基于ANSYS的重力坝应力分析

基于ANSYS的重力坝应力分析
基于ANSYS的重力坝应力分析

六、坝体强度承载能力极限状态 计算及坝体稳定承载能力极限状态计算(一)、基本资料 坝顶高程:m 校核洪水位(P = %)上游:m 下游:m 正常蓄水位上游:m 下游:m 死水位:m 混凝土容重:24 KN/m3 坝前淤沙高程:m 泥沙浮容重:5 KN/m3 混凝土与基岩间抗剪断参数值:f `= c `= Mpa 坝基基岩承载力:[f]= 400 Kpa 坝基垫层混凝土:C15 坝体混凝土:C10 50年一遇最大风速:v 0 = m/s 多年平均最大风速为:v 0 `= m/s 吹程D = 1000 m

(二)、坝体断面 1、非溢流坝段标准剖面 (1)荷载作用的标准值计算(以单宽计算) A 、正常蓄水位情况(上游水位,下游水位) ① 竖向力(自重) W 1 = 24×5×17 = 2040 KN W 2 = 24×× /2 = KN W 3 = ×()2× /2 = KN ∑W = KN W 1作用点至O 点的力臂为: /2 = m W 2作用点至O 点的力臂为: m 067.16.83 2 26.13=?- W 3作用点至O 点的力臂为: m 6.58.0)10905.1094(3 1 26.13=?-?-

竖向力对O点的弯矩(顺时针为“-”,逆时针为“+”):M OW1 = 2040×= 8772 KN·m M OW2 = -×= -KN·m M OW3 = -×= -445 KN·m ∑M OW = KN·m ②静水压力(水平力) P1 = γH12 /2 = ×-1090)2 /2= -KN P2 =γH22 /2 =×2 /2 = ∑P = -KN P1作用点至O点的力臂为:-1090)/3 = P2作用点至O点的力臂为:-1090)/3 = 静水压力对O点的弯矩(顺时针为“-”,逆时针为“+”):M OP1 = ×= -6089 KN·m M OP2 = ×= KN·m ∑M OP = -KN·m ③扬压力 扬压力示意图请见下页附图: H1 = -1090 = m H2 = -1090 = m (H1 -H1) = -= m 计算扬压力如下: U1 = ××= KN U2 = ××/2 = KN ∑U = KN

5.1重力坝剖面设计及原则 5.1.1剖面尺寸的确定 重力坝坝顶高程1152.00m,坝高H=40.00m。为了适应运用和施工的需要,坝顶必须要有一定的宽度。一般地,坝顶宽度取坝高的8%~10%,且不小于2m。若有交通要求或有移动式启闭设施时,应根据实际需要确定。综合考虑以上因素,坝顶宽度m B10 。 考虑坝体利用部分水中增加其抗滑稳定,根据工程实践,上游边坡坡率n=0~0.2,下游边坡坡率m=0~0.8。故上游边坡坡率初步拟定为0.2,下游边坡坡率初步拟定为0.8。上游折坡点位置应结合应力控制标准和发电引水管、泄洪孔等建筑物的进口高程来定,一般折坡点在坝高的1/3~2/3附近,故初拟上游折坡点高程为1138.20m。下游折坡点的位置应根据坝的实用剖面形式、坝顶宽度,结合坝的基本剖面计算得到(最常用的是其基本剖面的顶点位于校核洪水位处),故初拟下游折坡点高程为1148.50m。 5.1.2剖面设计原则 重力坝在水压力及其他荷载的作用下,主要依靠坝体自重产生的抗滑力维持抗滑稳定;同时依靠坝体自重产生压应力来抵消由于水压力引起的拉应力以满足强度要求。 非溢流坝剖面设计的基本原则是:①满足稳定和强度要求,保证大坝安全;②工程量小,造价低;③结构合理,运用方便;④利于施工,方便维修。 遵循以上原则拟订出的剖面,需要经过稳定及强度验算,分析是否满足安全和经济的要求,坝体剖面可以参照以前的工程实例,结合本工程的实际情况,先行拟定,然后根据稳定和应力分析进行必要的修正。重复以上过程直至得到一个经济的剖面。 5.2重力坝挡水坝段荷载计算 5.2.1基本原理与荷载组合 重力坝的荷载主要有:自重、静水压力、扬压力、泥沙压力、浪压力、动水压力、冰压力、地震荷载等。本次设计取单位长度的坝段进行计算。相关荷载组合见表4.5。 表4.5 荷载组合表 组合情况相关 工况 自 重 静水 压力 扬压 力 泥沙 压力 浪压 力 冰压 力 地震 荷载 动水 压力 土压 力 基本正常√√√√√√

