【专业知识】实现同步硝化反硝化的途径

【专业知识】实现同步硝化反硝化的途径
【专业知识】实现同步硝化反硝化的途径

本文极具参考价值,如若有用请打赏支持我们!不胜感激!

【专业知识】实现同步硝化反硝化的途径

实现同步硝化反硝化的途径

由于硝化菌的好氧特性,有可能在曝气池中实现SND.实际上,很早以前人们就发现了曝气池中氮的非同化损失(其损失量随控制条件的不同约在10%~20%左右),对SND的研究也主要围绕着氮的损失途径来进行,希望在不影响硝化效果的情况下提高

曝气池的脱氮效率。

①利用某些微生物种群在好氧条件下具有反硝化的特性来实现SND.研究结果表明,Thiosphaera、Pseadonmonasnautica、Comamonossp.等微生物在好氧条件下可利用NOX-N进行反硝化。如果将硝化菌和反硝化菌置于同一反应器(曝气池)内混合培养,则可达到单个反应器的同步硝化反硝化。尽管这些微生物的纯培养结果令人满意,但目前普遍认为离实际应用尚有距离,主要原因是实际污泥中这些菌群所占份额太

小。

②利用好氧活性污泥絮体中的缺氧区来实现SND.通常曝气池中的DO维持在1~

2mg/L,活性污泥大小具有一定的尺度,由于扩散梯度的存在,在污泥颗粒的内部可能存在着一个缺氧区,从而形成有利于反硝化的微环境。以往对曝气池中氮的损失主要以此解释,并被广泛接受。如果污泥颗粒内部厌氧区增大,反硝化效率就相应

提高。

大量研究结果表明,活性污泥的SND主要是由污泥絮体内部缺氧产生。要实现高效率的SND,关键是如何在曝气条件下(不影响硝化效果)增大活性污泥颗粒内部的缺

同步硝化反硝化

同步硝化反硝化的出路,究竟在何方? 古语云:殊途同归。对于污水脱氮来说,亦是如此。处理方法并不是只有一种。 方法一:依照传统生物脱氮理论,在脱氮过程中需要经过硝化和反硝化两个过程,最终将氨氮转化为氮气而解决污水处理脱氮问题。生物脱氮原理如下:硝化作用是在亚硝酸菌作用下将氨氮转化为NO2-N,然后硝酸菌将NO2-N转化为NO3-N。反硝化作用是指在厌氧或缺氧情况下将NO3-N转化为NO2-N,并最终将NO2-N转化为N2。 方法二:然而,近年来,国内外的不少研究和报告证明存在着同步硝化反硝化现象。同步硝化反硝化又称短程硝化反硝化。是指在同一反应器内同步进行硝化反应和反硝化反应。这样的反应中,反硝化可以直接利用硝化作用转化的NO2-N进行反应,而不必将氨氮转化为NO3-N,可以减少能源的消耗,以及对氧的需求。 条条道路通罗马,那么总有一条是最合适的吧?那么,相对于传统脱氮反应来说,同步硝化反硝化又具有什么样的优势呢? 根据化学计量学统计,与传统硝化反硝化脱氮反应相比,同步硝化反硝化具有以下优势: 1.在硝化阶段可以减少25%左右的需氧量,减少对曝气的需求,就 是减少能耗; 2.在反硝化阶段减少了40%的有机碳源,降低了运行费用; 3.NO2-N的反硝化速率比NO3-N的反硝化速率高63%左右; 4.减少50%左右污泥;

5.反应器容积可以减少30%-40%左右; 6.反硝化产生的OH-可以原地中合硝化作用产生的H+,能有效保持 反应容器内的PH。 (以上数据出自论文:《同步硝化反硝化脱氮机理分析及影响因素研究》) 既然有这么多的优势,那么为什么同步硝化反硝化工艺一直没能得到推广呢?这个,就要用一句古语来解释了:祸兮,福之所倚,福兮,祸之所伏。也就是说,有利就有弊。 同步硝化反硝化工艺进入人们的视线以来,科学家以及相关的研究人员在上面倾注了大量的精力进行研究,对影响同步硝化反硝化反应的因素有了详细的了解。同步硝化反硝化的影响因素总结如下: 1.溶解氧(DO) 控制系统中溶解氧,对获得高效的同步硝化反硝化具有极其重要的意义。对于实现同步硝化反硝化来说,DO浓度不宜太高,一方面,过高的溶解氧具有较强的穿透力,就无法在污泥絮体以及生物膜内部形成缺氧区,第二方面,会使异养好氧菌活性提高,从而加速对有机物的消耗,最终造成反硝化因营养源不足而无法完成。研究表明,溶解氧浓度在0.5mg/L时,硝化速率等于反硝化速率, 2.温度 生物硝化适宜的温度在20到35℃,一般温度低于15℃硝化反应速度降低,但低温对硝化产物以及两种硝酸菌的影响不同,12到14℃活性污泥中硝酸菌的活性受到严重抑制,出现NO2-N的积累。当温度超

