高考数学一轮复习测试函数

合集下载

2023年新高考数学一轮复习4-4 导数的综合应用(真题测试)含详解

2023年新高考数学一轮复习4-4 导数的综合应用(真题测试)含详解

专题4.4 导数的综合应用(真题测试)一、单选题1.(2017·全国·高考真题(理))已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则=a ( ) A .12-B .13C .12D .12.(2015·陕西·高考真题(理))对二次函数(为非零整数),四位同学分别给出下列结论,其中有且仅有一个结 论是错误的,则错误的结论是 A .是的零点 B .1是的极值点 C .3是的极值D .点在曲线上3.(2022·青海·海东市第一中学模拟预测(理))已知函数()2e 2xx f x a x =-+,若有且仅有两个正整数,使得()0f x <成立,则实数a 的取值范围是( ) A .211,3e e ⎡⎫⎪⎢⎣⎭B .3291,5e e ⎡⎫⎪⎢⎣⎭C .391,5e 3e ⎡⎫⎪⎢⎣⎭D .212,2e e ⎡⎫⎪⎢⎣⎭4.(2014·全国·高考真题(文))已知函数,若存在唯一的零点,且,则的取值范围是( ) A .B .C .D .5.(2022·青海·海东市第一中学模拟预测(理))若函数()()22e e x x f x x ax a a R =+-∈有三个不同的零点,则实数a 的取值范围是( ) A .1,e ⎛⎫+∞ ⎪⎝⎭B .1,1e ⎛⎫ ⎪⎝⎭C .2110,,1e e e ⎛⎫⎛⎫⋃ ⎪ ⎪-⎝⎭⎝⎭D .210,e e ⎛⎫ ⎪-⎝⎭6.(2022·河南·开封市东信学校模拟预测(理))对任意0x >,不等式e ln()(1)0x ax a x -+-≥恒成立,则正数a 的最大值为( ) ABC .1eD .e7.(2015·全国·高考真题(理))设函数()(21)xf x e x ax a =--+,其中1a < ,若存在唯一的整数0x ,使得2()f x ax bx c =++a 1-()f x ()f x ()f x (2,8)()y f x =32()31f x ax x =-+()f x 0x 00x >a ()2,+∞()1,+∞(),2-∞-(),1-∞-0()0f x <,则a 的取值范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭B .33,2e 4⎡⎫-⎪⎢⎣⎭ C .33,2e 4⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭8.(2022·内蒙古·海拉尔第二中学模拟预测(理))已知函数()()e ln e (0)xf x a a a =+>,若对任意实数1x >,不等式()()ln 1f x x ≥-总成立,则实数a 的取值范围为( ) A .210,e ⎛⎫ ⎪⎝⎭B .221,e e ⎛⎤⎥⎝⎦C .21,e ⎛⎫+∞ ⎪⎝⎭D .21,e ⎡⎫+∞⎪⎢⎣⎭二、多选题9.(2022·辽宁实验中学模拟预测)我们把形如(),,0f x y y '=的方程称为微分方程,符合方程的函数()y f x =称为微分方程的解,下列函数为微分方程0xy y xy +-'=的解的是( ) A .e x y = B .e x y x =C .e 1x y x =+D .e (R)x y c x c =⋅∈⋅10.(2022·河北沧州·二模)已知实数,a b 满足e e e a b a b ++=,则( ) A .0ab < B .1a b +> C .e e 4a b +D .e 1a b >11.(2022·湖南·模拟预测)已知1x >,1y >,且()()1e 11e y xx y ++=+,则下列结论一定正确的是( )A .()ln 0x y ->B .122x y +<C .226x y +>D .()ln ln3x y +<12.(2022·全国·高考真题)已知函数,则( )A .有两个极值点B .有三个零点C .点是曲线的对称中心D .直线是曲线的切线三、填空题13.(2020·河南高三其他(理))函数()2222ln x f x x e x ax =--,若0a =,则()f x 在[]1,2的最小值为_______;当0x >时,()1f x ≥恒成立,则a 的取值范围是_____. 14.(2022·全国·模拟预测(理))若曲线ln x y x =与212y kx =-仅有1个公共点,则k 的取值范围是3()1f x x x =-+()f x ()f x (0,1)()y f x =2y x =()y f x =___________.15.(2012·福建·高考真题(理))对于实数a 和b ,定义运算“*”: 设f (x )=(2x -1)*(x -1),且关于x 的方程为f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是_________________16.(2022·江苏·常州高级中学模拟预测)已知函数22()ln 2e f x x x mx =-+,若()0f x ≥的解集中恰有一个整数,则m 的取值范围为________. 四、解答题17.(2018·全国·高考真题(文))已知函数.(1)求曲线在点处的切线方程; (2)证明:当时,.18.(2017·全国·高考真题(理))已知函数(1)讨论的单调性;(2)若有两个零点,求的取值范围.19.(2017·全国·高考真题(文))已知函数.(1)讨论的单调性; (2)当时,证明. 20.(2016·全国·高考真题(文))设函数. (Ⅰ)讨论的单调性; (Ⅱ)证明当时,; (Ⅲ)设,证明当时,.21.(2015·全国·高考真题(理))设函数.(1)证明:在单调递减,在单调递增;(2)若对于任意,都有,求m 的取值范围.22.(2014·四川·高考真题(理))已知函数,其中,为自然对数的底数.(Ⅰ)设是函数的导函数,求函数在区间上的最小值;22,,a ab a ba b b ab a b ⎧-≠=⎨->⎩()21x ax x f x e +-=()y f x =()0,1-1a ≥()0f x e +≥()()2e 2e x xf x a a x =+--()f x ()f x a 2()ln (21)f x x ax a x =+++()f x 0a <3()24f x a≤--()ln 1f x x x =-+()f x (1,)x ∈+∞11ln x x x-<<1c >(0,1)x ∈1(1)xc x c +->2()e mx f x x mx =+-()f x (,0)-∞(0,)+∞12,[1,1]x x ∈-12|()()|1f x f x e -≤-2()1x f x e ax bx =---,a b R ∈ 2.71828e =()g x ()f x ()g x [0,1](Ⅱ)若,函数在区间内有零点,求的取值范围(1)0f ()f x (0,1)a专题4.4 导数的综合应用(真题测试)一、单选题1.(2017·全国·高考真题(理))已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则=a ( ) A .12-B .13C .12D .1【答案】C 【解析】 【分析】 【详解】因为()221111()2()1()1x x x x f x x x a e e x a e e --+--+=-++=-++-,设1t x =-,则()()()21t t f x g t t a e e -==++-,因为()()g t g t =-,所以函数()g t 为偶函数,若函数()f x 有唯一零点,则函数()g t 有唯一零点,根据偶函数的性质可知,只有当0=t 时,()0g t =才满足题意,即1x =是函数()f x 的唯一零点,所以210a -=,解得12a =.故选:C. 2.(2015·陕西·高考真题(理))对二次函数(为非零整数),四位同学分别给出下列结论,其中有且仅有一个结 论是错误的,则错误的结论是 A .是的零点 B .1是的极值点 C .3是的极值 D .点在曲线上【答案】A 【解析】 【详解】若选项A 错误时,选项B 、C 、D 正确,,因为是的极值点,是的极值,所以,即,解得:,因为点在曲线上,所以,即,解得:,所以,,所以,因为,所以不是的零点,所以选项A 错误,选项B 、C 、D 正确,故选A .3.