(1) 如果你模拟结构体中裂缝扩展过程的模拟,在Ansys中可以用全解耦损伤分析方法来近似模拟裂缝扩展,我曾用Ansys软件中提供的可以定义10,000个材料参数和单元ekill/alive 功能完成了层状路面体中表面裂缝和反射裂缝在变温作用下的扩展过程的模拟。我模拟的过程相对来说比较简单,模拟过程中我们首先要知道裂缝的可能扩展方向,这样在裂缝可能扩展的带内进行网格加密处理,加密到什么程度依据计算的问题来确定。 (2) 如果采用断裂力学理论计算含裂缝结构体的应力强度因子,建模时只需在裂尖通过命令kscon生成奇异单元即可。Ansys模块中存在的断裂力学模块可以计算I、II、III型应力强度因子(线弹性断裂力学)和J积分(弹塑性断裂力学),在Ansys中verification里面有一个计算I型应力强度因子的例子vm143,参见该例子就可以了。 (3) 如果通过断裂力学模拟裂缝的扩展过程,需要采用动态网格划分,这方面我没有做,通过Ansys的宏命令流应该可以实现。技术参考可参阅文献:杨庆生、杨卫.断裂过程的有限元模拟.计算力学学报,1997,14(4). (4) 我现在做动荷载作用下路面结构体中应力强度因子的分布规律,我是通过位移插值得到不同时间点处的应力强度因子。如果想这样做,可参阅理论参考中关于应力强度因子计算说明。 1. 讨论两种Ansys求极限荷载的方法 (1)力加载 可以通过对应的方法(比如说特征值屈曲)估计结构的极限荷载的大致范围,然后给结构施加一个稍大的荷载,打开自动荷载步二分法进行非线性静力分析,最后计算会因不收敛终止,则倒数第二个子步对应的就是结构的极限荷载;另外,也可以选择弧长法,采用足够的子步(弧长法可以一直分析到极限承载力之后的过程)同样可以从绘制的荷载位移曲线或计算结果中找出结构的极限荷载。 (2)位移加载 给结构施加一个比较大的位移,打开自动荷载步二分法进行非线性分析,保证足够的子步数,这样也可以分析到极限荷载以后,通过绘制荷载位移曲线或查看相应结果文件也可知道结构的极限荷载。 希望众高手讨论一下 (1)弧长法求极限荷载的收敛性问题,如何画到荷载位移曲线的下降段? (2)位移法求极限荷载的具体步骤? 2. 需要注意的问题 1. 由于SOLID 65单元本身是基于弥散裂缝模型和最大拉应力开裂判据,因此在很多情况下会因为应力集中而使混凝土提前破坏,从而和试验结果不相吻合,因此,在实际应用过程中应该对单元分划进行有效控制,根据作者经验,当最小单元尺寸大于5cm 时,就可以有效避免应力集中带来的问题; 2. 支座是另一个需要注意的问题。在有限元分析中,很多时候约束是直接加在混凝土节点上,这样很可能在支座位置产生很大的应力集中,从而使支座附近的混凝土突然破坏,造成求解失败。因此,在实际应用过程中,应该适当加大支座附近单元的尺寸或者在支座上加一些弹性垫块,避免支座的应力集中;

项目名称:几内亚凯勒塔(KALETA)水电站工程项目阶段:复核阶段 计算书名称:重力坝抗滑稳定及应力计算 审查: 校核: 计算: 黄河勘测规划设计有限公司 Yellow River Engineering Consulting Co. ,Ltd. 二〇一二年四月

目录 1.计算说明..................................................................................... 错误!未定义书签。 目的与要求 ......................................................................... 错误!未定义书签。 基本数据 ............................................................................. 错误!未定义书签。 2.计算参数和研究方法................................................................. 错误!未定义书签。 荷载组合 ............................................................................. 错误!未定义书签。 计算参数及控制标准 ......................................................... 错误!未定义书签。 计算理论和方法 ................................................................. 错误!未定义书签。 3.计算过程..................................................................................... 错误!未定义书签。 荷载计算 ............................................................................. 错误!未定义书签。 自重 ............................................................................. 错误!未定义书签。 水压力 ......................................................................... 错误!未定义书签。 扬压力 ......................................................................... 错误!未定义书签。 地震荷载 ..................................................................... 错误!未定义书签。 安全系数及应力计算 ......................................................... 错误!未定义书签。 4.结果汇总..................................................................................... 错误!未定义书签。

一学习ANSYS需要认识到的几点 相对于其他应用型软件而言,ANSYS作为大型权威性的有限元分析软件,对提高解决问题的能力是一个全面的锻炼过程,是一门相当难学的软件,因而,要学好ANSYS,对学习者就提出了很高的要求,一方面,需要学习者有比较扎实的力学理论基础,对ANSYS分析结果能有个比较准确的预测和判断,可以说,理论水平的高低在很大程度上决定了ANSYS使用水平;另一方面,需要学习者不断摸索出软件的使用经验不断总结以提高解决问题的效率。在学习ANSYS的方法上,为了让初学者有一个比较好的把握,特提出以下五点建议:(1)将ANSYS的学习紧密与工程力学专业结合起来 毫无疑问,刚开始接触ANSYS时,如果对有限元,单元,节点,形函数等《有限元单元法及程序设计》中的基本概念没有清楚的了解话,那么学ANSYS很长一段时间都会感觉还没入门,只是在僵硬的模仿,即使已经了解了,在学ANSYS之前,也非常有必要先反复看几遍书,加深对有限元单元法及其基本概念的理解。 作为工程力学专业的学生,虽然力学理论知识学了很多,但对许多基本概念的理解许多人基本上是只停留于一个符号的认识上,理论认识不够,更没有太多的感性认识,比如一开始学ANSYS时可能很多人都不知道钢材应输入一个多大的弹性模量是合适的。而在进行有限元数值计算时,需要对相关参数的数值有很清楚的了解,比如材料常数,直接关系到结果的正确性,一定要准确。实际上在学ANSYS时,以前学的很多基本概念和力学理论知识都忘得差不多了,因而遇到有一