sbr工艺同步硝化反硝化脱氮_secret

SBR工艺同步硝化反硝化脱氮 摘要:文中采用内径为300mm,高为650mm 的圆柱形SBR 反应器进行试验,探讨SBR 工艺同步硝化反硝化现象及其脱氮效果。SBR 系统采用鼓风曝气,用温控仪控制水温在所要求的范围内,由时间程序控制器控制进水、闲置、曝气、沉淀和排水全过程,用DO 仪和pH计分别在线判断SBR 反应器的运行状况,进行研究SBR 系统对有机物和氮的去除过程及其脱氮效果。结果表明:溶解氧浓度控制在 3-5mg/L 时,其同步硝化反硝化现象明显,脱氮效果最佳,总氮去除率可达80%,CODCr 的去除率达 90%。采用同步硝化反硝化脱氮还可以克服污水中碱度不足的现象,由于反硝化不断产生碱度,补充了微生物对有机物和含氮化合物的降解引起水中pH 值下降的过程。当温度在18~25℃的变化区间内,SBR 系统氨氮的去除比较稳定,说明SBR 工艺可实现常温同步硝化反硝化。 关键字:SBR系统硝化反硝化脱氮在反应初期 1. 引言 脱氮是当今水污染控制领域研究的热点和难点之一,为了高效而经济地去除氮,研究人员开发了许多工艺和方法。根据传统的脱氮理论,同一工艺中不可能同时进行硝化反硝化,然而,最近几年国外有文献报道了同步硝化反硝化现象,尤其是有氧条件下的反硝化现象确实存在于各种不同的生物处理系统中[1],本文针对序批式活性污泥(SBR)工艺中的同步硝化反硝化现象及其脱氮效果进行了研究。 2. 试验材料与方法 2.1 试验装置 试验所用SBR反应器为圆柱形,内径为300mm,高为650mm,有效容积为32L。采用鼓风曝气,以转子流量计调节曝气量,用温控仪将反应器内的水温控制在所要求的范围内,由时间程序控制器控制进水、闲置、曝气、沉淀和排水全过程,并根据需要,选定各段的启动、关闭时间。用DO 仪和pH 计分别在线测定各反应阶段的DO 和pH 值,并根据反应阶段DO 和pH 值的变化判断SBR 反应器的运行状况,及时加以调整。

同步硝化反硝化综述

同步硝化反硝化研究进展 摘要:同步硝化反硝化工艺同传统的生物脱氮工艺相比,可以节省碳源,减少曝气量,减少设备运行费用等优点,具有很大的研究应用前途。本文结合国内外研究,介绍其主要机理,分析同步硝化反硝化实现条件和影响因素,并且提出了研究展望。 关键词:同步硝化反硝化;微环境;生物脱氮;好氧反硝化 Study Progress on Simultaneous Nitrification and Denitrification Abstract:Simultaneous nitrification and denitrification (SND) has some obvious merits in comparison with traditional method for nitrogen removal. This method could reduce energy consumption and construction cost. The paer made a summary on current domesticand foreign study status of simultaneous nitrification and denitrification (SND) in waste water treatment, and made a theoretical explanation for the phenomenom of nitrification and denitrification.The author alsosummarized the practice and influencing facts of SND process and put forward some suggestions for futher study of SND. Key words: Simultaneous nitrification and denitrification;Microbiology;Biological nitrogen removal;Aerobic denitrification

AO生化的硝化与反硝化原理

2.5 A/O生化处理 2.5.1 基本原理 本系统生化处理段采用缺氧/好氧(A/O)工艺,A/O工艺通常是在常规的好氧活性污泥法处理系统前,增加一段缺氧生物处理过程。在好氧段,好氧微生物氧化分解污水中的BOD5,同时进行硝化反应,有机氮和氨氮在好氧段转化为硝化氮并回流到缺氧段,其中的反硝化细菌利用氧化态氮和污水中的有机碳进行反硝化反应,使化合态氮变成分子态氮,同时获得同时去碳和脱氮的效果。这里着重介绍生物脱氮原理。 1) 生物脱氮的基本原理 传统的生物脱氮机理认为:脱氮过程一般包括氨化、硝化和反硝化三个过程。 ①氨化(Ammonification):废水中的含氮有机物,在生物处理过程中被好氧或厌氧异养型微生物氧化分解为氨氮的过程; ②硝化(Nitrification):废水中的氨氮在硝化菌(好氧自养型微生物)的作用下被转化为NO2-和NO3-的过程; ③反硝化(Denitrification):废水中的NO2-和NO3-在缺氧条件下以及反硝化菌(兼性异养型细菌)的作用下被还原为N2的过程。 其中硝化反应分为两步进行:亚硝化和硝化。硝化反应过程方程式如下所示: ①亚硝化反应:NH4++1.5O2→NO2-+H2O+2H+

②硝化反应:NO2-+0.5O2→NO3- ③总的硝化反应:NH4++2O2→NO3-+H2O+2H+ 反硝化反应过程分三步进行,反应方程式如下所示(以甲醇为电 子供体为例): 第一步:3NO3-+CH3OH→3NO2-+2H2O+CO2 第二步:2H++2NO2-+CH3OH→N2+3H2O+CO2 第三步:6H++6NO3-+5CH3OH→3N2+13H2O+5CO2 2) 本系统脱氮原理 针对本系统生化工艺段而言,除了上述脱氮原理外,还糅合了短程硝化-反硝化,即氨氮在O池中未被完全硝化生成NO3-,而是生成了大量的NO2--N,但在A池NO2-同样被作为受氢体而进行脱氮(上述第二步可知);再者在A池NO2-同样也可和NH4+进行脱氮,即短程硝化-厌氧氨氧化,其表示为:NH4++NO2-→N2+2H2O。 因此针对本系统而言,A/O工艺如在进水水质以及系统控制参数稳定的条件下也可达到理想的出水效果。 2.5.2工艺特征 A/O脱氮工艺主要特征是:将脱氮池设置在去碳硝化过程的前端,一方面使脱氮过程能直接利用进水中的有机碳源而可以省去外加碳源;另一方面,则通过消化池混合液的回流而使其中的NO3-在脱氮池中进行反硝化,且利用了短程硝化-反硝化以及短程硝化-厌氧氨氧化等工艺特点。因此工艺内回流比的控制是较为重要的,因为如内回流比过低,则将导致脱氮池中BOD5/NO3-过高,从而是反硝化菌无足够的

