车加速行驶的时间是多少? 4. 已知O 、A 、B 、C 为同一直线上的四点.AB 间的距离为l 1,BC 间的距离为l 2,一物体自O 点 由静止出发,沿此直线做匀加速运动,依次经过A 、B 、C 三点,已知物体通过AB 段与BC 段所用的时间相等.求O 与A 的距离. 5. 甲乙两辆汽车在平直的公路上沿同一方向作直线运动,t =0时刻同时经过公路旁的同一 个路标.在描述两车运动的v -t 图中(如图),直线a 、b 分别描述了甲乙两车在0~20秒的 运动情况.关于两车之间的位置关系,下列说法正确的是 ( ) A .在0~10秒内两车逐渐靠近 B .在10~20秒内两车逐渐远离 C .在5~15秒内两车的位移相等 D .在t =10秒时两车在公路上相遇 6.如图是一娱乐场的喷水滑梯.若忽略摩擦力,人从滑梯顶 端滑下直到入水前,速度大小随时间变化的关系最接近图 8m/s 22m/s 25m/s 12.5m/s 5m S d t t ==',1S d t t 41,211=='S d t t 2 1,211=='S d t t 43,211=='

2020高考物理运动学专题练习

直线运动规律及追及问题 一 、 例题 例题1.一物体做匀变速直线运动,某时刻速度大小为4m/s ,1s 后速度的大小变为10m/s ,在这1s 内该物体的 ( ) A.位移的大小可能小于4m B.位移的大小可能大于10m C.加速度的大小可能小于4m/s D.加速度的大小可能大于10m/s 析:同向时2201/6/14 10s m s m t v v a t =-=-= m m t v v s t 71210 4201=?+=?+= 反向时2202/14/14 10s m s m t v v a t -=--=-= m m t v v s t 312 10 4202-=?-=?+= 式中负号表示方向跟规定正方向相反 答案:A 、D 例题2:两木块自左向右运动,现用高速摄影机在同一底片上多次曝光,记录下木快每次曝光时的位置,如图所示,连续两次曝光的时间间隔是相等的,由图可知 ( ) A 在时刻t 2以及时刻t 5两木块速度相同 B 在时刻t1两木块速度相同 C 在时刻t 3和时刻t 4之间某瞬间两木块速度相同 D 在时刻t 4和时刻t 5之间某瞬间两木块速度相同 解析:首先由图看出:上边那个物体相邻相等时间内的位移之差为恒量,可以判定其做匀变速直线运动;下边那个物体很明显地是做匀速直线运动。由于t 2及t 3时刻两物体位置相同,说明这段时间内它们的位移相等,因此其中间时刻的即时速度相等,这个中间时刻显然在t 3、t 4之间 答案:C 例题3 一跳水运动员从离水面10m 高的平台上跃起,举双臂直立身体离开台面,此时中心位于从手到脚全长的中点,跃起后重心升高0.45m 达到最高点,落水时身体竖直,手先入水(在此过程中运动员水平方向的运动忽略不计)从离开跳 台到手触水面,他可用于完成空中动作的时间是多少?(g 取10m/s 2 结果保留两位数字) 解析:根据题意计算时,可以把运动员的全部质量集中在重心的一个质点,且忽略其水平方向 的运动,因此运动员做的是竖直上抛运动,由g v h 22 0=可求出刚离开台面时的速 度 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 1 t 2 t 3 t 4 t 5 t 6 t 7

2020高考物理计算题专题训练含答案

计算题 1.为了使航天员能适应在失重环境下是的工作和生活,国家航天局组织对 航天员进行失重训练。故需要创造一种失重环境;航天员乘坐到民航客机 上后,训练客机总重5×104kg,以200m/s速度沿300倾角爬升到7000米 高空后飞机向上拉起,沿竖直方向以200m/s 的初速度向上作匀减速直线 运动,匀减速的加速度为g,当飞机到最高点后立即掉头向下,仍沿竖直 方向以加速度为g加速运动,在前段时间内创造出完全失重,当飞机离地 2000米高时为了安全必须拉起,后又可一次次重复为航天员失重训练。若 飞机飞行时所受的空气阻力f=Kv(k=900N·s/m),每次飞机速度达到 350m/s 后必须终止失重训练(否则Array飞机可能失速)。 求:(1)飞机一次上下运动为航天员创 造的完全失重的时间。 (2)飞机下降离地4500米时飞机 发动机的推力(整个运动空间重力加速 度不变)。 (3)经过几次飞行后,驾驶员想在保持其它不变,在失重训练时间不 变的情况下,降低飞机拉起的高度(在B点前把飞机拉起)以节约燃油, 若不考虑飞机的长度,计算出一次最多能节约的能量。