(2022·青海·海东市第一中学模拟预测(理))已知函数()2e 2xx f x a x =-+,若有且仅有两个正整2()f x ax bx c =++a 1-()f x ()f x ()f x (2,8)()y f x =()2f x ax b ='+1()f x 3()f x ()()10{13f f '==203a b a b c +=⎧⎨++=⎩2{3b a c a =-=+()2,8()y f x =()42238a a a +⨯-++=5a =10b =-8c =()25108f x x x =-+()()()21511018230f -=⨯--⨯-+=≠1-()f x数,使得()0f x <成立,则实数a 的取值范围是( ) A .211,3e e ⎡⎫⎪⎢⎣⎭B .3291,5e e ⎡⎫⎪⎢⎣⎭C .391,5e 3e ⎡⎫⎪⎢⎣⎭D .212,2e e ⎡⎫⎪⎢⎣⎭【答案】C 【解析】 【分析】将()0f x <转化为2(2)exx a x +<,再分别求导分析2()e x x g x =和()(2)h x a x =+的图象,再分别求得1,1g ,()()2,2g ,()()3,3g 到()20-,的斜率,分析临界情况即可 【详解】由()0f x <且0x >,得2(2)exx a x +<,设2()e x x g x =,()(2)h x a x =+, 22()exx x g x '-=,已知函数()g x 在(0,2)上单调递增,在(2,)+∞上单调递减, 函数()(2)h x a x =+的图象过点(2,0)-,(1)11(2)3e g =--,2(2)12(2)e g =--,3(3)93(2)5e g =--,结合图象,因为329115e 3e e <<,所以3915e 3ea ≤<. 故选:C4.(2014·全国·高考真题(文))已知函数,若存在唯一的零点,且,则的取值范围是( ) A . B . C . D .【答案】C 【解析】 【详解】试题分析:当时,,函数和,不满足题意,舍去;当时,,令,得或.时,;时,;时,,且,此时在必有零点,故不满足题意,舍去;当时,时,32()31f x ax x =-+()f x 0x 00x >a ()2,+∞()1,+∞(),2-∞-(),1-∞-0a =2()31f x x =-+()f x 0a >2()36f x ax x '=-()0f x '=0x =2x a =(,0)x ∈-∞()0f x '>2(0,)x a ∈()0f x '<2(,)x a∈+∞()0f x '>(0)0f >(,0)x ∈-∞0a <2(,)x a∈-∞;时,;时,,且,要使得存在唯一的零点,且,只需,即,则,选C .5.(2022·青海·海东市第一中学模拟预测(理))若函数()()22e e x xf x x ax a a R =+-∈有三个不同的零点,则实数a 的取值范围是( ) A .1,e ⎛⎫+∞ ⎪⎝⎭B .1,1e ⎛⎫ ⎪⎝⎭C .2110,,1e e e ⎛⎫⎛⎫⋃ ⎪ ⎪-⎝⎭⎝⎭D .210,e e ⎛⎫ ⎪-⎝⎭【答案】D 【解析】 【分析】令()0f x =得20e e x xx xa a ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,利用导数研究()e x x g x =的图像,由函数()f x 有三个零点可知,若令1e e xxt t ⎛⎫=≤ ⎪⎝⎭,则可知方程20t at a +-=的一根1t 必在10,e ⎛⎫ ⎪⎝⎭内,另一根21e t =或20t =或()2,0t ∈-∞上,分类讨论即可求解. 【详解】由22e e 0xxx ax a +-=得20e ex xx xa a ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,令()e x x g x =, 由()10e xxg x -'==,得1x =,因此函数()g x 在(),1-∞上单调递增,在()1,+∞上单调递减,且()00g =,当0x >时,()0e x x g x =>,则()ex xg x =的图像如图所示: 即函数()g x 的最大值为()11eg =,令1e e xx t t ⎛⎫=≤ ⎪⎝⎭,则()20h t t at a =+-=,由二次函数的图像可知,二次方程的一根1t 必在10,e ⎛⎫ ⎪⎝⎭内,另一根21e t =或20t =或()2,0t ∈-∞上,当21e t =时,21e ea =-,则另一根111e t =-,不满足题意,当20t =时,a =0,则另一根10t =,不满足题意,()0f x '<2(,0)x a ∈()0f x '>(0,)x ∈+∞()0f x '<(0)0f >()f x 0x 00x >2()0f a>24a >2a <-当()2,0t ∈-∞时,由二次函数()20h t t at a =+-=的图像可知22000110e e a a a a ⎧+⋅-<⎪⎨⎛⎫+⋅->⎪ ⎪⎝⎭⎩, 解得210e ea <<-, 则实数a 的取值范围是210,e e ⎛⎫ ⎪-⎝⎭,故选:D.6.(2022·河南·开封市东信学校模拟预测(理))对任意0x >,不等式e ln()(1)0x ax a x -+-≥恒成立,则正数a 的最大值为( ) ABC .1eD .e【答案】D 【解析】 【分析】将不等式化为ln()e ln()e x ax x ax +≥+,构造()e x f x x =+有()(ln())f x f ax ≥,利用函数的单调性及参变分离法有e xa x ≤在0x >上恒成立,应用导数求右侧最小值,即可得结果.【详解】∵e ln()(1)0x ax a x -+-≥,∴ln()e ln()ln()e x ax x ax ax ax +≥+=+.令()e x f x x =+,则不等式化为()(ln())f x f ax ≥. ∵()e (0)x f x x x =+>为增函数,∴ln()x ax ≥,即e xa x≤.令e ()=x g x x ,则2(1)e ()x x g x x '-=,当01x <<时,()0g x '<,即()g x 递减;当1x >时,()0g x '>,即()g x 递增; 所以()()min 1e e g x g a ⇒≤==. ∴实数a 的最大值为e . 故选:D7.(2015·全国·高考真题(理))设函数()(21)xf x e x ax a =--+,其中1a < ,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭B .33,2e 4⎡⎫-⎪⎢⎣⎭C .33,2e 4⎡⎫⎪⎢⎣⎭D .3,12e ⎡⎫⎪⎢⎣⎭【答案】D 【解析】 【分析】设()()21xg x e x =-,()1y a x =-,问题转化为存在唯一的整数0x 使得满足()()01g x a x <-,求导可得出函数()y g x =的极值,数形结合可得()01a g ->=-且()312g a e-=-≥-,由此可得出实数a 的取值范围.【详解】设()()21xg x e x =-,()1y a x =-,由题意知,函数()y g x =在直线y ax a =-下方的图象中只有一个点的横坐标为整数,()()21x g x e x '=+,当12x <-时,()0g x '<;当12x >-时,()0g x '>.所以,函数()y g x =的最小值为12122g e -⎛⎫-=- ⎪⎝⎭.又()01g =-,()10g e =>.直线y ax a =-恒过定点()1,0且斜率为a , 故()01a g ->=-且()31g a a e -=-≥--,解得312a e≤<,故选D.8.(2022·内蒙古·海拉尔第二中学模拟预测(理))已知函数()()e ln e (0)xf x a a a =+>,若对任意实数1x >,不等式()()ln 1f x x ≥-总成立,则实数a 的取值范围为( )A .210,e ⎛⎫ ⎪⎝⎭B .221,e e ⎛⎤⎥⎝⎦C .21,e ⎛⎫+∞ ⎪⎝⎭D .21,e ⎡⎫+∞⎪⎢⎣⎭【答案】D 【解析】 【分析】将所求不等式变形为()()ln 1ln eln eln 1x x ax a x -+++≥+-,构造函数()e xg x x =+,可知该函数在R 上为增函数,由此可得出()ln ln 1a x x ≥--,其中1x >,利用导数求出()()ln 1h x x x =--的最大值,即可求得实数a 的取值范围. 