定理论难度的问题可能很难下手,特别是对结果的分析,需要用到《材料力学》,《弹性力学》和《塑性力学》里面的知识进行理论上的判断,所以在这种情况下,复习一下《材料力学》,《弹性力学》和《塑性力学》是非常有必要的,加深对基本概念的理解,实际上,适当的复习并不要花很多时间,效果却很明显,不仅能勾起遥远的回忆,加深理解,又能使遇到的问题得到顺利的解决。 在涉及到复杂的非线性问题时(比如接触问题),一方面,不同的问题对应着不同的数值计算方法,求解器的选择直接关系到程序的计算代价和问题是否能顺利解决;另一方面,需要对非线性的求解过程有比较清楚的了解,知道程序的求解是如何实现的。只有这样,才能在程序的求解过程中,对计算的情况做出正确的判断。因此,要能对具体的问题选择什么计算方法做出正确判断以及对计算过程进行适当控制,对《计算方法》里面的知识必须要相当熟悉,将其理解运用到ANSYS的计算过程中来,彼此相互加强理解。要知道ANSYS是基于有限元单元法与现代数值计算方法的发展而逐步发展起来的。因此,在解决非线性问题时,千万别忘了复习一下《计算方法》。此外,对《计算固体力学》也要有所了解(一门非常难学的课),ANSYS对非线性问题处理的理论基础就是基于《计算固体力学》里面所讲到的复杂理论。 作为学工程力学的学生,提高建模能力是非常急需加强的一个方面。在做偏向于理论的分析时,可能对建模能力要求不是很高,但对于实际的工程问题,有限元模型的建立可以说是一个最重要的问题,而后

坝体强度承载能力极限状态计算及坝体稳定承载能力极限状态计算 (一)、基本资料 坝顶高程:1107.0 m 校核洪水位(P = 0.5 %)上游:1105.67 m 下游:1095.18 m 正常蓄水位上游:1105.5 m 下游:1094.89 m 死水位:1100.0 m 混凝土容重:24 KN/m3 坝前淤沙高程:1098.3 m 泥沙浮容重:5 KN/m3 混凝土与基岩间抗剪断参数值:f `= 0.5 c `= 0.2 Mpa 坝基基岩承载力:[f]= 400 Kpa 坝基垫层混凝土:C15 坝体混凝土:C10 50年一遇最大风速:v 0 = 19.44 m/s 多年平均最大风速为:v 0 `= 12.9 m/s 吹程D = 1000 m (二)、坝体断面 1、非溢流坝段标准剖面

荷载作用的 标准值计算(以单宽计算) A 、正常蓄水位情况(上游水位1105.5m ,下游水位1094.89m ) ① 竖向力(自重) W 1 = 24×5×17 = 2040 KN W 2 = 24×10.75×8.6 /2 = 1109.4 KN W 3 = 9.81×(1094.5-1090)2×0.8 /2 = 79.46 KN ∑W = 3228.86 KN W 1作用点至O 点的力臂为: (13.6-5) /2 = 4.3 m W 2作用点至O 点的力臂为: m 067.16.83 2 26.13=?- W 3作用点至O 点的力臂为: m 6.58.0)10905.1094(3 1 26.13=?-?- 竖向力对O 点的弯矩(顺时针为“-”,逆时针为“+”): M OW1 = 2040×4.3 = 8772 KN ·m M OW2 = -1109.4×1.067 = -1183.7 KN ·m