硝化与反硝化

硝化与反硝化 利用好氧颗粒污泥实现同步硝化反硝化 1 生物脱氮与同步硝化反硝化 在生物脱氮过程中,废水中的氨氮首先被硝化菌在好氧条件下氧化为NO-X,然后NO-X 在缺氧条件下被反硝化菌还原为N2(反硝化)。硝化和反硝化既可在活性污泥反应器中进行,又可在生物膜反应器中进行,目前应用最多的还是活性污泥法。硝化菌和反硝化菌处在同一活性污泥中,由于硝化菌的好氧和自养特性与反硝化菌的缺氧和异养特性明显不同,脱氮过程通常需在两个反应器中独立进行(如Bardenpho、UCT、双沟式氧化沟工艺等)或在一个反应器中顺次进行(如SBR)。当混合污泥进入缺氧池(或处于缺氧状态)时,反硝化菌工作,硝化菌处于抑制状态;当混合污泥进入好氧池(或处于好氧状态)时情况则相反。显然,如果能在同一反应器中使同一污泥中的两类不同性质的菌群(硝化菌和反硝化菌)同时工作,形成同步硝化反硝化(Simultaneous Nitrification Denitrification简称SND),则活性污泥法的脱氮工艺将更加简化而效能却大为提高。此外从工程的角度看,硝化和反硝化在两个反应器中独立进行或在同一个反应器中顺次进行时,硝化过程的产碱会导致OH-积累而引起pH值升高,将影响上述两阶段反应过程的反应速度,这在高氨氮废水脱氮时表现得更为明显。但对SND工艺而言,反硝化产生的OH-可就地中和硝化产生的H+,减少了pH值的波动,从而使两个生物反应过程同时受益,提高了反应效率。 2 实现同步硝化反硝化的途径 由于硝化菌的好氧特性,有可能在曝气池中实现SND。实际上,很早以前人们就发现了曝气池中氮的非同化损失(其损失量随控制条件的不同约在10%~20%左右),对SND的研究也主要围绕着氮的损失途径来进行,希望在不影响硝化效果的情况下提高曝气池的脱氮效率。

同步硝化反硝化SND

同步硝化反硝化SND 根据传统生物脱氮理论,脱氮途径一般包括硝化和反硝化两个阶段,硝化和反硝化两个过程需要在两个隔离的反应器中进行,或者在时间或空间上造成交替缺氧和好氧环境的同一个反应器中;实际上,较早的时期,在一些没有明显的缺氧及厌氧段的活性污泥工艺中,人们就层多次观察到氮的非同化损失现象,在曝气系统中也曾多次观察到氮的消失。 在这些处理系统中,硝化和反硝化反应往往发生在同样的处理条件及同一处理空间内,因此,这些现象被称为同步硝化/反硝化(SND)。 一、同步硝化反硝化的优点 对于各种处理工艺中出现的SND现象已有大量的报道,包括生物转盘、连续流反应器以及序批示SBR反应器等等。与传统硝化-反硝化处理工艺比较,SND 具有以下的一些优点: 1、能有效地保持反应器中pH稳定,减少或取消碱度的投加; 2、减少传统反应器的容积,节省基建费用; 3、对于仅由一个反应池组成的序批示反应器来讲,SND能够降低实现硝化-反硝化所需的时间; 4、曝气量的节省,能够进一步降低能耗。 因此SND系统提供了今后降低投资并简化生物除氮技术的可能性。 二、同步硝化反硝化的机理 1、宏观环境 生物反应器中的溶解氧DO主要是通过曝气设备的充氧而获得,无论何种曝气装置都无法使反应内氧气在污水中充分混匀。最终形成反应器内部不同区域缺氧和好氧段,分别为反硝化菌和硝化菌的作用提供了优势环境,造成了事实上硝化和反硝化作用的同时进行。除了反应器不同空间上的溶氧不均外,反应器在不同时间点上的溶氧变化也可以导致同步硝化/反硝化现象的发生。Hyungseok Yoo 研究了SBR反应器在曝气反应阶段,反应器内DO浓度历经减小后逐渐升高,并伴随的同步硝化/反硝化现象。 2、微环境理论

短程与同步硝化反硝化

新型脱氮工艺研究 一、短程硝化反硝化 1、简介 生物脱氮包括硝化和反硝化两个反应过程,第一步是由亚硝化菌将NH4+-N 氧化为NO2--N的亚硝化过程;第二步是由硝化菌将NO2--N氧化为氧化为NO3--N 的过程;然后通过反硝化作用将产生的NO3—N经由NO2--N转化为N2,NO2--N 是硝化和反硝化过程的中间产物。1975年V oets等在处理高浓度氨氮废水的研究中,发现了硝化过程中NO2--N积累的现象,首次提出了短程硝化反硝化脱氮的概念。如图1所示。 NH4+ NO2-NO3-NO2-N2 传统生物脱氮途径 NH+NO-N2 短程硝化-反硝化生物脱氮途径 图1 传统生物脱氮途径和短程 硝化-反硝化生物脱氮途径 比较两种途径,很明显,短程硝化反硝化比全程硝化反硝化减少了NO2- NO3-和NO3-NO2-两步反应,这使得短程硝化反硝化生物脱氮具有以下优点: ⑴可节约供氧量25%。节省了NO2-氧化为NO3-的好氧量。 ⑵在反硝化阶段可以节省碳源40%。在C/N比一定的情况下提高了TN的去除 率。并可以节省投碱量。 ⑶由于亚硝化菌世代周期比硝化菌短,控制在亚硝化阶段可以提高硝化反应速 度和微生物的浓度,缩短硝化反应的时间,而由于水力停留时间比较短,可以减少反应器的容积,节省基建投资,一般情况下可以使反应器的容积减少30%~40%。