【详解】当1x >时,由()()ln 1f x x ≥-可得()ln eln 1ln 1x aa x +++≥-, 即()()()ln 1ln eln 1ln 1eln 1x x ax a x x x -+++≥-+-=+-,构造函数()e xg x x =+,其中x ∈R ,则()e 10x g x '=+>,所以,函数()g x 在R 上为增函数, 由()()ln 1ln eln eln 1x x ax a x -+++≥+-可得()()ln ln 1g x a g x +≥-⎡⎤⎣⎦,所以,()ln ln 1x a x +≥-,即()ln ln 1a x x ≥--,其中1x >, 令()()ln 1h x x x =--,其中1x >,则()12111xh x x x -'=-=--. 当12x <<时,()0h x '>,函数()h x 单调递增, 当2x >时,()0h x '<,函数()h x 单调递减, 所以,()()max ln 22a h x h ≥==-,21e a ∴≥. 故选:D.二、多选题9.(2022·辽宁实验中学模拟预测)我们把形如(),,0f x y y '=的方程称为微分方程,符合方程的函数()y f x =称为微分方程的解,下列函数为微分方程0xy y xy +-'=的解的是( ) A .e x y = B .e x y x =C .e 1x y x =+D .e (R)x y c x c =⋅∈⋅【答案】CD 【解析】 【分析】根据导数的运算求得导函数y ',代入微分方程检验即可. 【详解】选项A ,e x y =,则e x y '=,e e e e 0x x x x xy y xy x x '+-=+-=≠,不是解;选项B ,e x y x =,e e x x y x '=+,22e e e e 0x x x x xy y xy x x x x '+-=+--=,是方程的解;选项C ,e 1x y x =+,e e x x y x '=+,22e e 1e e 10x x x x xy y xy x x x x x x '+-=+++--=+≠,不是方程的解; 选项D ,e (R)x y c x c =⋅∈⋅,e e x x y c cx '=+,22e e e e 0x x x x xy y xy cx cx cx cx '+-=+--=,是方程的解. 故选:CD .10.(2022·河北沧州·二模)已知实数,a b 满足e e e a b a b ++=,则( ) A .0ab < B .1a b +> C .e e 4a b + D .e 1a b >【答案】BCD 【解析】 【分析】A.由e e e a b a b ++=得到111e ea b +=判断;BC.由e e e 2e e a b a b a b ++==2b 判断;D. 由111e e a b +=,得到e e e 1e 11e 1e 1b b b ab b b b b -+-=-=--,令()e e 1,0b b f b b b =-+>,用导数法判断. 【详解】 由e e e a b a b ++=得111e ea b +=,又e 0,e 0a b >>,所以e 1,e 1a b >>,所以0,0a b >>,所以0ab >,选项A 错误;因为e e e 2e e a b a b a b ++==2b ,即e e e 4a b a b ++=,所以ln41a b +>,选项B C ,正确,因为111e e a b +=,所以e e e 1b ab =-,所以e e e 1e 11e 1e 1b b b a bbb b b -+-=-=--.令()e e 1,0b b f b b b =-+>,则()e 0b f b b '=>,所以f b 在区间()0,∞+上单调递增,所以()()00f b f >=,即e e 10b b b -+>,又e 10b ->,所以e 10a b ->,即e 1a b >,选项D 正确. 故选:BCD11.(2022·湖南·模拟预测)已知1x >,1y >,且()()1e 11e y xx y ++=+,则下列结论一定正确的是( )A .()ln 0x y ->B .122x y +<C .226x y +>D .()ln ln3x y +<【答案】AC 【解析】 【分析】构造函数()e xf x x=,利用导数判断函数的单调性,得出1x y >+,结合不等式以及指、对数函数的性质逐一判断即可. 【详解】令()e x f x x=,则()()2e 1e e xx x x x f x x x --'==, 所以当1x >时,()0f x '>,所以()f x 在()1,+∞上单调递增; 由()()1e 11e yxx y ++=+得1e e 111x y x y y +=+++,即1e e 111x y x y y +-=++,∵1y >,∴11012y <<+, ∴1e e 1012x y x y +<-<+,即()()1012f x f y <-+<, ∴1x y >+,即1->x y ,∴()ln 0x y ->,A 正确;由1x y >+知12x y +>+,所以12222x y y ++>>,所以选项B 错误; 由1x y >+知12222326x y y y y ++>+=⋅>,所以选项C 正确.由1x y >+,1y >知213x y y +>+>,所以()()ln ln 21ln3x y y +>+>, 所以D 错误,故选:AC .12.(2022·全国·高考真题)已知函数,则( )A .有两个极值点B .有三个零点C .点是曲线的对称中心D .直线是曲线的切线【答案】AC 【解析】 【分析】利用极值点的定义可判断A ,结合的单调性、极值可判断B ,利用平移可判断C ;利用导数的几何意义3()1f x x x =-+()f x ()f x (0,1)()y f x =2y x =()y f x =()f x判断D. 【详解】由题,,令得或令得, 所以在上单调递减,在,上单调递增, 所以是极值点,故A 正确;因,,, 所以,函数在上有一个零点, 当时,,即函数在上无零点, 综上所述,函数有一个零点,故B 错误;令,该函数的定义域为,,则是奇函数,是的对称中心, 将的图象向上移动一个单位得到的图象, 所以点是曲线的对称中心,故C 正确;令,可得,又,当切点为时,切线方程为,当切点为时,切线方程为, 故D 错误.故选:AC.三、填空题13.(2020·河南高三其他(理))函数()2222ln x f x x e x ax =--,若0a =,则()f x 在[]1,2的最小值为_______;当0x >时,()1fx ≥恒成立,则a 的取值范围是_____.【答案】e (],1-∞ 【解析】当0a =时,∵()222ln x f x x ex =-,∴()222222x x f x xe x xe x'=+⋅-. 当1x >时,()0f x '>恒成立,()231f x x '=-()0fx '>x >x <()0f x '<x <()f x ((,-∞)+∞x =(10f =+>10f =>()250f -=-<()f x ,⎛-∞ ⎝⎭x ≥()0f x f ≥>⎝⎭()f x ⎫∞⎪⎪⎝⎭()f x 3()h x x x =-R ()()()()33h x x x x x h x -=---=-+=-()h x (0,0)()h x ()h x ()f x (0,1)()y f x =()2312f x x '=-=1x =±()(1)11f f =-=(1,1)21y x =-(1,1)-23y x =+∴()f x 在[]1,2上单调递增.∴()f x 在[]1,2上最小值为()1f e =.又0x >时,()1f x ≥恒成立,令 ()1xg x e x =--,()()100xg x e g ''=->=,所以()g x 在()0,∞+ 递增,()()00g x g >= 所以1x e x >+ ∴()22222ln 22ln 2ln x x x f x x e x ax e x ax +=--=--()2222ln 12ln 111x x x ax a x ≥++--=-+≥恒成立,∴1a ≤.故答案为e ;(],1-∞.14.(2022·全国·模拟预测(理))若曲线ln x y x =与212y kx =-仅有1个公共点,则k 的取值范围是___________. 【答案】(]1,02⎧⎫-∞⋃⎨⎬⎩⎭##1|02k k k ⎧⎫≤=⎨⎬⎩⎭或【解析】 【分析】将原问题转化为32ln 12x k x x =+只有一个解,令()()32ln 102x g x x x x =+>,利用导数求出()g x 的单调性及最值即可得答案. 【详解】 由题意可得:2ln 12x kx x =-只有一个解()0x >, 即32ln 12x k x x=+只有一个解. 