1. 讨论两种Ansys求极限荷载的方法 (1)力加载 可以通过对应的方法(比如说特征值屈曲)估计结构的极限荷载的大致范围,然后给结构施加一个稍大的荷载,打开自动荷载步二分法进行非线性静力分析,最后计算会因不收敛终止,则倒数第二个子步对应的就是结构的极限荷载;另外,也可以选择弧长法,采用足够的子步(弧长法可以一直分析到极限承载力之后的过程)同样可以从绘制的荷载位移曲线或计算结果中找出结构的极限荷载。 (2)位移加载 给结构施加一个比较大的位移,打开自动荷载步二分法进行非线性分析,保证足够的子步数,这样也可以分析到极限荷载以后,通过绘制荷载位移曲线或查看相应结果文件也可知道结构的极限荷载。 希望众高手讨论一下 (1)弧长法求极限荷载的收敛性问题,如何画到荷载位移曲线的下降段? (2)位移法求极限荷载的具体步骤? 2. 需要注意的问题 1. 由于SOLID 65单元本身是基于弥散裂缝模型和最大拉应力开裂判据,因此在很多情况下会因为应力集中而使混凝土提前破坏,从而和试验结果不相吻合,因此,在实际应用过程中应该对单元分划进行有效控制,根据作者经验,当最小单元尺寸大于5cm 时,就可以有效避免应力集中带来的问题; 2. 支座是另一个需要注意的问题。在有限元分析中,很多时候约束是直接加在混凝土节点上,这样很可能在支座位置产生很大的应力集中,从而使支座附近的混凝土突然破坏,造成求解失败。因此,在实际应用过程中,应该适当加大支座附近单元的尺寸或者在支座上加一些弹性垫块,避免支座的应力集中; 3. 六面体的SOLID 65 单元一般比四面体的单元计算要稳定且收敛性好,因此,只要条件允许,应该尽量使用六面体单元; 4. 正确选择收敛标准,一般位移控制加载最好用位移的无穷范数控制收敛,而用力控制加载时可以用残余力的二范数控制收敛。在裂缝刚刚出现和接近破坏的阶段,可以适当放松收敛标准,保证计算的连续性; 3. 关于下降段的问题 1)在实际混凝土中都有下降段,但是在计算的时候要特别小心下降段的问题。 2)下降段很容易导致计算不收敛,有时为了计算的收敛要避免设置下降段,采用rush模型。 3)利用最大压应变准则来判断混凝土是否破坏。 4. Solid65单元中的破坏准则 1)采用Willam&Warnke五参数破坏准则 2)需要参数: 单轴抗拉强度,单轴,双轴抗压强度,围压压力,在围压作用下双轴,单轴抗压强度 5. 近来我对混凝土单元进行了一点思考,有一些想法,贴在下面,共同探讨: 1)分析混凝土结构,选择合理的材料特性是建立模型的关键,所以有必要弄清混凝土的材料特性。混凝土是脆性材料,并具有不同的拉伸和压缩特性。典型混凝土的抗拉强度只有抗压强度的8%-15%。 在ANSYS中,对于混凝土单元,材料特性ANSYS要求输入以下数据(为了清楚起见,我将几个系数均译为了中文):弹性模量、泊松比、张开与闭合滑移面的剪切强度缩减系数、抗拉与抗压强度、极限双轴抗压强度、周围静水应力状态、静水应力状态下单轴与双轴压缩的

重力坝深层抗滑稳定计算分析 建设工程学部 水1101班 金建新 201151073

【摘要】 重力坝依靠自身重量来维持稳定,所以,安全就是重力坝设计的最基本最重要的要求。一般情况下,坝体基岩很少是完整的岩体,常常存在复杂的节理、裂隙或断层等地质结构,并形成不可预知的滑动通道。由于坝基的地质缺陷很难被发现,或者被清楚的了解,所以往往导致严重的工程事故。因此,重力坝深层抗滑稳定性的研究在工程上具有普遍性和紧迫性。对坝基岩体存在断层、节理、裂隙、软弱夹层等地质缺陷的重力坝工程进行稳定性分析与评价并提出合理的处埋措施对大坝工程实践具有十分重要的技术经济意义。目前,重力坝稳定分析的方法很多,而在实际工程中,通常采用的方法是有限元法与刚体极限平衡法的结合,这样的优点在于:既可以避免难引入刚体极限平衡法的影响因素的缺陷,又可以规范安全系数的定义,方便设计人员进行使用。本文作者通过理论分析和算例计算的比较,认为邵龙潭教授创立并发展的有限元极限平衡方法是优胜于刚体极限平衡法和有限元强度折减法的优秀方法。有限元极限平衡方法理论严密,计算验证充分可靠,集合了刚体极限平衡法和有限元强度折减法各自的优点,又有效克服了两种方法的不可回避的缺点。本文将有限元极限平衡法应用到重力坝深层抗滑稳定分析的问题中,显示出了与传统刚体极限平衡方法及有限元强度折减法计算分析结果一致的适用性,同时能够搜索出与实际情况相符的最危险滑裂面,并减少了稳定计算的工作量。通过分析和讨论重力坝在分层施工、运行期蓄水及渗流等工况下的稳定性,得到了与实际工程中相一致的结果和结论,进一步验证了有限

元极限平衡法在重力坝稳定性分析问题中的实用性。所以,有限元极限平衡是有很大发展前景的稳定分析的理论和方法。 前言 随着水利资源的不断开发, 地质良好的坝址越来越少, 当坝基岩体 内存在缓倾角的软弱夹层时, 坝体便有可能带动部分基岩沿软弱夹 层滑动, 对大坝的抗滑稳定十分不利, 因此必须核算坝体带动基岩 沿软弱面失稳的可能性, 研究坝体的深层抗滑问题[ 1] 。目前, 国内重力坝抗滑稳定分析多采用有限元法模拟坝体和坝基材料的非线 性本构关系, 计算坝体及坝基各部位的应力、位移和破坏形态[ 2] 。对于大多数滑动面未知的深层抗滑问题, 可采用有限元强度折减法, 按照比例降低基岩及地基中软弱结构面的抗剪强度指标直至达到临 界失稳状态。笔者依据有限元强度折减法探讨了在地震作用下重力坝的深层抗滑稳定问题。 一计算方法 1. 1 计算思路 选取典型坝段的剖面进行适当简化, 建立三维有限元模型; 基于反应谱法计算单独地震荷载作用下坝体通过建基面作用在基岩上的水 平地震剪力[ 3] ; 对计算模型进行渗流场分析, 得到各节点的水头, 由此计算渗透荷载[ 2] ; 将计算渗流场得到的渗透压力作为节点荷载施加到坝体, 选取不同材料的强度折减系数进行静力深层抗滑稳 定计算分析; 将水平地震剪力作为节点荷载施到坝基上, 选取不同