⑷短程硝化反硝化反应过程在硝化过程中可以减少产泥25%~34%,在反硝化过 程中可以减少产泥约50%。 由于以上的优点,使得短程硝化-反硝化反应尤其适应于低C/N比的废水,即高氨氮低COD,既节省动力费用又可以节省补充的碳源的费用,所以该工艺在煤化工废水方面非常可行。 2、影响短程硝化反硝化的因素 2.1温度的影响 温度对微生物影响很大。亚硝酸菌和硝酸菌的最适宜温度不相同,可以通过调节温度抑制硝酸菌的生长而不抑制亚硝酸菌的方法,来实现短程硝化反硝化过程。国内的高大文研究表明:只有当反应器温度超过28℃时,短程硝化反硝化过程才能较稳定地进行。 2.2 pH值的影响 pH较低时,水中较多的是氨离子和亚硝酸,这有利于硝化过程的进行,此时无亚硝酸盐的积累;而当pH较高时,可以积累亚硝酸盐。因此合适的pH环境有利于亚硝化菌的生长。pH对游离氨浓度也产生影响,进而也会影响亚硝酸菌的活性,研究表明:亚硝化菌的适宜pH值在8.0附近,硝化菌的pH值在7.0附近。因此,实现亚硝化菌的积累的pH值最好在8.0左右。 2.3溶解氧(DO)的影响 DO对控制亚硝酸盐的积累起着至关重要的作用。亚硝化反应和硝化反应均是好氧过程,而亚硝酸菌和硝酸菌又存在动力学特征的差异:低DO条件下亚硝酸菌对DO的亲和力比硝酸菌强。可以通过控制DO使硝化过程只进行到氨氮氧化为亚硝态氮阶段,从而淘汰硝酸菌,达到短程硝化的目的。 2.4泥龄的影响 氨氮的硝化速率比亚硝态氮的氧化速率快,而亚硝酸菌的世代周期比硝化菌的世代周期短,因此可以通过控制HRT使泥龄在亚硝酸菌和硝酸菌的最小停留时间之间,使亚硝酸菌成为优势菌种,逐步淘汰硝酸菌。 2.5其它因素的影响

同步硝化反硝化脱氮技术

同步硝化反硝化脱氮技术 郭冬艳1,2,李多松1,2,孙开蓓1,2,刘丽茹1,2 1中国矿业大学环境与测绘学院,江苏徐州(221008) 2江苏省资源环境信息工程重点实验室,江苏徐州(221008) E-mail:jsgdyhappy@https://www.360docs.net/doc/e81599044.html, 摘要:同步硝化反硝化脱氮(SND)技术不同于传统的脱氮理论,其具有节省碳源、减少曝气量、降低基建投资和运行费用等优点。文章从宏观环境理论、微环境理论、微生物理论三个方面阐述了同步硝化反硝化的作用机理,并结合目前的国内外研究成果综述了其影响因素,最后简单介绍了同步硝化反硝化的应用状况,提出了该技术的研究方向。 关键词:生物脱氮;同步硝化反硝化;好氧反硝化 中图分类号:X703.1 1. 引言 近年来,水体中的氮素污染越来越严重,给环境造成的污染问题日益突出。生物脱氮技术较物化脱氮技术具有工艺简单、成本低廉、较易推广等特点,越来越被人们所采用。传统生物脱氮技术的理论基础是微生物的硝化和反硝化作用。硝化作用即在好氧的条件下,自养型硝化细菌将氨氧化为亚硝酸(盐)和硝酸(盐);反硝化作用是指亚硝酸(盐)和硝酸(盐)在异氧型反硝化菌的作用下,被还原为氮气的过程。因此,目前大多数的生物脱氮工艺都将好氧区和缺氧区(或厌氧区)分隔开,分别在不同的反应器中运行,或者采用间歇的好氧和厌氧条件来实现。 然而,自20世纪80年代以来,研究人员在一些没有明显缺氧及厌氧段的活性污泥法工艺中,曾多次观察到氮的非同化损失现象,即存在有氧情况下的反硝化反应、低氧情况下的硝化反应。在这些处理系统中,硝化和反硝化往往发生在相同的条件下或同一处理空间内,这种现象被称作同步硝化反硝化(simultaneous nitrification and dinitrification,SND),亦有研究人员将这种现象中的反硝化过程称之为好氧反硝化。有氧条件下的反硝化现象确实存在于各种不同的生物处理系统,如流化床反应器、生物转盘、SBR、氧化沟、CAST工艺等[1]。 2. 作用机理 2.1宏观环境理论 宏观环境主要是从众多生物反应器在实际运行过程中可能发生的情况为依据,分析SND现象发生的环境条件[2]。在生物反应器中,由于曝气装置类型的不同,使得其内部出现氧气分布不均的现象,从而形成好氧段、缺氧段及(或)厌氧段,此为生物反应器的宏观环境。例如:在生物膜反应器中,由于基质浓度和膜厚变化的影响,形成膜内的缺氧区,其他如RBC、SBR反应器及氧化沟等也存在类似的现象[3]。实际上,在生产规模的生物反应器中,完全均匀的混合状态并不存在,所以,同步硝化反硝化现象是完全可能发生的。 2.2微环境理论 微环境理论从物理学角度解释SND现象,是目前被普遍接受的一种机理,被认为是SND 发生的主要原因之一[4]。由于活性污泥和生物膜微环境中各种物质(如DO、有机物、氨氮、NO2―、NO3-等)传递的变化,从而导致微环境中物理、化学和生物条件或状态的改变。 在活性污泥絮体和生物膜内部存在各种各样的微环境。但是,对于SND现象来说,主要是由于溶解氧扩散作用的限制,使微生物絮体内产生DO梯度,从而导致微环境的同步硝

硝化与反硝化去除氨氮的原理

硝化与反硝化去除氨氮的 原理 Prepared on 22 November 2020

硝化与反硝化去除氨氮操作 一、硝化与反硝化的作用机理: 1、硝化细菌包括亚硝化菌和硝化菌,亚硝化菌将废水中的NH3转化为亚硝酸盐,硝化菌将亚硝酸盐转化为硝酸盐,称为硝化作用。硝化作用必须通过这两类菌的共同作用才能完成。 2、反硝化菌将硝酸盐转化为N2、NO、N2O,称为反硝化作用。 3、硝化细菌必须在好氧条件下作用。 4、反硝化菌必须在无氧或缺氧的条件下进行。 二、作用方程式: 硝化反应: 2NH3+3O2――(亚硝化菌)――2HNO2+2H2O+能量(氨的氧化) 2HNO2+O2――(硝化菌)――2HNO3+能量(亚硝酸的氧化) 反硝化反应: NO3— +CH3OH —— N2 + CO2+H2O+ OH—(以甲醇作为C源) 三、操作: 1、将购买的硝化菌投加到曝气池5、6#,亚硝化菌投加到曝气池1、 2、 3、4#,反硝化菌投加到厌氧池。 2、控制指标: 生物硝化 ①PH值:控制在— ②温度:25—30℃ ③溶氧:2—4mg/L