令()32ln 12x g x x x=+, ()0x >原问题等价于y k =与()y g x =只有一个交点. 因为()43413ln 113ln x x xg x x x x '---=-= 因为13ln y x x =--在()0,∞+上单调递减, 且在1x =处的值为0 ,所以当()0,1x ∈时, ()()0,g x g x '>单调递增,当()1,x ∈+∞时, ()()0,g x g x '<单调递减且恒为正, 所以()()max 112g x g ==, 又因为y k =与()y g x =只有一个交点, 所以(]1,02k ⎧⎫∈-∞⎨⎬⎩⎭.故答案为: (]1,02⎧⎫-∞⋃⎨⎬⎩⎭.15.(2012·福建·高考真题(理))对于实数a 和b ,定义运算“*”: 设f (x )=(2x -1)*(x -1),且关于x 的方程为f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是_________________ 【答案】【解析】 【详解】由定义运算“*”可知 即,该函数图像如下:由,假设当关于x 的方程为f (x )=m (m ∈R )恰有三个互不相等的实数根时, m 的取值范围是,且满足方程,所以令则, 所以令22,,a ab a ba b b ab a b ⎧-≠=⎨->⎩⎫⎪⎪⎝⎭22(21)(21)(1)0()?(1)(21)(1)0x x x x f x x x x x ⎧----=⎨---->⎩2220()0x x x f x x x x ⎧-=⎨-+>⎩1124f ⎛⎫= ⎪⎝⎭1230x x x <<<10,4⎛⎫⎪⎝⎭23,x x 2-+=x x m 23=x x m 22-=x x m 1=x 123==x x x m 10,4⎛⎫=∈ ⎪⎝⎭y m所以, 又在递增的函数, 所以,所以,所以在递减, 则当时,;当时,所以.16.(2022·江苏·常州高级中学模拟预测)已知函数22()ln 2e f x x x mx =-+,若()0f x ≥的解集中恰有一个整数,则m 的取值范围为________.【答案】22ln 22e ,4e 2⎡⎫-⎪⎢⎣⎭【解析】【分析】由()0f x ≥且0x >,得出2ln 2e x x m x -+≥-,构造函数()ln =-xg x x,利用导数研究()g x 的单调性,画出()ln =-x g x x 和22e y x =-的大致图象,由图可知0m >,设0x 为()ln =-xg x x和22e y x m =-+的交点的横坐标,结合题意可知该整数为1,即012x ≤<,当直线22e y x m =-+过1,0A 和ln 22,2B ⎛⎫- ⎪⎝⎭时,即可求出求出m 的值,从而得出m 的取值范围.【详解】由题可知,22()ln 2e f x x x mx =-+,0x >, 由于()0f x ≥的解集中恰有一个整数,即22ln 2e 0x x mx -+≥,即222e ln x mx x -+≥-,因为0x >,所以2ln 2e xx m x-+≥-的解集中恰有一个整数, 令()ln =-x g x x ,则()2ln 1-'=x g x x , 当1e x <<时,()0g x '<;当e x >时,()0g x '>, 所以()g x 在()1,e 上单调递减,在()e,+∞上单调递增, 画出()ln xy xg x ==-和22e y x =-的大致图象,如图所示: 要使得2ln 2e xx m x-+≥-,可知0m >, 114'⎛= ⎝y ()=h m 10,4⎛⎫⎪⎝⎭()()01>=h m h 0y '<=y 10,4⎛⎫ ⎪⎝⎭0m =0y =14m ==y 123⎫∈⎪⎪⎝⎭x x x设0x 为()ln =-xg x x和22e y x m =-+的交点的横坐标, 而2ln 2e xx m x-+≥-的解集中恰有一个整数,可知该整数为1,即012x ≤<, 当01x =时,得()10g =;当02x =时,得()ln 222g =-, 即1,0A ,ln 22,2B ⎛⎫- ⎪⎝⎭,当直线22e y x m =-+过点1,0A 时,得22e m =,当直线22e y x m =-+过点ln 22,2B ⎛⎫- ⎪⎝⎭时,得2ln 24e 2m =-, 所以m 的取值范围为22ln 22e ,4e 2⎡⎫-⎪⎢⎣⎭.故答案为:22ln 22e ,4e 2⎡⎫-⎪⎢⎣⎭四、解答题17.(2018·全国·高考真题(文))已知函数.(1)求曲线在点处的切线方程; (2)证明:当时,.【答案】(1)切线方程是(2)证明见解析 【解析】 【分析】(1)求导,由导数的几何意义求出切线方程.(2)当时,,令,只需证明即可.【详解】()21x ax x f x e +-=()y f x =()0,1-1a ≥()0f x e +≥210x y --=a 1≥()12f x e 1x x e x x e +-+≥++-()12gx 1x e x x +=++-gx 0≥(1),.因此曲线在点处的切线方程是.(2)当时,.令,则,当时,,单调递减;当时,,单调递增; 所以 .因此.18.(2017·全国·高考真题(理))已知函数(1)讨论的单调性;(2)若有两个零点,求的取值范围. 【答案】(1)见解析;(2). 【解析】 【详解】试题分析:(1)讨论单调性,首先进行求导,发现式子特点后要及时进行因式分解,再对按,进行讨论,写出单调区间;(2)根据第(1)问,若,至多有一个零点.若,当时,取得最小值,求出最小值,根据,,进行讨论,可知当时有2个零点.易知在有一个零点;设正整数满足,则.由于,因此在有一个零点.从而可得的取值范围为.试题解析:(1)的定义域为,,(ⅰ)若,则,所以在单调递减. (ⅱ)若,则由得.当时,;当时,,所以在单调递减,在单调递增.(2)(ⅰ)若,由(1)知,至多有一个零点.(ⅱ)若,由(1)知,当时,取得最小值,最小值为. ()()2212xax a x f x e-++'-=()02f '=()y f x =()0,1-210x y --=1a ≥()()211x xf x e x x e e +-+≥+-+()211xg x x x e +=+-+()121x g x x e +=++'()120x g x e +''=+>1x <-()()10g x g '-'<=()g x 1x >-()()10g x g '-'>=()g x ()g x ()1=0g ≥-()0f x e +≥()()2e 2e x xf x a a x =+--()f x ()f x a (0,1)()f x a 0a ≤0a >0a ≤()f x 0a >ln x a =-()f x 1(ln )1ln f a a a-=-+1a =(1,)∈+∞a (0,1)a ∈(0,1)a ∈()f x (,ln )a -∞-0n 03ln(1)n a>-00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->3ln(1)ln a a->-()f x (ln ,)a -+∞a (0,1)()f x (),-∞+∞()()()()2221121x x x xf x ae a e ae e =+---'=+0a ≤()0f x '<()f x (),-∞+∞0a >()0f x '=ln x a =-(),ln x a ∈-∞-()0f x '<()ln ,x a ∈-+∞()0f x '>()f x (),ln a -∞-()ln ,a -+∞0a ≤()f x 0a >ln x a =-()f x ()1ln 1ln f a a a-=-+①当时,由于,故只有一个零点; ②当时,由于,即,故没有零点; ③当时,,即. 又,故在有一个零点.设正整数满足,则.由于,因此在有一个零点. 综上,的取值范围为.19.(2017·全国·高考真题(文))已知函数.(1)讨论的单调性; (2)当时,证明. 【答案】(1)见解析;(2)见解析. 【解析】 【分析】(1)先求函数导数,再根据导函数符号的变化情况讨论单调性:当时,,则在单调递增;当时,在单调递增,在单调递减. (2)证明,即证,而,所以需证,设g (x )=ln x -x +1 ,利用导数易得,即得证. 【详解】(1) 的定义域为(0,+),. 若a ≥0,则当x ∈(0,+)时,,故f (x )在(0,+)单调递增.若a <0,则当时,时;当x ∈时,. 