坝体强度承载能力极限状态 计算及坝体稳定承载能力极限状态计算(一)、基本资料 坝顶高程: m 校核洪水位(P = %)上游: m 下游: m 正常蓄水位上游: m 下游: m 死水位: m 混凝土容重:24 KN/m3 坝前淤沙高程: m 泥沙浮容重:5 KN/m3 混凝土与基岩间抗剪断参数值: f `= c `= Mpa 坝基基岩承载力:[f]= 400 Kpa 坝基垫层混凝土:C15 坝体混凝土:C10 50年一遇最大风速:v 0 = m/s 多年平均最大风速为:v 0 `= m/s 吹程 D = 1000 m

(二)、坝体断面 1、非溢流坝段标准剖面 (1)荷载作用的标准值计算(以单宽计算) A 、正常蓄水位情况(上游水位,下游水位) ① 竖向力(自重) W 1 = 24×5×17 = 2040 KN W 2 = 24×× /2 = KN W 3 = ×()2× /2 = KN ∑W = KN W 1作用点至O 点的力臂为: /2 = m W 2作用点至O 点的力臂为: m 067.16.83 2 26.13=?- W 3作用点至O 点的力臂为: m 6.58.0)10905.1094(3 1 26.13=?-?-

竖向力对O点的弯矩(顺时针为“-”,逆时针为“+”): M OW1 = 2040× = 8772 KN·m M OW2 = -× = - KN·m M OW3 = -× = -445 KN·m ∑M OW = KN·m ②静水压力(水平力) P1 = γH12 /2 = ×-1090)2 /2= - KN P2 =γH22 /2 =×2 /2 = ∑P = - KN P1作用点至O点的力臂为:-1090)/3 = P2作用点至O点的力臂为:-1090)/3 = 静水压力对O点的弯矩(顺时针为“-”,逆时针为“+”): M OP1 = × = -6089 KN·m M OP2 = × = KN·m ∑M OP = - KN·m ③扬压力 扬压力示意图请见下页附图: H1 = -1090 = m H2 = -1090 = m (H1 - H1) = - = m 计算扬压力如下: U1 = ×× = KN U2 = ×× /2 = KN ∑U = KN

《大型结构分析软件的应用及开发》 学习报告 学院:建筑工程学院 专业班级:工程力学141 姓名:付贤凯 指导老师:姚激 学号:201411012111

1.模型介绍 如下图所示的一桁架结构,受一集中力大小为800N的作用,杆件的弹性模量为200GPa,泊松比为0.3。杆件的截面为正方形达长为1m,横截面面积为1m2。现求它的变形图与轴力图。 图1 桁架模型与受力简图(单位:mm) 2.建模与划分网格 利用大型有限元软件ANSYS,采用Link,2Dspar 1的单元进行模拟,通过网格的划分得到如图2所示的有限元模型。 图2 有限元模型

结合有限元模型中的约束条件为左侧在X与Y方向铰支固定,荷载条件为最右侧处施加向下的集中力P=800N。施加约束与荷载后的几何模型如图4所示。 图3 施加荷载与约束的几何模型 3.位移与轴力图 因在Y方向受力,所以主要做Y方向的位移图,又因为杆件在轴线方向有变形,故在X 方向仍有一定的位移。则图5为变形前后的板件形状。图6为模型沿Y方向的位移图,图7为模型沿X方向的位移图,图8为模型的总位移图。 图4 桁架变形前后形状图

图5 Y方向位移图 图6 X方向位移图

图7总位移图 分析所有的位移图可以看出从以看出左端变形最小,为零,右端变形最大。从总位移图可以看出最大的位移在左下点处,大小为0.164×10?5m。从X方向位移图可以看出,左下点处在X方向位移最大为0.36×10?6。从Y方向位移图可以看出最大位移在左下点处为0.164×10?5。都符合实际情况,图9为模型的轴力图。 图8 轴力图