④污泥停留时间:必须大于硝化菌的最小世代时间,一般应大于2小时生物反硝化: ①PH值:控制在— ②温度:25—30℃ ③溶氧:L ⑤机碳源:BOD5/TN>(3—5)过低需补加碳源

生物脱氮机理 污水生物脱氮的基本原理就是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过硝化作用转化为亚硝态氮、硝态氮,即,将转化为和。在缺氧条件下通过反硝化作用将硝氮转化为氮气,即,将(经反亚硝化)和(经反硝化)还原为氮气,溢出水面释放到大气,参与自然界氮的循环。水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的。 ○1硝化——短程硝化: 硝化——全程硝化(亚硝化+硝化): ○2反硝化——反硝化脱氮: 反硝化——厌氧氨氧化脱氮: 反硝化——厌氧氨反硫化脱氮: 废水中氮的去除还包括靠微生物的同化作用将氮转化为细胞原生质成分。主要过程如下:氨化作用是有机氮在氨化菌的作用下转化为氨氮。硝化作用是在硝化菌的作用下进一步转化为硝酸盐氮。其中亚硝酸菌和硝酸菌为好氧自养菌,以无机碳化合物为碳源,从或的氧化反应中获取能量。其中硝化的最佳温度在纯培养中为25-35℃,在土壤中为30-40℃,最佳pH值偏碱性。反硝化作用是反硝化菌(大多数是异养型兼性厌氧菌, DO

同步硝化反硝化脱氮技术_百度文库.

同步硝化反硝化脱氮技术 郭冬艳 1,2,李多松 1,2,孙开蓓 1,2,刘丽茹 1,2 1中国矿业大学环境与测绘学院,江苏徐州(221008 2江苏省资源环境信息工程重点实验室,江苏徐州(221008 E-mail: 摘要:同步硝化反硝化脱氮 (SND技术不同于传统的脱氮理论,其具有节省碳源、减少曝气量、降低基建投资和运行费用等优点。文章从宏观环境理论、微环境理论、微生物理论三个方面阐述了同步硝化反硝化的作用机理,并结合目前的国内外研究成果综述了其影响因素,最后简单介绍了同步硝化反硝化的应用状况,提出了该技术的研究方向。 关键词:生物脱氮;同步硝化反硝化;好氧反硝化 中图分类号:X703.1 1. 引言 近年来, 水体中的氮素污染越来越严重, 给环境造成的污染问题日益突出。生物脱氮技术较物化脱氮技术具有工艺简单、成本低廉、较易推广等特点,越来越被人们所采用。传统生物脱氮技术的理论基础是微生物的硝化和反硝化作用。硝化作用即在好氧的条件下, 自养型硝化细菌将氨氧化为亚硝酸 (盐和硝酸 (盐 ; 反硝化作用是指亚硝酸 (盐和硝酸 (盐在异氧型反硝化菌的作用下, 被还原为氮气的过程。因此, 目前大多数的生物脱氮工艺都将好氧区和缺氧区(或厌氧区分隔开,分别在不同的反应器中运行,或者采用间歇的好氧和厌氧条件来实现。 然而, 自 20世纪 80年代以来, 研究人员在一些没有明显缺氧及厌氧段的活性污泥法工艺中, 曾多次观察到氮的非同化损失现象, 即存在有氧情况下的反硝化反

应、低氧情况下的硝化反应。在这些处理系统中,硝化和反硝化往往发生在相同的条件下或同一处理空间内, 这种现象被称作同步硝化反硝化(simultaneous nitrification and dinitrification,SND ,亦有研究人员将这种现象中的反硝化过程称之为好氧反硝化。有氧条件下的反硝化现象确实存在于各种不同的生物处理系统,如流化床反应器、生物转盘、 SBR 、氧化沟、 CAST 工艺等 [1]。 2. 作用机理 2.1宏观环境理论 宏观环境主要是从众多生物反应器在实际运行过程中可能发生的情况为依据,分析 SND 现象发生的环境条件 [2]。在生物反应器中, 由于曝气装置类型的不同, 使得其内部出现氧气分布不均的现象,从而形成好氧段、缺氧段及(或厌氧段,此为 生物反应器的宏观环境。例如:在生物膜反应器中,由于基质浓度和膜厚变化的影响,形成膜内的缺氧区,其他如 RBC 、 SBR 反应器及氧化沟等也存在类似的现象 [3]。实际上,在生产规模的生物反应器中,完全均匀的混合状态并不存在,所以,同步硝化反硝化现象是完全可能发生的。 2.2微环境理论 微环境理论从物理学角度解释 SND 现象, 是目前被普遍接受的一种机理, 被认为是 SND 发生的主要原因之一 [4]。由于活性污泥和生物膜微环境中各种物质(如DO 、有机物、氨氮、NO 2― 、 NO 3-等传递的变化,从而导致微环境中物理、化学和生物条件或状态的改变。在活性污泥絮体和生物膜内部存在各种各样的微环境。但是,对于 SND 现象来说,主要是由于溶解氧扩散作用的限制, 使微生物絮体内产生 DO 梯度, 从而导致微环境的同步硝 化反硝化。微生物絮体的外表面 DO 浓度较高, 自养型硝化细菌利用氧气进行硝化反应; 絮体内部,由于氧传递受阻,以及有机物氧化、硝化作用的消耗,形成缺氧区,反硝化菌占优势,反硝化菌利用 NO 3-为电子受体,发生反硝化反应,即系统缺氧

氧化沟同时硝化反硝化的生物脱氮机理_百度文库.