故f (x )在单调递增,在单调递减. (2)由(1)知,当a <0时,f (x )在取得最大值,最大值为. 1a =()ln 0f a -=()f x ()1,a ∈+∞11ln 0a a-+>()ln 0f a ->()f x ()0,1a ∈11ln 0a a-+<()ln 0f a -<()()4222e 2e 22e 20f a a ----=+-+>-+>()f x (),ln a -∞-0n 03ln 1n a ⎛⎫>- ⎪⎝⎭()()00000000e e 2e 20n n n nf n a a n n n =+-->->->3ln 1ln a a ⎛⎫->- ⎪⎝⎭()f x ()ln ,a -+∞a ()0,12()ln (21)f x x ax a x =+++()f x 0a <3()24f x a≤--(21)(1)'()(0)ax x f x x x++=>0a ≥'()0f x >()f x (0,)+∞0a <()f x 1(0,)2a -1(,)2a-+∞3()24f x a ≤--max 3()24f x a ≤--max 1()()2f x f a=-11ln()1022a a -++≤max ()(1)0g x g ==()f x ∞()()‘1211)22(1x ax f x ax a x x++=+++=∞’)(0f x >∞10,2x a ⎛⎫∈- ⎪⎝⎭()0f x '>1()2a ∞-+,’)(0f x <’)(0f x >1()2a∞-+,12x a=-111()ln()1224f a a a -=---所以等价于,即. 设g (x )=ln x -x +1,则. 当x ∈(0,1)时,;当x ∈(1,+)时,.所以g (x )在(0,1)单调递增,在(1,+)单调递减.故当x =1时,g (x )取得最大值,最大值为g (1)=0.所以当x >0时,g (x )≤0.从而当a <0时,,即. 20.(2016·全国·高考真题(文))设函数.(Ⅰ)讨论的单调性; (Ⅱ)证明当时,; (Ⅲ)设,证明当时,.【答案】(Ⅰ)当时,单调递增;当时,单调递减;(Ⅱ)见解析;(Ⅲ)见解析. 【解析】 【详解】试题分析:(Ⅰ)首先求出导函数,然后通过解不等式或可确定函数的单调性;(Ⅱ)左端不等式可利用(Ⅰ)的结论证明,右端将左端的换为即可证明;(Ⅲ)变形所证不等式,构造新函数,然后通过利用导数研究函数的单调性来处理. 试题解析:(Ⅰ)由题设,的定义域为,,令,解得. 当时,,单调递增;当时,,单调递减. (Ⅱ)由(Ⅰ)知,在处取得最大值,最大值为. 所以当时,. 故当时,,,即. (Ⅲ)由题设,设,则,令,解得.当时,,单调递增;当时,,单调递减. 由(Ⅱ)知,,故,又,故当时,. 所以当时,.3()24f x a≤--113ln()12244a a a ---≤--11ln()1022a a -++≤’1(1)g x x=-()0g x '>∞()0g x '<∞11ln()1022a a -++≤3()24f x a≤--()ln 1f x x x =-+()f x (1,)x ∈+∞11ln x x x-<<1c >(0,1)x ∈1(1)xc x c +->01x <<()f x 1x >()f x ()f x '()0f x '>()0f x '<()f x x 1x()f x (0,)+∞1()1f x x=-'()0f x '=1x =01x <<()0f x '>()f x 1x >()0f x '<()f x ()f x 1x =(1)0f =1x ≠ln 1x x <-(1,)x ∈+∞ln 1x x <-11ln1x x <-11ln x x x-<<1c >()1(1)x g x c x c =+--'()1ln xg x c c c =--'()0g x =01lnln ln c c x c-=0x x <'()0g x >()g x 0x x >'()0g x <()g x 11ln c c c-<<001x <<(0)(1)0g g ==01x <<()0g x >(0,1)x ∈1(1)xc x c +->21.(2015·全国·高考真题(理))设函数.(1)证明:在单调递减,在单调递增;(2)若对于任意,都有,求m 的取值范围.【答案】(1)在单调递减,在单调递增;(2).【解析】【详解】(Ⅰ).若,则当时,,;当时,,.若,则当时,,;当时,,.所以,在单调递减,在单调递增.(Ⅱ)由(Ⅰ)知,对任意的,在单调递减,在单调递增,故在处取得最小值.所以对于任意,的充要条件是:即①,设函数,则.当时,;当时,.故在单调递减,在单调递增.又,,故当时,.当时,,,即①式成立.当时,由的单调性,,即;当时,,即.综上,的取值范围是.22.(2014·四川·高考真题(理))已知函数,其中,为自然对数的底数.(Ⅰ)设是函数的导函数,求函数在区间上的最小值;(Ⅱ)若,函数在区间内有零点,求的取值范围【答案】(Ⅰ)当时, ;当 时, ; 当时, .(Ⅱ) 的范围为. 【解析】【详解】试题分析:(Ⅰ)易得,再对分情况确定的单调区间,根据在上的单调性即可得在上的最小值.(Ⅱ)设为在区间内的一个零点,注意到2()e mx f x x mx =+-()f x (,0)-∞(0,)+∞12,[1,1]x x ∈-12|()()|1f x f x e -≤-()f x (,0)-∞(0,)+∞[1,1]-()(1)2mx f x m e x -'=+0m ≥(,0)x ∈-∞10mx e -≤()0f x '<(0,)x ∈+∞10mx e -≥()0f x '>0m <(,0)x ∈-∞10mx e ->()0f x '<(0,)x ∈+∞10mx e -<()0f x '>()f x (,0)-∞(0,)+∞m ()f x [1,0]-[0,1]()f x 0x =12,[1,1]x x ∈-12()()1f x f x e -≤-(1)(0)1,{(1)(0)1,f f e f f e -≤---≤-1,{1,m m e m e e m e --≤-+≤-()1t g t e t e =--+()1t g t e =-'0t <()0g t '<0t >()0g t '>()g t (,0)-∞(0,)+∞(1)0g =1(1)20g e e --=+-<[1,1]t ∈-()0g t ≤[1,1]m ∈-()0g m ≤()0g m -≤1m >()g t ()0g m >1m e m e ->-1m <-()0g m ->1m e m e -+>-m [1,1]-2()1x f x e ax bx =---,a b R ∈ 2.71828e =()g x ()f x ()g x [0,1](1)0f =()f x (0,1)a 12a ≤()(0)1g x g b ≥=-122e a <≤()22ln(2)g x a a a b ≥--2e a >()2g x e a b ≥--a ()2,1e -()2,()2x x g x e ax b g x e a -='=--a ()g x ()g x [0,1]()g x [0,1]0x ()f x (0,1).联系到函数的图象可知,导函数在区间内存在零点,在区间内存在零点,即在区间内至少有两个零点. 由(Ⅰ)可知,当及时,在内都不可能有两个零点.所以.此时,在上单调递减,在上单调递增,因此,且必有.由得:,代入这两个不等式即可得的取值范围.试题解答:(Ⅰ)①当时,,所以.②当时,由得.若,则;若,则. 所以当时,在上单调递增,所以. 当时,在上单调递减,在上单调递增,所以. 当时,在上单调递减,所以. (Ⅱ)设为在区间内的一个零点,则由可知,在区间上不可能单调递增,也不可能单调递减.则不可能恒为正,也不可能恒为负.故在区间内存在零点.同理在区间内存在零点.所以在区间内至少有两个零点.由(Ⅰ)知,当时,在上单调递增,故在内至多有一个零点. 当时,在上单调递减,故在内至多有一个零点. 所以. 此时,在上单调递减,在上单调递增,因此,必有.