山东水利职业学院院刊2009年6月 第2期ANSYS在重力坝应力分析中的应用 韩永胜梁秋生 (山东水利职业学院,山东日照276826) 摘要:本文对重力坝应力分析的材料力学方法、弹性力学方法、结构模型试验方法以及有限单元法进行了比较,重点阐述了有限单元法,利用大型有限元工程分析软件ANSYS对某重力坝进行了应力分析与开裂区域研究。 关键词:重力坝;应力分析;有限单元法;ANSYS 1引言 重力坝主要依靠坝体本身自重来保持坝体的稳定,故称为“重力坝”。其坝筑材料主要是混凝土或砌浆石或这两者的组合。在古代建造砌浆石坝的时候,还没有现在那么高的数学力学基础理论,也没有对这种坝起名叫重力坝,更没有对这种坝进行应力分析。从17世纪和18世纪以Hooke’s law为基础的材料力学出现和发展,到19世纪初逐步创立了杠件系统的结构力学和一般弹性体的弹性力学,再到19世纪上半叶和中叶混凝土出现和发展之后,才开始将重力坝作为连续弹性体进行应力分析。最初采用材料力学方法,而后发展到弹性力学方法,对于边界复杂的坝体结构采用模型试验方法。近年来,随着有限单元法的研究和电子计算机的发展,对重力坝的数值解法越来越受到学者和工程师的青睐。 2材料力学方法 材料力学方法基本假定是:(1)坝体材料为均质和各向同性;(2)在静力载荷应力计算中,不考虑温度载荷引起的应力;(3)坝体的永久横缝不传力,将坝段看作独立的固定于岩基上的竖直悬臂梁,不考虑基础变形对坝体应力的影响[1]。 材料力学计算得出:重力坝最不利的应力位于坝踵(上游坝面底部)和坝址(下游坝面底部)。这两处是应力控制的部位,我国重力坝设计规范规定[2],用材料力学方法计算时,重力坝上游坝面不允许出现竖直方向拉应力,坝基面上的压应力应小于坝基许用压应力。 3弹性力学方法 19世纪中下叶,法国李维等学者和工程师为重力坝二维应力分析提供了弹性力学解法。但是由于弹性力学计算方法很繁琐,目前,中低型重力坝的设计基本上按规范规定的材料力学进行应力计算。4结构模型试验方法 用于测试应力的结构模型试验方法主要有光测法和脆性材料电测法两类。结构模型试验方法能适应复杂的边界形状和地基变形条件,便于测量和研究重力坝孔口、坝踵和坝址等角缘应力分布状态,解决了材料力学方法不能解决、弹性力学方法难以解决的课题。在今天,即使电子计算机发展很快、应用很广,一些高重力坝的设计和计算仍采用结构模型试验方法,作为与有限单元法计算结果相互验证的补充的手段。 5有限单元法 有限单元法适用于孔口、角缘和地基变形等复杂的边界条件与载荷情况,可以考虑各种材料的特性和组合,后来又发展到进行温度场和温度应力的计算、非线性分析和动力分析等等。它出色地完成了材料力学方法和弹性力学方法所不能计算的课题,对重力坝的应力计算发挥了很重要的作用。本文利用大型有限元分析程序计算了某重力坝的应力分布和开裂区域。 14··

有限元与CAE分析报告 专业: 班级: 学号: 姓名: 指导教师: 2016年 1 月 2 日

简支梁的静力分析 一、问题提出 长3m的工字型梁两端铰接中间1.5m位置处受到6KN的载荷作用,材料弹性模量E=200e9,泊松比0.28,密度7850kg/㎡ 二、建立模型 1.定义单元类型 依次单击Main Menu→Preprocessor→Elementtype→Add/Edit/Delete,出现对话框如图,单击“Add”,出现一个“Library of Element Type”对话框,在“Library of Element Type”左面的列表栏中选择“Structural Beam”,在右面的列表栏中选择3 node 189,单击“OK”。

2设置材料属性 依次单击Main Menu→Preprocessor→MaterialProps>Material Modes,出现“Define Material ModelBehavior”对话框,在“Material Model Available”下面的对话框中,双击打开“Structural→Linear→Elastic→Isotropic”,出现对话框,输入弹性模量EX=2E+011,PRXY=0.28,单击“OK”。 依次单击Main Menu→Preprocessor→MaterialProps>Material Modes,出现“Define Material ModelBehavior”对话框,在“Material Model Available”下面的对话框中,双击打开“Structural→Density”弹出对话框,输入DENS为7850 3.创建几何模型 1)设定梁的截面尺寸

!!!!!~~~~~!!!!!~~~~~!!!!!~~~~~!!!!!~~~~~!!!!!~~~~~!!!!! !!!!!~~~~~~~~~ansys数据处理的相关命令流~~~~~~~~~~~!!!!! !(1)数据输入的相关命令 !利用*TREAD命令读取数据文件并填充TABLE表格 *TREAD, Par, Fname, Ext, --, NSKIP !以下利用*TREAD命令读取1维数据表格 !tdata.txt文本文件含有如下内容 STRAIN STRESS 00 0.0025 0.0046 0.0067 *DIM,Ttxy,table,4,1,,TIME,ACEL *TREAD,Ttxy,tdata,txt,,1 !以下利用*TREAD命令读取2维数据表格 !要特别注意2维数据的行数 !tdata.txt文本文件含有如下内容 TIME X Y Z 0000 0.020.10.20.3 0.040.20.40.6 0.060.30.60.9 !希望输入地震波激励,X、Y、Z三个方向 *DIM,Ttxy,table,3,3,,TIME,ACEL *TREAD,Ttxy,tdata,txt,,1 !以下利用*TREAD命令读取3维数据表格 !tdata.txt文本文件含有如下内容 TEMP X Y Z 0000 0.020.10.20.3 0.040.20.40.6 0.060.30.60.9 5000 0.030.20.30.4 0.050.40.60.8 0.070.60.90.9 !希望读取不同温度下,不同时刻的泊松比 *DIM,Ttxy,table,3,3,2,TIME,NUXP,TEMP *TREAD,Ttxy,tdata,txt,,1 !利用*SREAD命令读取字符文件 *SREAD, StrArray, Fname, Ext, --, nChar, nSkip, nRead 页: 1