2.如图所示是一种测定风速的装置,一个压力传感器固定在竖直墙上,一弹簧一端固定在传感器上的M 点,另一端N 与导电的迎风板相连,弹簧穿在光滑水平放置的电阻率较大的金属细杆上,弹簧是不导电的材料制成的。测得该弹簧的形变量与压力传感器示数关系见下表。 迎风板面积S =0.50m 2,工作时总是正对着风吹来的方向。电路的一端与迎风板相连,另一端在M 点与金属杆相连。迎风板可 在金属杆上滑动,且与金属杆接触良好。定值电阻R =1.0Ω,电源的电动势E =12V ,内阻r =0.50Ω。闭合开关,没有风吹时,弹簧处于原长L 0=0.50m ,电压 传感器的示数U 1=3.0V ,某时刻由于风吹迎风板,电压传感器的示数变为 U 2=2.0V 。求: (1)金属杆单位长度的电阻; 形变量(m ) 0 0.1 0.2 0.3 0.4 压 力(N ) 0 130 260 390 520

高考物理一轮复习直线运动知识点

2019高考物理一轮复习直线运动知识点 运动物体通过的路径叫做物体的运动轨迹。以下是直线运动知识点,请考生学习。 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-V o2=2as 3.中间时刻速度Vt/2=V平=(Vt+V o)/2 4.末速度Vt=V o+at 5.中间位置速度Vs/2=[(V o2+Vt2)/2]1/2 6.位移s=V平 t=V ot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以V o为正方向,a与V o同向(加速)a 反向则a0} 8.实验用推论s=aT2 {s为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(V o):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。 注: (1)平均速度是矢量;考试用书 (2)物体速度大,加速度不一定大; (3)a=(Vt-V o)/t只是量度式,不是决定式; (4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。 2)自由落体运动

1.初速度V o=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从V o位置向下计算) 4.推论Vt2=2gh 注: (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=9.8m/s210m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 3)竖直上抛运动 1.位移s=V ot-gt2/2 2.末速度Vt=V o-gt (g=9.8m/s210m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=V o2/2g(抛出点算起) 5.往返时间t=2V o/g (从抛出落回原位置的时间) 注: (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值; (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向等。直线运动知识点的全部内容就是这些,查字典物理网预祝考生可以取得优异的成绩。 2019年高考第一轮复习备考专题已经新鲜出炉了,专题包含高考各科第一轮复习要点、复习方法、复习计划、复习试题,

2020届高考物理计算题复习《竖直上抛运动》(解析版)

《竖直上抛运动》 计算题 在竖直井的井底,将一物块以 的速度竖直向上抛出,物块在上升过程 中做加速度大小 的匀减速直线运动,物块上升到井口时被人接住,在 被人接住前1s 内物块的位移 求: 物块从抛出到被人接住所经历的时间; 此竖直井的深度. 原地纵跳摸高是篮球和羽毛球重要的训练项目。已知质量 的运动员原地 摸高为 米,比赛过程中,该运动员先下蹲, 重心下降 米,经过充分调整后, 发力跳起摸到了 米的高度。假设运动员起跳过程为匀加速运动,忽略空气阻 力影响,g 取 求: 1. 如图甲所示,将一小球从地面上方 气阻力,上升和下降过程中加速度不变, 小球从抛出到上升至最高点所需的时间 小球从抛出到落地所需的时间 t; 在图乙中画出小球从抛出到落地过程中的 处以 的速度竖直上抛,不计空 g 取 ,求: 图象。 2. 3.

该运动员离开地面时的速度大小为多少; 起跳过程中运动员对地面的压力; 从开始起跳到双脚落地需要多少时间? 4. 气球以的速度匀速上升,当它上升到离地面40m高处,从气球上落下一个物 体.不计空气阻力,求物体落到地面需要的时间;落到地面时速度的大小. 5.小运动员用力将铅球以的速度沿与水平方向成 方向推出,已知铅球出手点到地面的高度为 求: 铅球出手后运动到最高点所需时间; 铅球运动的最高点距地面的高度H ; 铅球落地时到运动员投出点的水平距离x.

6. 气球下挂一重物,以的速度匀速上升,当到达离地高度处时, 悬挂重物的绳子突然断裂,空气阻力不计,g取则求: 绳断后物体还能向上运动多高? 绳断后物体再经过多长时间落到地面。 落地时的速度多大? 7.气球下挂一重物,以的速度匀速上升,当到达离地高度 处时,悬挂重物的绳子突然断裂,那么重物经多长时间落 到地面?落地时的速度多大?空气阻力不计,g取。 8.气球以的速度匀速上升,在离地面75m高处从气球上掉落一个物体,结果气 球便以加速度向上做匀加速直线运动,不计物体在下落过程中受到的 空气阻力,问物体落到地面时气球离地的高度为多少?