由得:,有(0)0,(1)0f f ==()g x 0(0,)x 1x ()g x 0(),1x 2x ()g x (0,1)12a ≤2e a ≥()g x (0,1)122e a <<()g x [0,ln 2]a [ln 2,1]a 12(0,ln(2)],(ln(2),1)x a x a ∈∈(0)10,(1)20g b g e a b =->=-->(1)10f e a b =---=1b e a =--a ()2,()2x xg x e ax b g x e a -='=--0a ≤()20x g x e a -'=>()(0)1g x g b ≥=-0a >()20x g x e a -'=>2,ln(2)x e a x a >>12a >ln(2)0a >2e a >ln(2)1a >102a <≤()g x [0,1]()(0)1g x g b ≥=-122e a <≤()g x [0,ln 2]a [ln 2,1]a ()(ln 2)22ln 2g x g a a a a b ≥=--2e a >()g x [0,1]()(1)2g x g e a b ≥=--0x ()f x (0,1)0(0)()0f f x ==()f x 0(0,)x ()g x ()g x 0(0,)x 1x ()g x 0(),1x 2x ()g x (0,1)12a ≤()g x [0,1]()g x (0,1)2e a ≥()g x [0,1]()g x (0,1)122e a <<()g x [0,ln 2]a [ln 2,1]a 12(0,ln(2)],(ln(2),1)x a x a ∈∈(0)10,(1)20g b g e a b =->=-->(1)10f e a b =---=12a b e +=-<.解得.当时,在区间内有最小值.若,则,从而在区间上单调递增,这与矛盾,所以.又,故此时在和内各只有一个零点和.由此可知在上单调递增,在上单调递减,在上单调递增.所以,,故在内有零点.综上可知,的取值范围是. (0)120,(1)210g b a e g e a b a =-=-+>=--=->21e a -<<21e a -<<()g x [0,1](ln(2))g a (ln(2))0g a ≥()0([0,1])g x x ≥∈()f x [0,1](0)(1)0f f ==(ln(2))0g a <(0)20,(1)10g a e g a =-+>=->()g x (0,ln(2))a (ln(2),1)a 1x 2x ()f x 1[0,]x 1(,x 2)x 2[,1]x 1()(0)0f x f >=2()(1)0f x f <=()f x 1(,x 2)x a (2,1)e -。

(江苏专用)高三数学一轮总复习 第三章 导数及其应用 第二节 导数的应用 第一课时 导数与函数的单调

(江苏专用)高三数学一轮总复习 第三章 导数及其应用 第二节 导数的应用 第一课时 导数与函数的单调

课时跟踪检测(十四) 导数与函数的单调性一抓基础,多练小题做到眼疾手快1.(2015·某某模拟)函数f (x )=(x -3)e x的单调递增区间是________.解析:函数f (x )=(x -3)e x的导数为f ′(x )=[(x -3)e x]′=e x+(x -3)e x=(x -2)e x.由函数导数与函数单调性的关系,得当f ′(x )>0时,函数f (x )单调递增,此时由不等式f ′(x )=(x -2)e x >0,解得x >2.答案:(2,+∞)2.设函数f (x )=13x 3+ax 2+5x +6在区间[1,3]上是单调函数,则实数a 的取值X 围是________.解析:依题意,知当x ∈[1,3]时,f ′(x )=x 2+2ax +5的值恒不小于0或恒不大于0. 若当x ∈[1,3]时,f ′(x )=x 2+2ax +5≥0,即有-2a ≤x +5x在[1,3]上恒成立,而x +5x≥2x ·5x=25(当且仅当x =5时取等号),故-2a ≤25,解得a ≥- 5. 若当x ∈[1,3]时,f ′(x )=x 2+2ax +5≤0,即有-2a ≥x +5x恒成立,注意到函数g (x )=x +5x 在[1,5]上是减函数,在[5,3]上是增函数,且g (1)=6>g (3)=143,因此-2a ≥6,解得a ≤-3.综上所述,实数a 的取值X 围是(-∞,-3]∪[-5,+∞). 答案:(-∞,-3]∪[-5,+∞)3.函数f (x )=1+x -sin x 在(0,2π)上的单调情况是________.解析:在(0,2π)上有f ′(x )=1-cos x >0,所以f (x )在(0,2π)上单调递增. 答案:单调递增4.(2016·启东模拟)已知a ≥1,f (x )=x 3+3|x -a |,若函数f (x )在[-1,1]上的最大值和最小值分别记为M ,m ,则M -m 的值为________.解析:当x ∈[-1,1]时,f (x )=x 3+3(a -x )=x 3-3x +3a (a ≥1),∴f ′(x )=3(x -1)(x +1).当-1<x <1时,f ′(x )<0,所以原函数f (x )在区间[-1,1]上单调递减,所以M =f (-1)=3a +2,m =f (1)=3a -2,所以M -m =4.答案:45.(2016·某某测试)已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎢⎡⎦⎥⎤13,2上是增函数,则实数a 的取值X 围为________.解析:f ′(x )=x +2a -1x ≥0在⎣⎢⎡⎦⎥⎤13,2上恒成立, 即2a ≥-x +1x 在⎣⎢⎡⎦⎥⎤13,2上恒成立,∵⎝⎛⎭⎪⎫-x +1x max =83, ∴2a ≥83,即a ≥43.答案:⎣⎢⎡⎭⎪⎫43,+∞ 二保高考,全练题型做到高考达标1.函数f (x )=x 3-15x 2-33x +6的单调减区间为________.解析:由f (x )=x 3-15x 2-33x +6得f ′(x )=3x 2-30x -33,令f ′(x )<0,即3(x -11)(x +1)<0,解得-1<x <11,所以函数f (x )的单调减区间为(-1,11).答案:(-1,11)2.若幂函数f (x )的图象过点⎝ ⎛⎭⎪⎫22,12,则函数g (x )=e xf (x )的单调递减区间为________.解析:设幂函数f (x )=x α,因为图象过点⎝⎛⎭⎪⎫22,12,所以12=⎝ ⎛⎭⎪⎫22α,α=2,所以f (x )=x 2,故g (x )=e x x 2,令g ′(x )=e x x 2+2e xx =e x(x 2+2x )<0,得-2<x <0,故函数g (x )的单调递减区间为(-2,0).答案:(-2,0)3.(2016·某某、某某、某某、某某调研)设f (x )=4x 3+mx 2+(m -3)x +n (m ,n ∈R)是R 上的单调增函数,则实数m 的值为________.解析:因为f ′(x )=12x 2+2mx +m -3,又函数f (x )是R 上的单调增函数,所以12x2+2mx +m -3≥0在R 上恒成立,所以(2m )2-4×12(m -3)≤0,整理得m 2-12m +36≤0,即(m -6)2≤0.又因为(m -6)2≥0,所以(m -6)2=0,所以m =6.答案:64.已知函数f (x )=x +1ax在(-∞,-1)上单调递增,则实数a 的取值X 围是________.解析:函数f (x )=x +1ax 的导数为f ′(x )=1-1ax2,由于f (x )在(-∞,-1)上单调递增,则f ′(x )≥0在(-∞,-1)上恒成立,即1a≤x 2在(-∞,-1)上恒成立.由于当x <-1时,x 2>1,则有1a≤1,解得a ≥1或a <0.答案:(-∞,0)∪[1,+∞)5.(2015·某某、某某、某某、某某三调)已知函数f (x )=⎩⎪⎨⎪⎧2x 3+3x 2+m ,0≤x ≤1,mx +5,x >1.若函数f (x )的图象与x 轴有且只有两个不同的交点,则实数m 的取值X 围为________.解析:由f (x )=2x 3+3x 2+m ,得f ′(x )=6x 2+6x ,所以f (x )在[0,1]上单调递增,即f (x )=2x 3+3x 2+m 与x 轴至多有一个交点,要使函数f (x )的图象与x 轴有且只有两个不同的交点,即⎩⎪⎨⎪⎧m +5>0,m <0,从而可得m ∈(-5,0).答案:(-5,0)6.若函数f (x )=ax 3-3x 在(-1,1)上为单调递减函数,则实数a 的取值X 围是________. 解析:f ′(x )=3ax 2-3,∵f (x )在(-1,1)上为单调递减函数,∴f ′(x )≤0在(-1,1)上恒成立,即3ax 2-3≤0在(-1,1)上恒成立.当x =0时,a ∈R ;当x ≠0时,a ≤1x2,∵x∈(-1,0)∪(0,1),∴a ≤1.综上,实数a 的取值X 围为(-∞,1].答案:(-∞,1]7.(2016·某某中学模拟)已知函数f (x )(x ∈R)满足f (1)=1,且f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________.