学习ansys的一些心得 学习ansys的一些心得(送给初学者和没有盟币的兄弟) 1 做了布尔运算后要重画图形(删除实体)时:需拾取Utility Menu>Plot>Replot 2 标点的输入是在英文状态下,―,‖。 3 线段中点的建立:Modling>Creat>Keypoints>Fill between kps 4 还不会环形阵列。 5 所谓杆系结构指的是长度远远大于其他方向尺寸(10:1)的构件组成的结构,如连续梁,桁架,钢架等。 6 静力学分析的结果包括结构的位移,应变,应力和反作用力等,一般是使用POST1处理(普通后处理器)和查看这些结果。 7 干系结构的静力学分析—平面桁架的建模,用NODE(节点),ELEMENT(元素)创建。复杂体积的建模一般用KPS(关键点),LINE(Straight line—直线),再生成面,再生成体。 8 如果输入的数据单位是国际单位制单位,则输出的数据单位也是国际制单位。 9 创建正六边形:Creat>Areas>Polygon>Hexagon.指定中心和半径。 10 由面沿线挤出体:Modling>Operate>Extrude>Areas>Along Lines. 11 Ansys中没有Undo命令.需及时保存数据库文件. Def Shape Only:只显示变形图.Def + Undeformed:显示未变形的图.Def + Udef egde:显示未变形的图形的边界. 13 用等高线显示:Plot Results>Contour Plot>Nodal Solu.

14 模态分析用于分析结构的振动特性,即确定结构的固有频率和振型,它也是谐响应分析,瞬态动力学分析以及谱分析等其他动力学分析的基础。 15 Ansys的模态分析是线型分析。任何非线型分析,例如,塑性,接触单元等,即使被定义了也将被忽略。 16 平面桁架:Beam(2D elastic 3) 厚壁圆筒:Solid(8 node 13)>Options(K3—Plane strain) 17 一般材料的弹性模量(EX):2e11.泊松比(PRXY):0.3.密度:7800 18 做完静力学分析后,再做模态分析时,要再次求解,同时预应力效果也应该打开(PSTRES,on).可以在命令行中输入:pstres,on 也可以用菜单路径:Solution>Analysis Type>Analysis Options. 19 弹簧阻尼器单元:Combination-Spring damper 14. 20 接触问题属于状态非线性问题,是一种高度非线性行为,需要较多的计算资源。接触问题有两个基本类型:刚体-柔体的接触,柔体-柔体的接触(许多金属成型的接触问题)。在刚体-柔体的接触问题中,有的接触面与它接触的变形体相比,有较大的刚度而被当做刚体。而柔体-柔体的接触,是一种更普遍的类型,此时两个接触体具有近似的刚度,都为变形体。 21 1 点-点接触:过盈装配问题是用点点接触单元模拟面面接触的典型例子。 2 点-面接触:不必预先知道准确的接触位置,接触面之间也不需要保持一致的网格,并且允许有较大的变形和相对滑动。典型实例:模拟插头插入插座里。 3 面-面接触:刚性面作为目标面,柔性面作为接触面。 22 打开自动时间步长:Solution>Load Step Opts>Time Frequenc>Time And Substps.

ANSYS使用心得体会 本次结构力学课程设计是学习使用ANSYS软件对框架结构内力进行计算,在未学习该软件前,对于此类问题,通常会采用力矩分配法来进行计算,计算过程繁复,计算量大。导致过程缓慢。 通过对ANSYS软件的学习和了解,知道了它的一些明显的优点。 相对于其他应用型软件而言,ANSYS作为大型权威性的有限元分析软件,对提高解决问题的能力是一个全面的锻炼过程,是一门相当难学的软件,因而,要学好ANSYS,对我们提出了很高的要求,一方面,需要我们有比较扎实的力学理论基础,对ANSYS分析结果能有个比较准确的预测和判断,可以说,理论水平的高低在很大程度上决定了ANSYS使用水平;另一方面,需要我们不断摸索出软件的使用经验不断总结以提高解决问题的效率。 刚开始接触ANSYS时,没有限元,单元,节点,形函数等的基本概念没有清楚的了解话,会感觉还没入门,只是在僵硬的模仿,即使已经了解了,必要先反复看几遍书,加深对有限元单元法及其基本概念的理解。 ANSYS在对结构力学的静力学分析非常方便,用来求解外载荷引起的位移、应力和力。静力分析很适合求解惯性和对结构的影响并不显著的问题。ANSYS 程序中的静力分析不仅可以进行线性分析,而且也可以进行非线性分析,如塑性、膨胀、大变形、大应变及接触分析。 但是学习的过程是充满烦恼和惊喜的,因为总是会碰到许多的新问题,需要较好的耐心去解决这些问题,这是在学习过程中遇到的最大的难题。然而,在解决问题之后,就会有恍然大悟的喜悦,可以说是痛苦和快乐并存的。所以对于初学者,缺乏经验是非常难的。必须保持良好的心态,对于不断出现的ERROR提示要坚定自己的信心,坚信自己可以解决这些问题。所有困难都会迎刃而解。 本次的学习让我认识到了提高建模能力是非常急需加强的一个方面。在做偏向于理论的分析时,可能对建模能力要求不是很高,但对于实际的工程问题,有限元模型的建立可以说是一个最重要的问题,而后面的工作变得相对简单。建模能力的提高,需要掌握好的建模思想和技巧。 ANSYS软件是一款在建模等方面非常实用的软件,本次的学习我其实并没有完全熟练地掌握它的应用,以后还要加强对它的学习,相信在以后的学习和工作中会带来巨大的便利。