高三物理复习〈运动学〉测试题

1.(07北京理综18)图示为高速摄影机拍摄到的子弹穿透苹果瞬间的照片.该照片经放大后分析出,在曝光时间内,子弹 影像前后错开的距离约为子弹长度的1%~2%.已知子弹飞 行速度约为500 m/s,由此可估算出这幅照片的曝光时间最 接近() A.10-3 s B.10-6 s C.10-9 s D.10-12 s 2.(1)在测定匀变速直线运动加速度的实验中,将以下步骤的代号按合理顺序填空写在横线上:_____________. (A)拉住纸带,将小车移至靠近打点计时器处,先接通电源,后放开纸带; (B)将打点计时器固定在平板上,并接好电路; (C)把一条细绳拴在小车上,细绳跨过定滑轮,下面吊着重量适当的钩码; (D)断开电源,取下纸带; (E)将平板一端抬高,轻推小车,使小车恰能在平板上作匀速运动; (F)将纸带固定在小车尾部,并穿过打点计时器的限位孔; (G)换上新的纸带,再重复做两三次. (2)某同学利用打点计时器所 记录的纸带来研究做匀变速 直线运动小车的运动情况, 实验中获得一条纸带,如图 三所示,其中两相邻计数点 间有四个点未画出。已知所 用电源的频率为50H Z,则打A点时小车运动的速度v A=_______m/s,小车运动的加速度a=_______m/s2。(结果要求保留三位有效数字) 3.如右图所示,甲、乙两个同学在平直跑道上练习“4×100m” 接力,他们在奔跑时具有相同的最大速度。乙从静止开始全力奔跑需跑出25m才能达到最大速度,这一过程可视为匀变速运动。现在甲手持接力棒以最大速度向乙奔来,乙在接力区伺机全力奔出。若要 求乙接棒时奔跑速度达到最大速度的80%,试求: ⑴乙在接力区须奔跑多少距离? ⑵乙应在距离甲多远处时起跑?5.(07全国卷Ⅰ23)甲乙两运动员在训练交接棒的过程中发现:甲经短距离加速后能保 持9 m/s 的速度跑完全程;乙从起跑后到接棒前的运动是匀加速的.为了确定乙起跑的时机,需在接力区前适当的位置设置标记.在某次练习中,甲在接力区前s0=13.5 m 处作了标记,并以v=9 m/s 的速度跑到此标记时向乙发出起跑口令.乙在接力区的前端听到口令时起跑,并恰好在速度达到与甲相同时被甲追上,完成交接棒.已知接力区的长度为L=20 m.求: (1)此次练习中乙在接棒前的加速度 a. (2)在完成交接棒时乙离接力区末端的距离. 6.(08·四川理综·23)A、B两辆汽车在笔直的公路上同向行驶,当B车在A车前84 m 处时,B 车速度为 4 m/s,且以2 m/s2的加速度做匀加速运动;经过一段时间后,B车加速度突然变为零.A车一直以20 m/s的速度做匀速运动,经过12 s后两车相遇.问B车加速行驶的时间是多少? .如图所示,直线MN表示一条平直公路,甲、乙两辆汽车原来停在A、B两处, A、B间的距离为85m,现甲车先开始向右做匀加速直线运动,加速度a1=2.5m/s2, 甲车运动 6.0s时,乙车立即开始向右做匀加速直线运动,加速度a2=5.0m/s2,求两 辆汽车相遇处距A处的距离. 8.火车A以速度v1匀速行驶,司机发现正前方同一轨道上相距s处有另一火车B沿同方向以速度v2(对地,且v2小于v1)做匀速运动,A车司机立即以加速度(绝对值)a紧急刹车,为使两车不相撞,a应满足什么条件?