解析:设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R 上单调递减.∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12,∴F (x 2)<F (1),而函数F (x )在R 上单调递减,∴x 2>1,即x ∈(-∞,-1)∪(1,+∞).答案:(-∞,-1)∪(1,+∞)8.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则a 的取值X 围是________.解析:对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝ ⎛⎭⎪⎫x -122+14+2a .当x ∈⎣⎢⎡⎭⎪⎫23,+∞时,f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a .令29+2a >0,解得a >-19.所以a 的取值X 围是⎝ ⎛⎭⎪⎫-19,+∞. 答案:⎝ ⎛⎭⎪⎫-19,+∞9.(2016·某某五校联考)已知函数f (x )=ln x +ke x(k 为常数,e 是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值;(2)求f (x )的单调区间.解:(1)由题意得f ′(x )=1x-ln x -k e x, 又f ′(1)=1-ke =0,故k =1.(2)由(1)知,f ′(x )=1x-ln x -1ex. 设h (x )=1x -ln x -1(x >0),则h ′(x )=-1x 2-1x<0,即h (x )在(0,+∞)上是减函数.由h (1)=0知,当0<x <1时,h (x )>0,从而f ′(x )>0; 当x >1时,h (x )<0,从而f ′(x )<0. 综上可知,f (x )的单调递增区间是(0,1), 单调递减区间是(1,+∞).10.(2016·某某调研)已知函数f (x )=ln x ,g (x )=12ax +b .(1)若f (x )与g (x )在x =1处相切,求g (x )的表达式; (2)若φ(x )=m x -1x +1-f (x )在[1,+∞)上是减函数,某某数m 的取值X 围.解:(1)由已知得f ′(x )=1x ,∴f ′(1)=1=12a ,a =2.又∵g (1)=0=12a +b ,∴b =-1,∴g (x )=x -1.(2)∵φ(x )=m x -1x +1-f (x )=m x -1x +1-ln x 在[1,+∞)上是减函数.∴φ′(x )=-x 2+2m -2x -1x x +12≤0在[1,+∞)上恒成立.即x 2-(2m -2)x +1≥0在[1,+∞)上恒成立, 则2m -2≤x +1x,x ∈[1,+∞),∵x +1x∈[2,+∞),∴2m -2≤2,m ≤2.故实数m 的取值X 围是(-∞,2]. 三上台阶,自主选做志在冲刺名校1.已知a ≥0,函数f (x )=(x 2-2ax )e x,若f (x )在[-1,1]上是单调减函数,则a 的取值X 围是________.解析:f ′(x )=(2x -2a )e x +(x 2-2ax )e x =[x 2+(2-2a )x -2a ]e x,由题意知当x ∈[-1,1]时,f ′(x )≤0恒成立,即x 2+(2-2a )x -2a ≤0恒成立.令g (x )=x 2+(2-2a )x -2a ,则有⎩⎪⎨⎪⎧g -1≤0,g1≤0,即⎩⎪⎨⎪⎧-12+2-2a ·-1-2a ≤0,12+2-2a -2a ≤0,解得a ≥34.答案:⎣⎢⎡⎭⎪⎫34,+∞ 2.(2016·某某模拟)若函数f (x )=x 2|x -a |在区间[0,2]上单调递增,则实数a 的取值X 围是________.解析:当a ≤0时,f (x )=x 3-ax 2,f ′(x )=3x 2-2ax ≥0在[0,+∞)上恒成立,所以f (x )在[0,+∞)上单调递增,则也在[0,2]上单调递增,成立;当a >0时,f (x )=⎩⎪⎨⎪⎧ax 2-x 3,0≤x ≤a ,x 3-ax 2,x >a .①当0≤x ≤a 时,f ′(x )=2ax -3x 2, 令f ′(x )=0,则x =0或x =23a ,则f (x )在⎣⎢⎡⎭⎪⎫0,23a 上单调递增,在⎝ ⎛⎭⎪⎫23a ,a 上单调递减; ②当x >a 时,f ′(x )=3x 2-2ax =x (3x -2a )>0,所以f (x )在(a ,+∞)上单调递增,所以当a >0时,f (x )在⎣⎢⎡⎭⎪⎫0,23a 上单调递增,在⎝ ⎛⎭⎪⎫23a ,a 上单调递减,在(a ,+∞)上单调递增.要使函数在区间[0,2]上单调递增,则必有23a ≥2,解得a ≥3.综上,实数a 的取值X 围是(-∞,0]∪[3,+∞). 答案:(-∞,0]∪[3,+∞)3.已知函数f (x )=a ln x -ax -3(a ∈R). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎢⎡⎦⎥⎤f ′x +m 2在区间(t,3)上总不是单调函数,求m 的取值X围.解:(1)函数f (x )的定义域为(0,+∞),且f ′(x )=a 1-xx.当a >0时,f (x )的增区间为(0,1),减区间为(1,+∞);当a <0时,f (x )的增区间为(1,+∞),减区间为(0,1); 当a =0时,f (x )不是单调函数.(2)由(1)及题意得f ′(2)=-a2=1,即a =-2,∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x.∴g (x )=x 3+⎝ ⎛⎭⎪⎫m2+2x 2-2x ,∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t,3)上总不是单调函数, 即g ′(x )=0在区间(t,3)上有变号零点.由于g ′(0)=-2,∴⎩⎪⎨⎪⎧g ′t <0,g ′3>0.当g ′(t )<0,即3t 2+(m +4)t -2<0 对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9; 由g ′(3)>0,即m >-373.所以-373<m <-9.即实数m 的取值X 围是⎝ ⎛⎭⎪⎫-373,-9.。

【名师导学】高考数学第一轮总复习 同步测试卷2函数的概念与性质课件 理

【名师导学】高考数学第一轮总复习 同步测试卷2函数的概念与性质课件 理
2013’名师导学·新高考第一轮总复习同步测试卷 理科数学(二)
(函数的概念与性质) 时间:60分钟 总分:100分
一、选择题(本大题共6小题,每小题5分,共30分. 每小题所给的四个选项中,只有一项是符合题目要 求的.) 1.集合A={0,1,2,3,4},B={x|0≤x≤2},给出集合 A到集合B的下列对应,其中是A到B上的函数的是 (C )
(2)f(x)<g(x)在(0,1]上恒成立
⇔-x3+ax<-x3+4x2+1在(0,1]上恒成立,
即a<4x+
1 x
在(0,1]上恒成立.令φ(x)=4x+
1 x
≥2 4=4,当且仅当4x=1x⇔x=12时取等号.
∴x=12时,φ(x)min=4.故a<4.
13.(18分)已知函数h(x)=x(1+x)2. (1)求h(x)的单调区间; (2)是否存在区间[a,0](a<0),使函数h(x)在区间[a,0] 上的值域为[ka,0]?若存在,求出最小的k值及相应的 区间[a,0];若不存在,说明理由.
(2)由(1)可作出h(x)的草图.
1°.当-31≤a<0时, h(x)min=h(a)=ka, ∴k=(1+a)2≥49. 2°.当-34≤a≤-13时, h(x)min=h(-13)=-247=ka, k=-247a,19≤k≤49.
3°.当a≤-43时,h(x)min=h(a)=a(1+a)2=ka, ∴k=(1+a)2≥19,a=-43时取等号. 综上所述:kmin=19,此时[a,0]=[-43,0].
结出下列函数:
①f(x)=0;
②f(x)=x2;
③f(x)=sinx+x cosx; ④f(x)= x 2 x 1 ;
⑤f(x)是定义在R上的奇函数,且满足对一切实数x1, x2,均有|f(x1)-f(x2)|≤2|x1-x2|. 其中是F函数的序号为 ①④⑤ .