氧化沟同时硝化反硝化的生物脱氮机理 周少奇 1, 范家明 1, 吴宋标 2, 黄庆明 1, 银玉容 1, 史伟 1 (1. 华南理工大学环境科学工程系 , 广州 510640; 2. 中国石化广州分公司污水处理厂 , 广州 510726 摘要 :氧化沟是一种得到广泛应用的有机废水生物反应器 , 简要介绍了氧化沟生物废水处理技术的特点和典型工艺 , 并就氧化沟的硝化反硝化脱氮功能和同时硝化反硝化进行了讨论 , 运用电子计量学方法 , 推导并讨论了同时硝化反硝化反应的计量方程式。 关键词 :氧化沟 ; 废水生物处理 ; 同时硝化反硝化 ; 电子计量学 中图分类号 :X17 文献标识码 :A 文章编号 :1003 6504(2002 06 0003 03 氧化沟 (Oxida tion ditch , 又名连续循环曝气器 (c ontinuous loop reactor , 是延时曝气活性污泥法的一种变形。氧化沟最初应用于荷兰 , 由于该工艺造价低 , 易维护 , 管理方便 , 而且处理效果好而稳定 , 因此很快在世界各国得到广泛应用 , 如今 , 它已成为一种重要的污水生物处理技术 , 不仅用于城市污水处理 , 而且用于工业污水的生化处理。 近年来 , 生物脱氮被公认为是目前废水脱氮处理中经济、有效的方法之一。生物脱氮包括硝化和反硝化两个阶段 , 分别由硝化菌和反硝化菌完成 , 即硝化反应在好氧条件下自由养菌完成 , 反硝化反应在厌 /缺氧条件下由异养菌完成。近几十年来 , 尽管生物脱氮技术有了很大发展 , 但硝化和反硝化仍然是在两个独立的或分隔的具有不同 DO 浓度的反应器中进行 , 或者是在时间或空间上造成交替缺氧和好氧环境的同一个反应器中进行 , 一个过程分成两个系统 , 条件控制复杂 , 两者难以在时间和空间上统一 , 脱氮效果差 , 设备庞大 , 投资高。显然 , 如果两个过程能够在同一个反应器中同时进行 , 则可节省更多的占地面积 , 还可避免 NO 2氧化成NO 3及 NO 3再还原成 NO 2这两个多余的反应 , 从而可节省约 25%的 O 2和 40%以上的有机碳 ; 另外 , 微生物硝化过程中好氧、耗碱度、无需 C OD, 而反硝化过

氧化沟 硝化反硝化(苍松参考)

氧化沟 1.设计参数 COD cr BOD 5 SS NH 3-N 总氮 TP pH 进水水质 400 160 220 35 45 5.0 6~9 出水水质 50 10 10 5 15 0.5 6~9 好养区 溶解氧浓度不小于2mg/L 缺氧区 0.2---0.5mg/L 厌氧区小于0.2mg/L 进水BOD 与COD 之比大于0.3 当进行生物脱氮时 BOD/TKN 应大于等于4 本工程 ( BOD) / ( TP) > 20, 可采用生物除磷工艺。 氧化沟内的平均流速宜大于 0.25m ∕s 根据氧化沟渠宽度,弯道处可设置一道或多道导流墙;氧化沟的 隔流墙和导流墙宜高出设计水位 0.2~0.3m 氧化沟的有效水深与曝气、混合和推流设备的性能有关,宜采用 3.5~4.5m 。 进水和回流污泥点宜设在缺氧区首端,出水点宜设在充氧器后的 好氧区。氧化沟的超高与选用的曝气设备类型有关,当采用转刷、转碟时, 宜为 0.5m ;当采用竖轴表曝机时,宜为 0.6~0.8m ,其设备平台宜高出设计 水面 0.8~1.2m 。 1 脱氮时,污水中的五日生化需氧量与总凯氏氮之比宜大于 4; 2 除磷时,污水中的五日生化需氧量与总磷之比宜大于 17; 3 同时脱氮、除磷时,宜同时满足前两款的要求; 4 好氧区(池)剩余总碱度宜大于 70mg/L (以 CaCO 3 计) ,当进水碱度 不能满足上述要求时,应采取增加碱度的措施。 2.设计计算 1.硝化区的容积 1. 需要去除的5BOD 由于设计的出水L mg BOD /105=,处理水中的非溶解性5BOD 可利用经验公式求的,此公式仅使用于氧化沟 ()() 8.6142.1107.0142.17.0523.0523.05=-??=-??=?-?-e e C BOD e f mg/L

实现同步硝化反硝化废水的低成本

实现同步硝化反硝化废水的低成本 迈克·奥尼尔*和奈杰尔·j·霍兰** *进程管理器,北西水,奥克兰,曼彻斯特,英国 **高级讲师公共卫生工程、土木工程系、利兹大学LS2 9 jt,英国 文摘 奥贝尔工艺废水的处理,在溶解氧浓度为1.5毫克/ L时同时存在硝化和反硝化。潜在的这个过程同时提供降低成本和简化在地中海环境脱氮的操作。这项工作的目的是为了探讨这些要求,并试图描述一种机制的实验验证。在恒化器中使用混合培养生长,在好氧/缺氧循环条件下观察同步硝化反硝化。降低途径,或“亚硝酸盐分流”不能被证明,但它可能解释反硝化菌在好氧条件下的滞后现象。反硝化作用持续一段时间之前,氧取代硝酸盐作为终端电子受体的响应,滞后的长度是在缺氧条件下的持续时间。 关键字 奥贝尔氧化沟工艺、硝化、反硝化、活性污泥、污水 引言 自1960年代后期,地中海的状况不断恶化,部分原因是在沿海地区的海洋自然生态系统面临严重的污水污染(萨利巴,1978)。对于地中海污染的第一次审查表明,近岸海域污染的临界水平主要是由于大量的生活污水排放处理不当,加上一个有机质含量较高和有毒分数较大且不受控制的工业成分 (GFCM,1972)。高达85%的整体地中海污染来自陆地,这包括一个年度1042 x 103吨的磷负荷。所以说这种大量养分的投入是不足为奇的,赤潮定期记录在地中海包括一些有毒的物种,如鳍藻,膝沟藻和具。