高考物理专题复习--21运动学图像专题知识要点

运动学图像专题 主标题:运动学图像专题 副标题:剖析考点规律,明确高考考查重点,为学生备考提供简洁有效的备考策略。 关键词:匀变速直线运动,图像 难度:3 重要程度:3 内容: 1、考点剖析:运动图像是高考中的热点,多以选择题出现(在计算题中也有应用),难度中等。高考较注重学生对图像的理解,有些题目利用图像分析求解能使问题简化,深刻理解运动图像的物理意义,能从图像中获得有效信息,灵活运用运动学规律公式是解决此类问题的关键。 2、知识点:利用图像法可直观地反映物理规律,分析物理问题。图像法是物理研究中常用的一种重要方法,运动学中常用的图像为v-t图像。在理解图像物理意义的基础上,用图像法分析解决有关问题(如往返运动、定性分析等)会显示出独特的优越性,解题既直观又方便。 3、题型分类:(主要讨论v-t图像和s-t图像,其他图像的意义在例题中说明) 点:即图像的各种交点;v-t图像中表示该时刻两物体的速度相同;s-t图像中表示该时刻两物体的位移相同 线:即图像的斜率;v-t图像中表示该时刻物体的加速度;s-t图像中表示该时刻物体的速度 面:即图像的面积;v-t图像中表示一段时间内的位移;s-t图像中无意义; 例1、如图所示是某质点做直线运动的v-t图像,由图可知这个质点的运动情况是( ) A、前5s做的是匀速运动 B、5s~15s内做匀加速运动,加速度为1m/s2 C、15s~20s内做匀减速运动,加速度为3.2m/s2 D、质点15s末离出发点最远,20秒末回到出发点 【解析】由图像可知前5s做的是匀速运动,选项A正确;5~15s内做匀加速度运动,加速度为0.8m/s2,选项B错误;15s~20s做匀减速运动,加速度为-3.2m/s2,选项C错,质点一直做单方向的直线运动,在20s末离出发点最远,选项D错误。 【答案】A 例2、如图所示是甲、乙两物体从同一点出发的位移-时间(x-t)图像,由图像可以看出在0~4s这段时间内( )

高考物理重要知识点直线运动

2019年高考物理重要知识点直线运动 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式.为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动. 2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。 3.位移和路程:位移描述物体位置的变化,是从物体运动的初位置指向末位置的有向线段,是矢量.路程是物体运动轨迹的长度,是标量. 路程和位移是完全不同的概念,仅就大小而言,一般情况下位移的大小小于路程,只有在单方向的直线运动中,位移的大小才等于路程. 4.速度和速率 (1)速度:描述物体运动快慢的物理量.是矢量. ①平均速度:质点在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间(或位移)的平均速度v,即v=s/t,平均速度是对变速运动的粗略描述. ②瞬时速度:运动物体在某一时刻(或某一位置)的速度,

方向沿轨迹上质点所在点的切线方向指向前进的一侧.瞬时速度是对变速运动的精确描述. (2)速率:①速率只有大小,没有方向,是标量. ②平均速率:质点在某段时间内通过的路程和所用时间的比值叫做这段时间内的平均速率.在一般变速运动中平均速度的大小不一定等于平均速率,只有在单方向的直线运动,二者才相等. 10.运动图像 (1)位移图像(s-t图像):①图像上一点切线的斜率表示该时刻所对应速度; ②图像是直线表示物体做匀速直线运动,图像是曲线则表示物体做变速运动; ③图像与横轴交叉,表示物体从参考点的一边运动到另一边. (2)速度图像(v-t图像):①在速度图像中,可以读出物体在任何时刻的速度; ②在速度图像中,物体在一段时间内的位移大小等于物体的速度图像与这段时间轴所围面积的值. ③在速度图像中,物体在任意时刻的加速度就是速度图像上所对应的点的切线的斜率. ④图线与横轴交叉,表示物体运动的速度反向. ⑤图线是直线表示物体做匀变速直线运动或匀速直线运

高考物理计算题专项练习(轨道型)

高三物理计算题专练(轨道类) 1.如图所示,质量为m=0.10kg的小物块以初速度v0=4.0m/s,在粗糙水平桌面上做直线运动,经时间t=0.4s后以速度v飞离桌面,最终落在水平地面上。已知物块与桌面间的动摩擦因数μ=0.25,桌面离地高h=0.45m,不计空气阻力,重力加速度g取10m/s2。求: (1)小物块飞离桌面时的速度大小v。 (2)小物块落地点距飞出点的水平距离s。 2.如图所示,一滑板爱好者总质量(包括装备)为50kg,从以O为圆心,半径为R=1.6m光滑圆弧轨道的A点(α=60°)由静止开始下滑,到达轨道最低点B后(OB在同一竖直线上),滑板爱好者沿水平切线飞出,并恰好从C点以平行斜面方向的速度进入倾角为37°的斜面,若滑板与斜面的动摩擦因数为μ=0.5,斜面长s=6m,(g取10m/s2,sin37°=0.6,cos37°=0.8)求: (1)滑板爱好者在B、C间运动的时间。 (2)滑板爱好者到达斜面底端时的速度大小。 3.学校科技节上,同学发明了一个用弹簧枪击打目标的装置,原理如图甲,AC段是水平放置的同一木板;CD段是竖直放置的光滑半圆弧轨道,圆心为O,半径R=0.2m;MN是与O点处在同一水平面的平台;弹簧的左端固定,右端放一可视为质点、质量m=0.05kg的弹珠P,它紧贴在弹簧的原长处B点;对弹珠P施加一水平外力F,缓慢压缩弹簧,在这一过程中,所用外力F与弹簧压缩量x的关系如图乙所示。已知BC段长L=1.2m,EO间的距离s=0.8m。计算时g取10m/s2,滑动摩擦力等于最大静摩擦力。压缩弹簧释放弹珠P后,求:

(1)弹珠P通过D点时的最小速度v D; (2)弹珠P能准确击中平台MN上的目标E点,它通过C点时的速度v C; (3)当缓慢压缩弹簧到压缩量为x0时所用的外力为8.3N,释放后弹珠P能准确击中平台MN 上的目标E点,求压缩量x0。 4.一长l=0.80m的轻绳一端固定在O点,另一端连接一质量m=0.10kg的小球,悬点O距离水平地面的高度H=1.00m。开始时小球处于A点,此时轻绳拉直处于水平方向上,如图所示。让小球从静止释放,当小球运动到B点时,轻绳碰到悬点O正下方一个固定的钉子P时立刻断裂。不计轻绳断裂的能量损失,重力加速度g取10m/s2。求: (1)当小球运动到B点时的速度大小。 (2)绳断裂后球从B点抛出并落在水平地面的C点,求C点与B点之间的水平距离。 (3)若OP=0.6m,轻绳碰到钉子P时绳中拉力达到所能承受的最大拉力断裂,求轻绳能承受的最大拉力。

高中物理运动学测精彩试题(附答题卷和问题详解)

运动学测试(附答案) 一.不定项选择题(5分×12=60分) 1. 一物体以初速度0v 、加速度a 做匀加速直线运动,若物体从t 时刻起,加速度a 逐渐减小至零,则物体从t 时刻开始 ( ) A.速度开始减小,直到加速度等于零为止 B.速度继续增大,直到加速度等于零为止 C.速度一直增大 D.位移继续增大,直到加速度等于零为止 2.某人欲估算飞机着陆时的速度,他假设飞机停止运动前在平直跑道上做匀减速运动,飞机在跑道上滑行的距离为x ,从着陆到停下来所用的时间为t ,则飞机着陆时的速度为( ) A.x t B.2x t C.x 2t D.x t 到2x t 之间的某个值 3.2009年7月16日,中国海军第三批护航编队16日已从某军港启航,于7月30日抵达亚丁湾、索马里海域如图1-1-1所示,此次护航从启航,经东海、海峡、南海、马六甲海峡,穿越印度洋到达索马里海域执行护航任务,总航程五千多海里.关于此次护航,下列说确的是( ) A .当研究护航舰艇的运行轨迹时,可以将其看做质点 B .“五千多海里”指的是护航舰艇的航行位移 C .“五千多海里”指的是护航舰艇的航行路程 D .根据题中数据我们可以求得此次航行的平均速度 4.一质点沿直线Ox 方向做变速运动,它离开O 点的距离随时间变化的关系为x =5+2t 3(m),它的速度随时间t 变化关系为v =6t 2(m/s).该质点在t =0到t =2 s 间的平均速度和t =2 s 到t =3 s 间的平均速度大小分别为( ) A .12 m/s ,39 m/s B .8 m/s ,38 m/s C .12 m/s ,19.5 m/s D .8 m/s ,12 m/s 5. 机车在高速公路上行驶,车速超过100 km/h 时,应当与同车道前车保持100 m 以上的距离.从驾驶员看见某一情况到采取制动动作的时间里,汽车仍要通过一段距离(称为反应距离);从采取制动动作到车完全停止的时间里,汽车又要通过一段距离(称为制动距离),如表所示给出了汽车在不同速度下的反应距离和制动距离的部分数据.如果驾驶员的反应时间一定,路面情况相同 A .驾驶员的反应时间为1.5 s B .汽车制动的加速度大小为2 m/s 2 C .表中Y 为49 D .表中X 为32 6. 在某可看做直线的高速公路旁安装有雷达探速仪,可以精确抓拍超速的汽车,以及测量汽车运动过程中的加速度.若B 为测速仪,A 为汽车,两者相距345 m ,此时刻B 发出超声波,同时A 由于紧急情况而急刹车,当B 接收到反射回来的超声波信号时,A 恰好停止,且此时A 、B 相距325 m ,已知声速为340 m/s ,则汽车刹车过程中的加速度大小为( ) A. 20 m/s 2 B. 10 m/s 2 C. 5 m/s 2 D. 1 m/s 2 7.一人看到闪电12.3 s 后又听到雷声.已知空气中的声速为330 m/s ~340 m/s ,光速为3×108 m/s ,于是他用12.3除以3很快估算出闪电发生位置到他的距离为4.1 km.根据你所学的物理知识可以判断( ) A .这种估算方法是错误的,不可采用 B .这种估算方法可以比较准确地估算出闪电发生位置与观察者间的距离 C .这种估算方法没有考虑光的传播时间,结果误差很大