ANSYS分析实例详解 姓名:XXX 学号:XXX 专业:XXX 内容:空调支架的有限元分析 本次作业为对一空调支架的有限元分析,其主要内容包括空调支架的建模、有限元分析、强度校核以及结构优化等。下图为空调支架一侧的实物图片: 1、空调支架的特点分析 由于空调支架为一个完全对称结构,空调的重量均匀分部在两侧对称支架上,因此只要对空调支架的一侧进行分析即可达到对整体空调支架的分析,同时也达到了简化空调支架分析的目的。本次作业可以分三部分来完成:一,空调支架一侧的建模;二,利用商业化有限元分析软件对建好的空调支架模型进行有限元分析;三,根据空调支架模型有限元分析的结果对支架进行强度校核以及结构优化。 2、空调支架的建模 空调支架的具体尺寸图如下图所示:

考虑到空调支架模型结构简单,故在此没有利用三维软件建模而是直接在有限元分析软件中进行建模,本次作业采用的有限元分析软件为美国ANSYS公司研制的大型通用有限元分析(FEA)软件ANSYS10.0。建立模型包括设定分析作业名和标题,定义单元类型、定义材料属性、建立三维模型、划分有限元网格。 2.1设定分析作业名和标题 打开ANSYS软件进入ANSYS操作界面,首先从主菜单中选择【Preferences】命令,勾选Structural。然后从实用菜单中选择【Change Jobname】命令,将文件名修改为Ktiao2,从实用菜单中选择【Change Title】命令,将标题修改为Ktiao2。如下图所示: 2.2定义单元类型 在进行有限元分析时,首先应根据分析问题的几何结构、分析类型和所分析的问题精度要求等,选定适合具体分析的单元类型。本文中选用8节点六面体单元Solid185。如下图所示:

1做了布尔运算后要重画图形(删除实体)时:需拾取Utility Menu>Plot>Replot 2标点的输入是在英文状态下,“,”。 3线段中点的建立:Modling>Creat>Keypoints>Fill between kps 4还不会环形阵列。 5所谓杆系结构指的是长度远远大于其他方向尺寸(10:1)的构件组成的结构,如连续梁,桁架,钢架等。 6静力学分析的结果包括结构的位移,应变,应力和反作用力等,一般是使用POST1处理(普通后处理器)和查看这些结果。 7干系结构的静力学分析—平面桁架的建模,用NODE(节点),ELEMENT(元素)创建。复杂体积的建模一般用KPS(关键点),LINE(Straight line—直线),再生成面,再生成体。8如果输入的数据单位是国际单位制单位,则输出的数据单位也是国际制单位。 9创建正六边形:Creat>Areas>Polygon>Hexagon.指定中心和半径。 10由面沿线挤出体:Modling>Operate>Extrude>Areas>Along Lines. 11Ansys中没有Undo命令.需及时保存数据库文件. 12Def Shape Only:只显示变形图.Def + Undeformed:显示未变形的图.Def + Udef egde:显示未变形的图形的边界. 13用等高线显示:Plot Results>Contour Plot>Nodal Solu. 14模态分析用于分析结构的振动特性,即确定结构的固有频率和振型,它也是谐响应分析,瞬态动力学分析以及谱分析等其他动力学分析的基础。 15Ansys的模态分析是线型分析。任何非线型分析,例如,塑性,接触单元等,即使被定义了也将被忽略。 16平面桁架:Beam(2D elastic 3) 厚壁圆筒:Solid(8 node 13)>Options(K3—Plane strain) 17一般材料的弹性模量(EX):2e11.泊松比(PRXY):0.3.密度:7800 18做完静力学分析后,再做模态分析时,要再次求解,同时预应力效果也应该打开(PSTRES,on).可以在命令行中输入:pstres,on 也可以用菜单路径:Solution>Analysis Type>Analysis Options. 19弹簧阻尼器单元:Combination-Spring damper 14. 20接触问题属于状态非线性问题,是一种高度非线性行为,需要较多的计算资源。接触问题有两个基本类型:刚体-柔体的接触,柔体-柔体的接触(许多金属成型的接触问题)。 在刚体-柔体的接触问题中,有的接触面与它接触的变形体相比,有较大的刚度而被当做刚体。而柔体-柔体的接触,是一种更普遍的类型,此时两个接触体具有近似的刚度,都为变形体。 21Ansys的接触方式: 1 点-点接触:过盈装配问题是用点点接触单元模拟面面接触的典型例子。 2 点-面接触:不必预先知道准确的接触位置,接触面之间也不需要保持一致的网格, 并且允许有较大的变形和相对滑动。典型实例:模拟插头插入插座里。 3 面-面接触:刚性面作为目标面,柔性面作为接触面。 22 打开自动时间步长:Solution>Load Step Opts>Time Frequenc>Time And Substps. 23 屈曲分析是一种用于确定结构开始变得不稳定时的临界载荷和屈曲模态形状分析的技术。 24 打开预应力效果:Solution> Analysis Type>Analysis Options.在弹出的对话框中的sstif pstres下拉列表框中选择Prestress ON.单击OK. 25 交叠面:Modling>Opreat>Boolearns>Overlap>Areas.

相关文档
最新文档