1975年地区政府的地中海行动计划的采用已导致了一系列的环境管理方案,包括使用和安全处置的国内和工业废水(德费克和萨利巴,1986)。一个广泛的处理系统是实用的,具有去除营养物质的能力,从低成本的选项,如芦苇床系统通过高技术,生物植物(霍兰,1990)。利用好氧硝化细菌和缺氧反硝化细菌从废水中完全脱氮是相对简单的。然而,当利用这些微生物在污水处理过程中,有必要提供单独的需氧和缺氧的区域。这增加了所需处理反应器的总体积(即该计划的资金成本),也使得操作过程更加复杂。本文报告了一个称为“奥贝尔系统的同步硝化反硝化”的处理过程,仅仅一个曝气反应器,从而大大降低资本和运营成本。 奥贝尔系统 奥贝尔系统的过程是由一个多通道氧化沟组成的一个单一系统,活性污泥工艺采用串联操作的两个或两个以上的循环反应器。该系列反应堆(渠道或车道)是最常见的框架-中心构造,水深4.3米,每一个渠道有一个无尽的流路和一个完全混合反应器,使其快速流入并迅速分散在混合液中。混合液一般在水平圆盘表面曝气和混合。水流在重力作用下从一个通道通过水下堰口流到下一个通道。这个过程是一个专有的系统,其销售在美国的瓦克夏环保工作展览公司。 奥贝尔氧化沟的最常见的应用是在延时曝气方式,同心三通道都具有相同的横截面,从而导致外(或第一)通道大约有一半的总池容积,中间(或第二)通道有三分之一的盆地体积和内部(第三)通道有约盆地的六分之一体积。在一个“正常”的奥贝尔应用程序中所有的浪费饲料和RAS进入第一通道,只有一半的体积和曝气容量存在。第一通道并具有高的氧摄取率和低(零至0.5毫克/升)的溶解氧。第二通道,三分之一的体积和曝气盘,溶解氧量为0.5到1.5

同步硝化反硝化生物脱氮技术

同步硝化反硝化生物脱氮技术 摘要:本文论述了同步硝化反硝化(SND)工艺同传统的生物脱氮技术相比具有的优势,从生物学和物理学角度探讨其反应机理,综述影响同步硝化反硝化反应的如DO、碳源、温度、碱度、游离氨(FA)、pH、氧化还原电位(ORP)、水力停留时间(HRT)和污泥絮体结构等因素,最后介绍该工艺的研究现状以及存在的问题。 关键词:同步硝化反硝化;生物脱氮;反应机理;因素 前言 废水中的氮的去除方法有物化法和生化法两种,生化法被公认为是一种经济、有效和最有发展前途的方法。目前,废水的脱氮处理大多采用生化法。废水生物脱氮技术经过几十年的发展,无论是在理论认识还是在工程实践方面,都取得了很大的进步。 传统的生物脱氮理论认为,氨氮的去除通过硝化和反硝化两个阶段完成,由于硝化菌和反硝化菌对环境条件的要求不同,这两个过程不能同时发生,而只能序列式进行,即硝化反应发生在好氧条件下,由自养菌以氧作为电子受体,把NH3和NH4+氧化成NO2-和NO3-;反硝化反应发生在缺氧或厌氧条件下,通过异养菌以NO2-和NO3-作为电子受体,将其还原成气态物质排出。由此而发展起来的生物脱氮工艺大多将缺氧区与好氧区分开,形成分级硝化反硝化工艺。先后出现了后置反硝化、前置反硝化、A/O和A2/O 工艺以及各种改进工艺如UCT、JBH和AAA等,这些都是典型的传统的硝化反硝化工艺[1]。 然而,生物脱氮技术的新发展却突破了传统理论的认识。近年来的许多研究表明,硝化反应不仅只由自养菌完成,某些异养菌也可以进行硝化作用[2];反硝化不只在厌氧条件下进行,在好氧情况下也有TN减少的现象,这种好氧反硝化菌同时也是异养硝化菌,能把NH3?N直接氧化成含氮气态物,这种TN减少的现象并非真正意义上的反硝化[3.4];反硝化不一定需要碳源,一些自养菌也能进行反硝化反应[5]。这些新的发现使硝化和反硝化反应在时间和空间上同时进行成为可能,由此产生了同步硝化反硝化(Simultaneous Nitrification and Denitrification,简称SND)生物脱氮技术。 一、同步硝化反硝化的优势 传统的生物脱氮工艺存在很多不足之处:(1)工艺流程较长,占地面积大,基建投资高;(2)由于硝化菌增殖速率慢且难以维持较高浓度,必须同时进行污泥和硝化液回流,增加了动力消耗和运行费用;(3)系统抗冲击能力较弱,高浓度NH3?N废水会抑