高考物理二轮专题复习 模型讲解 运动学模型

2013年高考二轮专题复习之模型讲解 运动学模型 【模型概述】 在近年的高考中对各类运动的整合度有所加强,如直线运动之间整合,曲线运动与直线运动整合等,不管如何整合,我们都可以看到共性的东西,就是围绕着运动的同时性、独立性而进行。 【模型回顾】 一、两种直线运动模型 匀速直线运动:两种方法(公式法与图象法) 匀变速直线运动:2 002 1at t v s at v v t +=+=,,几个推论、比值、两个中点速度和一个v-t 图象。 特例1:自由落体运动为初速度为0的匀加速直线运动,a=g ;机械能守恒。 特例2:竖直上抛运动为有一个竖直向上的初速度v 0;运动过程中只受重力作用,加速度为竖直向下的重力加速度g 。特点:时间对称(下上t t =)、速率对称(下上v v =);机械能守恒。 二、两种曲线运动模型 平抛运动:水平匀速、竖直方向自由落体 匀速圆周运动: ωωmv mr r mv ma F F =====22 向向法 【模型讲解】 一、匀速直线运动与匀速直线运动组合 例1.一路灯距地面的高度为h ,身高为l 的人以速度v 匀速行走,如图1所示。 (1)试证明人的头顶的影子作匀速运动; (2)求人影的长度随时间的变化率。

图1 解法1:(1)设t=0时刻,人位于路灯的正下方O 处,在时刻t ,人走到S 处,根据题意有OS=vt ,过路灯P 和人头顶的直线与地面的交点M 为t 时刻人头顶影子的位置,如图2所示。OM 为人头顶影子到O 点的距离。 图2 由几何关系,有 OS OM l OM h -= 联立解得t l h hv OM -= 因OM 与时间t 成正比,故人头顶的影子作匀速运动。 (2)由图2可知,在时刻t ,人影的长度为SM ,由几何关系,有SM=OM-OS ,由以上各式得 t l h lv SM -= 可见影长SM 与时间t 成正比,所以影长随时间的变化率l h lv k -= 。 解法2:本题也可采用“微元法”。设某一时间人经过AB 处,再经过一微小过程)0(→??t t ,则人由AB 到达A ’B ’,人影顶端C 点到达C ’点,由于t v S AA ?=?'则人影顶端的移动速度:

高考物理直线运动题20套(带答案)

高考物理直线运动题20套(带答案) 一、高中物理精讲专题测试直线运动 1.倾角为θ的斜面与足够长的光滑水平面在D 处平滑连接,斜面上AB 的长度为3L ,BC 、 CD 的长度均为3.5L ,BC 部分粗糙,其余部分光滑。如图,4个“— ”形小滑块工件紧挨在一起排在斜面上,从下往上依次标为1、2、3、4,滑块上长为L 的轻杆与斜面平行并与上一个滑块接触但不粘连,滑块1恰好在A 处。现将4个滑块一起由静止释放,设滑块经过D 处时无机械能损失,轻杆不会与斜面相碰。已知每个滑块的质量为m 并可视为质点,滑块与粗糙面间的动摩擦因数为tan θ,重力加速度为g 。求 (1)滑块1刚进入BC 时,滑块1上的轻杆所受到的压力大小; (2)4个滑块全部滑上水平面后,相邻滑块之间的距离。 【答案】(1)3sin 4 F mg θ=(2)43d L = 【解析】 【详解】 (1)以4个滑块为研究对象,设第一个滑块刚进BC 段时,4个滑块的加速度为a ,由牛顿第二定律:4sin cos 4mg mg ma θμθ-?= 以滑块1为研究对象,设刚进入BC 段时,轻杆受到的压力为F ,由牛顿第二定律: sin cos F mg mg ma θμθ+-?= 已知tan μθ= 联立可得:3 sin 4 F mg θ= (2)设4个滑块完全进入粗糙段时,也即第4个滑块刚进入BC 时,滑块的共同速度为v 这个过程, 4个滑块向下移动了6L 的距离,1、2、3滑块在粗糙段向下移动的距离分别为3L 、2L 、L ,由动能定理,有: 21 4sin 6cos 32)4v 2 mg L mg L L L m θμθ?-??++= ?( 可得:v 3sin gL θ= 由于动摩擦因数为tan μθ=,则4个滑块都进入BC 段后,所受合外力为0,各滑块均以速度v 做匀速运动; 第1个滑块离开BC 后做匀加速下滑,设到达D 处时速度为v 1,由动能定理:

高三物理计算题训练

天津市第一百中学高三物理计算题训练 1、如图所示,质量为1kg的物体静置在水平地面上,现对物体施以水平方向的恒定拉力,1s末将拉力撤 去,物体运动的v—t图象如图所示,试求: (1)在0~3s内物体的位移; (2)滑动摩擦力的大小; (3)拉力的大小。 2、如图所示,在光滑水平面上放有一个长为L的长木板C,在C左端和距左端s处各放有一个小物块A、B,A、B都可视为质点,它们与C之间的动摩擦因数都是μ,A、B、C的质量都是m。开始时B、C静止,A以某一初速度v0向右运动。设B与C之间的最大静摩擦力等于滑动摩擦力。求:⑴A相对于C向右滑动过程中,B与C之间的摩擦力大小。⑵为使A、B能够相碰,A的初速度v0应满足什么条件? v0 A B C 3、如图所示,原来静止在水平面上的长纸带上放有一个质量为m的小金属块A。金属块离纸带左端距离为d,与纸带间动摩擦因数为μ。现用力向右将纸带从金属块下面抽出,设纸带的加速过程极短,可以认为一开始抽动纸带就做匀速运动。求:⑴金属块刚开始运动时所受的摩擦力大小和方向。⑵为了能把纸带从金属 块下面抽出,纸带的速度v应满足什么条件? A v d 4、真空中存在空间范围足够大的、水平向右的匀强电场。在电场中,若将一个质量为m带正电的小球由静止释放,运动中小球的速度与竖直方向夹角为53o(取sin37o=0.6,cos37o=0.8)。现将该小球从电场中某点以v0=10m/s的初速度竖直向上抛出。求运动过程中 (1)小球受到的电场力的大小和方向; (2)小球从抛出点至最高点的电势能变化量; (3)小球的最小动量的大小和方向。 5、如图所示,质量均为m的A、B两物体,用劲度为k的轻质弹簧相连,A被手用外力F提在空中静止,这时B离地面的高度为h。放手后,A、B下落,若B与地面碰撞后不再反弹,求:A从开始下落到其速度达到最大的过程中,A的重力势能的改变量。 A B h 6、如图所示,竖直的光滑杆上套着一轻质弹簧,弹簧长度为原长时,上端在O 点处。现将质量,m2=3kg 的圆环套在杆上,压缩弹簧,平衡于A点处,A点和O点间距为x0;再将一质量m1=6kg的圆环套在杆上,从距A点3x0处的B点由静止开始下滑并与m2碰撞后粘为一体。它们运动到C处时 速度达到最大值,此时动能E k=19.5J。已知弹簧劲度系数k=300N/m。求: (1)m1在与m2碰撞前瞬间的速度v;

2014-2018高考物理运动学真题

专题一质点的直线运动 (2017~2018年) 201803 4.在一斜面顶端,将甲乙两个小球分别以v和的速度沿同一方向水平抛出,两球都落在该斜面上。甲球落至斜面时的速率是乙球落至斜面时速率的 A.2倍 B.4倍 C.6倍 D.8倍 5.甲乙两车在同一平直公路上同向运动,甲做匀加速直线运动, 乙做匀速直线运动。甲乙两车的位置x随时间t的变化如图所示。 下列说法正确的是 A.在t1时刻两车速度相等 B.从0到t1时间内,两车走过的路程相等 C.从t1到t2时间内,两车走过的路程相等 D.从t1到t2时间内的某时刻,两车速度相等 6.地下矿井中的矿石装在矿车中,用电机通过竖井运送至地面。某竖井中矿车提升的速度大小v随时间t的变化关系如图所示,其中图线①②分别描述两次不同的提升过程,它们变速阶段加速度的大小都相同;两次提升的高度相同,提升的质量相等。不考虑摩擦阻力和空气阻力。对于第①次 和第②次提升过程, A.矿车上升所用的时间之比为4:5 B.电机的最大牵引力之比为2:1 C.电机输出的最大功率之比为2:1 D.电机所做的功之比为4:5

201802 6.甲、乙两汽车同一条平直公路上同向运动,其速度—时间图像分别如图中甲、乙两条曲线所示。已知两车在t2时刻并排行驶,下列说法正确的是() A.两车在t1时刻也并排行驶 B.t1时刻甲车在后,乙车在前 C.甲车的加速度大小先增大后减小 D.乙车的加速度大小先减小后增大 (2016~2014年) 1.(2016·全国卷Ⅲ,16,6分)(难度★★)一质点做速度逐渐增大的匀加速直线运动,在时间间隔t内位移为s,动能变为原来的9倍。该质点的加速度为() A.s t2 B.3s 2t2 C.4s t2 D.8s t2 2.(2016·全国卷Ⅰ,21,6分)(难度★★★)(多选)甲、乙两车在平直公路上同向行驶,其v-t图象如图所示。已知两车在t=3s时并排行驶,则() A.在t=1s时,甲车在乙车后 B.在t=0时,甲车在乙车前7.5m C.两车另一次并排行驶的时刻是t=2s D.甲、乙车两次并排行驶的位置之间沿公路方向的距离为40m

高考物理知识专题整理大全二:直线运动

二、直线运动 1、质点: ⑴定义:用来代替物体的只有质量、没有形状和大小的点,它是一个理想化的物理模型。 ⑵物体简化为质点的条件:只考虑平动或物体的形状大小在所研究的问题中可以忽略不计这两种情况。 2、位置、位移和路程 ⑴位置:质点在空间所处的确定的点,可用坐标来表示。 ⑵位移:描述质点位置改变的物理量,是矢量。方向由初位置指向末位置。大小则是从初位置到末位置的直线距离 ⑶路程:质点实际运动轨迹的长度,是标量。只有在单方向的直线运动中,位移的大小才等于路程。 3、时间与时刻 ⑴时刻:在时间轴上可用一个确定的点来表示。如“第3秒末”、“第5秒初”等 ⑵时间:指两时刻之间的一段间隔。在时间轴上用一段线段来表示。如:“第2秒内”、“1小时”等 4、速度和速率 ⑴平均速度:①v=Δs/Δt ,对应于某一时间(或某一段位移)的速度。 ②平均速度是矢量,方向与位移Δs 的方向相同。 ③公式2 0t v v v += ,只对匀变速直线运动才适用。 ⑵瞬时速度:①对应于某一时刻(或某一位置)的速度。 ②当Δt 0时,平均速度的极限为瞬时速度。 ③瞬时速度的方向就是质点在那一时刻(或位置)的运动方向。 ④简称速度 ⑶平均速率:①质点在某一段时间内通过的路程和所用的时间的比值叫做这段时间内的平 均速率。 ②平均速率是标量。 一、知识网络 概念

③只有在单方向的直线运动中,平均速度的大小才等于平均速率。 ④平均速率是表示质点平均快慢的物理量 ⑷瞬时速率:①瞬时速度的大小。 ②是标量。 ③简称为速率。 5、加速度 ⑴速度的变化:Δv =v t -v 0,描述速度变化的大小和方向,是矢量。 ⑵加速度:①是描述速度变化快慢的物理量。 ②公式:a =Δv/Δt 。 ③是矢量。 ④在直线运动中,若a 的方向与初速度v 0的方向相同,质点做匀加速运动;若a 的方向与初速度v 0的方向相反,质点做匀减速运动 6、匀速直线运动: ⑴定义:物体在一条直线上运动,如果在任何相等的时间内通过的位移都相等,则称物体 在做匀速直线运动 ⑵匀速直线运动只能是单向运动。定义中的“相等时间”应理解为所要求达到的精度范围内的任意相等时间。 ⑶在匀速直线运动中,位移跟发生这段位移所用时间的比值叫做匀速直线运动的速度。它是描述质点运动快慢和方向的物理量。速度的大小叫做速率。 ⑷匀速直线运动的规律:①t s v = ,速度不随时间变化。 ②s=vt ,位移跟时间成正比关系。 ⑸匀速直线运动的规律还可以用图象直观描述。 ①s-t 图象(位移图象):依据S = vt 不同时间对应不同的位移, 位移S 与时间t 成正比。所以匀速直线运动的位移图象是过原点的一条倾斜的直线, 这条直线是表示正比例函数。而直线的斜率即匀速 直线运动的速度。(有tg α= =S t v )所以由位移图象不仅可以求出速度, 还可直接读出任意时间内的位移(t 1时间内的位移S 1)以及可直接读出发生任一位移S 2所需的时间t 2。 ②v-t 图象,由于匀速直线运动的速度不随时间而改变, 所以它的 速度图象是平行时间轴的直线。直线与横轴所围的面积表示质点的位移。 例题: 关于质点,下述说法中正确的是: (A)只要体积小就可以视为质点 (B)在研究物体运动时,其大小与形状可以不考虑时,可以视为质点 (C)物体各部分运动情况相同,在研究其运动规律时,可以视为质点 (D)上述说法都不正确 解析:用来代替物体的有质量的点叫做质点。用一个有质量的点代表整个物体,以确定物体的位置、研究物体的运动,这是物理学研究问题时采用的理想化模型的方法。 把物体视为质点是有条件的,条件正如选项(B)和(C)所说明的。 答:此题应选(B)、(C)。 例题: 小球从3m 高处落下,被地板弹回,在1m 高处被接住,则小球通过的路程和位移的大小分别是: (A)4m,4m (B)3m,1m (C)3m,2m (D)4m,2m

相关文档
最新文档