影响同步硝化反硝化的因素

影响同步硝化反硝化的因素 鲍艳卫,张雁秋 中国矿业大学环境与测绘学院,江苏徐州(221008) E-mail:ffbyw@https://www.360docs.net/doc/e81599044.html, 摘要:同步硝化反硝化(Simultanous Nitrificati0n and Denitrification. 简称SND)是硝化和反硝化两个阶段在同一构筑物内同时实现的过程。结合国内外的研究分析了同步硝化反硝化的影响因素,以实现同步硝化反硝化的途径,为今后SND的脱氮提供依据。 关键词:同步硝化反硝化;脱氮机理;影响因素 随着城市化和工业化程度的不断提高以及化肥和农药的广泛使用,氮磷营养物质引起的水体富营养化问题日益突出。大量的有机物和氮磷营养物进入江河湖海,使水环境污染和水体富营养化日益严重。控制氮、磷的排入是防止水体富营养化的有效途径。因此水环境污染和水体富营养化问题的日益突出迫使越来越多的国家和地区制定严格的氨氮和磷的排放标准,要达到这些排放标准,许多废水处理设施需要考虑脱氮除磷问题,脱氮是当今水污染控制领域研究的热点和难点之一。近几年来,废水生物脱氮技术更是取得了突破性进展,通过对脱氮微生物的生物的深入研究,提出了一些新工艺,其中的同步硝化反硝化工艺成为当今研究的热点之一。 1. 同步硝化反硝化现象 传统的生物脱氮是由两个阶段完成的,即好氧条件下的硝化阶段和厌氧条件下的反硝化反应。这两种反应一般是作为两个独立的阶段分别在不同反应器中或者用时间和空间上的好氧和厌氧条件来运行。对于生物脱氮过程中出现了一些超出人们传统认识的现象,在实际运行中发现好氧硝化池中常有30﹪的总氮损失[1],不少研究者进行了大量的实验研究,证明了同步硝化/反硝化现象(Simultaneous Nitrification and Denitrification,简称SND)[2-4],尤其是有氧条件下的反硝化现象确实存在与各种不同的生物处理系统,如氧化沟[5]、生物转盘[5,6]、SBR[7]等生物处理系统中,在有氧条件下均发生了反硝化反应。 由于硝化与反硝化在同一个反应器中同时完成,与传统生物脱氮工艺相比,SND工艺具有明显的优越性,主要表现在[2]:(1) 可以省去缺氧池,或设备体积减小,节省费用;(2) 曝气需求降低,节省能耗;(3) 设备的处理负荷增加;(4)硝化过程中碱度被消耗,而同时反硝化过程中产生碱度,保持反应器中pH稳定,无需酸碱中和。 2. 同时硝化反硝化机理研究 由于好氧反硝化菌和异养硝化菌的发现以及好氧反硝化、异养硝化、自养反硝化等概念的提出,奠定了SND生物脱氮新技术的理论基础。目前,对SND生物脱氮的机理已初步形成了三种解释:即宏观环境解释、微环境解释和生物学解释,分别从物理学角度(宏观环境解释和微环境解释)和生物学角度加以解释。 2.1 物理学角度 宏观环境解释和微环境解释都是从物理学角度来分析的,SND应当属于一种物理现象,正是由于系统中存在适合于SND进行的环境而导致了SND现象的发生。 2.1.1 宏观环境解释

MBR中的同步硝化—反硝化

MBR中的同步硝化—反硝化 王琳1,何圣兵2,王宝贞2 1.中国海洋大学,青岛市鱼山路5号266003 2.哈尔滨工业大学,哈尔滨市西大直街66号,150006 摘要:试验考察了在膜生物反应器中进行同步硝化反硝化的可能性。并给出在不影响系统的运行效能的前提下,进行同步硝化反硝化的宪制性试验条件和运行参数,适宜的溶解氧浓度为:0.8-1.0mg/L.最高的F/M 条件下,硝化菌的硝化效能并没有因占优势种群异养菌的竞争而受到抑制。当进水F/M提高至0.423kgCOD/kgMLSS.d时,MBR对TN的平均总去除率升高到了89.90%。C/N比对总氮的去除率影响较大,随着C/N比从6.12增加到39.37,总氮去除率从18.14%增加到92.54%。 关键词:硝化、反硝化、MBR、 在生物污水处理厂中对氮的去除主要是通过硝化和反硝化两个过程来实现的。硝化和反硝化过程是由活性污泥中两类不同的微生物来完成的。由于硝化菌和反硝化菌的不同生理特性,污水处理中对总氮的去除往往是在两级系统中实现的。硝化和反硝化这两个过程能够在一个反应器中同时发生。这个现象也被称为同步硝化—反硝化。 从生物学角度来看,由于超滤膜的强制截留作用,使得自养型硝化菌和异养型反硝化菌能够在MBR中并存,从而使同步硝化—反硝化的发生成为可能。MBR中能够存在高浓度的活性污泥,限制了氧气向污泥絮体内部的扩散,因而在污泥絮体内部能够形成缺氧环境,在这种条件下,硝化反应可以在有氧的污泥絮体表面进行,而反硝化则可以在缺氧的絮体内部进行。 有研究表明,只有当系统的有机负荷小于0.18kgBOD5/kgMLSS.d时,硝化菌才能在生化系统中得以保留。在该研究中,系统中由于膜的截流作用,系统中的污泥浓度高于常规活性污泥工艺,致使系统中的有机负荷小于上述条件。 由于膜组件的物理截留作用,能够将HRT和SRT完全分离,在MBR中较容易获得实现同步硝化—反硝化的条件。在本研究中,考察DO、有机负荷(F/M)和C/N比等因素对同步硝化—反硝化的性能的影响,并建立同步硝化—反硝化的动力学模型,以加深对单级脱氮工艺的理解。 1 实验装置与方法 1.1 实验原水 此阶段实验用原水采用人工配水,原料为淀粉、蔗糖、氯化铵、磷酸二氢钠、磷酸氢二钠和碳酸氢钠,根据实验需要配制相应的原水。实验期间,生物处理单元的水温控制在20~22℃,MBR中水力停留时间为6小时。在实验中,通过排泥使MBR中污泥浓度维持在5 000~6 000mg/L之间。 1.2 实验装置 实验装置如图1所示,具体的参数如下: (1)高位水箱 尺寸为:1000′600′400mm3,有效容积为200升,用以贮存实验用原水。 (2)液位平衡箱 尺寸为:200′200′200mm3,内设有浮球阀,用以调节MBR反应器中的水位,使进水量与膜出水保持平衡。1高位水箱, 2液位平衡箱, 3 MBR反应器, 4 膜组件, 5 微孔曝气器, 6空压机, 7气体流量计 图1 实验装置图 (3)MBR反应器 反应器尺寸为:160′160′700mm3,有效容积为16.3升,在反应器的底部布设一直径为150mm的微孔曝气器。在反应器的上部淹没放置一个中空纤维式超滤膜组件,膜出水的动力由静水头H提供。超滤膜的性能如表1所示。

相关文档
最新文档