高考数学一轮复习讲练测(新教材新高考)专题3-9函数的实际应用-学生版

高考数学一轮复习讲练测(新教材新高考)专题3-9函数的实际应用-学生版

专题3.9 函数的实际应用练基础1.(2021·广东高三专题练习)某中学体育课对女生立定跳远项目的考核标准为:立定跳远距离1.33米得5分,每增加0.03米,分值增加5分,直到1.84米得90分后,每增加0.1米,分值增加5分,满分为120分.若某女生训练前的成绩为70分,经过一段时间的训练后,成绩为105分,则该女生训练后,立定跳远距离增加了()A.0.33米B.0.42米C.0.39米D.0.43米2.(2020·四川省乐山沫若中学高一月考)2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除;(3)专项附加扣除包括:①赡养老人费用,②子女教育费用,③继续教育费用,④大病医疗费用等,其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元,②子女教育费用:每个子女每月扣除1000元,新的个税政策的税率表部分内容如下:现有李某月收入为18000元,膝下有一名子女在读高三,需赡养老人,除此之外无其它专项附加扣除,则他该月应交纳的个税金额为()A.1800 B.1000 C.790 D.5603.(2021·浙江高一期末)为了保护水资源,提倡节约用水,某城市对居民实行“阶梯水价”,计费方法如下表:若某户居民本月交纳的水费为54元,则此户居民的用水量为( )A .36mB .39mC .315mD .318m4.(2021·全国高三其他模拟(理))已知声音强弱的等级()f x (单位:dB)由声音强度x (单位:2W/m )决定.科学研究发现,()f x 与lg x 成线性关系,如喷气式飞机起飞时,声音强度为2100W/m 声音强弱的等级为140dB ;某动物发出的鸣叫,声音强度为21W/m ,声音强弱的等级为120dB .若某声音强弱等级为90dB ,则声音强度为( )2W/mA .0.001B .0.01C .0.1D .15.(2021·全国高三其他模拟(理))2021年初我国脱贫攻坚战取得了全面胜利,现行标准下区域性整体贫困得到解决,完成了消除绝对贫困的艰巨任务.经过数据分析得到某山区贫困户年总收入与各项投入之间的关系是:贫困户年总收入y (元)=1200+4.1⨯年扶贫资金(元)+4.3⨯年自投资金(元)900+⨯自投劳力(个).若一个贫困户家中只有两个劳力,2016年自投资金5000元,以后每年的自投资金均比上一年增长10%,2016年获得的扶贫资金为30000元,以后每年获得的扶贫资金均比上一年减少5000元,则该贫困户在2021年的年总收入约为()51.1 1.6≈( )A .48100元B .57900元C .58100元D .64800元 6.(2021·全国高三其他模拟(理))生物学家为了了解抗生素对生态环境的影响,常通过检测水中生物体内抗生素的残留量来进行判断.已知水中某生物体内药物残留量y (单位:mg )与时间t (单位:年)近似满足关系式()1e t y λλ-=-,其中λ为抗生素的残留系数,当23t =时,910y λ=,则λ的值约为(ln10 2.3≈)( )A .110B .10C .100D .11007.(2021·山东聊城市·高三三模)声强级I L (单位:dB )由公式1210lg 10I I L -⎛⎫=⎪⎝⎭给出,其中I 为声强(单位:W /m 2)一般正常人听觉能忍受的最高声强级为120dB ,平时常人交谈时声强级约为60dB ,那么一般正常人能忍受的最高声强是平时常人交谈时声强的( )A .104倍B .105倍C .106倍D .107倍8.(2021·陕西西安市·高三其他模拟(理))现在有红豆、白豆各若干粒.甲乙两人为了计算豆子的粒数,选用了这样的方法:第一轮甲每次取4粒红豆,乙每次取2粒白豆,同时进行,当红豆取完时,白豆还剩10粒;第二轮,甲每次取1粒红豆,乙每次取2粒白豆,同时进行,当白豆取完时,红豆还剩()*1620,n n n ∈<<N粒.则红豆和白豆共有________粒.9.(2021·江苏南通市·高三其他模拟)据观测统计,某湿地公园某种珍稀鸟类以平均每年4%的速度增加.按这个增长速度,大约经过___________年以后,这种鸟类的个数达到现有个数的4倍或4倍以上.(结果保留整数)(参考数据:lg 20.30,lg13 1.11≈≈)10.(2021·浙江高一期末)某公司生产某种电子产品的固定成本为2万元,每生产一台该产品需增加投入100元,已知总收入R (单位:元)关于月产量x (单位:台)满足函数:21400,0400280000,400x x x R x ⎧-≤≤⎪=⎨⎪>⎩(1)将利润()f x (单位:元)表示成月产量x 的函数(2)当月产量x 为何值时,公司所获利润最大,最大利润是多少?(利润+总成本=总收入)1.(2021·四川高三三模(理))一种药在病人血液中的量保持在不低于1500mg ,才有疗效;而低于500mg ,病人就危险.现给某病人的静脉注射了这种药2500mg ,如果药在血液中以每小时0020的比例衰减,则再向这种病人的血液补充这种药物的时间范围是( )A .5551log 31,1log 41log 4⎛⎤- ⎥--⎝⎦ B .5551log 31,1log 41log 4⎛⎫- ⎪--⎝⎭ C .(]51log 3,1- D .()51log 3,1-2.(2021·湖北武汉市·高三三模)2020年我国832个贫困县全部“摘帽”,脱贫攻坚战取得伟大胜利.湖北秭归是“中国脐橙之乡”,全县脐橙综合产值年均20亿元,被誉为促进农民增收的“黄金果”.已知某品种脐橙失去的新鲜度h 与其采摘后的时间t (天)满足关系式:t h m a =⋅.若采摘后10天,这种脐橙失去的新鲜度为10%,采摘后20天失去的新鲜度为20%,那么采摘下来的这种脐橙在多长时间后失去50%的新鲜度( )(已知lg 20.3≈,结果四舍五入取整数)A .23天B .33天C .43天D .50天3.(2021·全国高三其他模拟)生物学家为了了解滥用抗生素对生态环境的影响,常通过检测水中生物体内抗生素的残留量来作出判断.已知水中某生物体内抗生素的残留量y (单位:mg )与时间t (单位:年)近似满足数学函数关系式()1t y e λλ-=-,其中λ为抗生素的残留系数.经测试发现,当23t =时,910y λ=,则抗生素的残留系数λ的值约为( )()ln10 2.3≈练提升A .10B .110C .100D .11004.(2021·全国高三其他模拟)大西洋鲑鱼每年都要逆流而上,游回到自己出生的淡水流域产卵.记鲑鱼的游速为v (单位:m /s ),鲑鱼的耗氧量的单位数为Q .科学研究发现v 与3log 100Q 成正比,且当1m /s v =时,鲑鱼的耗氧量的单位数为900.现有如下说法:①v 与3log 100Q 的正比例系数为13k =; ②当2m/s v =时,鲑鱼的耗氧量的单位数为2700;③当鲑鱼的耗氧量的单位数为100时,游速1m /s v e=. 则说法正确的个数为( )A .0B .1C .2D .3 5.(2021·全国高三其他模拟)在新冠肺炎疫情初期,部分学者利用逻辑斯蒂增长模型预测某地区新冠肺炎患者数量()P t (t 的单位:天),逻辑斯蒂增长模型具体为()0.420.4211tt e P t e K =⎛⎫+- ⎪⎝⎭,其中K 为环境最大容量.当()027.31KP t K K e=-+时,标志着已初步遏制疫情,则0t 约为( ) A .63B .65C .66D .69 6.(2021·四川眉山市·高三三模(理))2021年3月20日,“沉睡三千年,一醒惊天下”的三星堆遗址向世人展示了其重大考古新发现——6个三星堆文化“祭祀坑”现已出土500余件重要文物.为推测文物年代,考古学者通常用碳14测年法推算,碳14测年法是根据碳14的衰变程度来计算出样品的大概年代的一种测量方法.2021年,考古专家对某次考古的文物样本上提取的遗存材料进行碳14年代测定,检测出碳14的残留量约为初始量的68%,已知碳14的半衰期(放射性物质质量衰减一半所用的时间)是5730年,且属于指数型衰减.以此推算出该文物大致年代是( )(参考数据:log 19034.7≈-,log 6834881≈-)A .公元前1400年到公元前1300年B .公元前1300年到公元前1200年C .公元前1200年到公元前1100年D .公元前1100年到公元前1000年7.(2021·山西太原市·太原五中高三二模(理))地震震级根据地震仪记录的地震波振幅来测定,一般采用里氏震级标准.震级M 用距震中100千米处的标准地震仪所记录的地震波最大振幅值的对数来表示.里氏震级的计算公式为:max 0lg A M A =(其中常数0A 是距震中100公里处接收到的0级地震的地震波的最大振幅;max A 是指我们关注的这次地震在距震中100公里处接收到的地震波的最大振幅).地震的能量E 是指当地震发生时,以地震波的形式放出的能量. 4.8 1.51010M E =⨯(单位:焦耳),其中M 为地震震级.已知甲地地震产生的能量是乙地地震产生的能量的310倍,若乙地地震在距震中100公里处接收到的地震波的最大振幅为A ,则甲地地震在距震中100公里处接收到的地震波的最大振幅为( )A .2AB .10AC .100AD .1000A8.(2021·安徽合肥市·合肥一中高三其他模拟(文))自新冠病毒爆发以后,各国科技人员都在攻关疫苗的难题,近日我国在这一领域取得重大突破,国产疫苗在国际上受到广泛认可.我国在实验阶段为了研究T 型病毒的变化规律,将T 型病毒注入一个健康的小白鼠体内,根据观测统计的数据分析,小白鼠体内的病毒数y 与天数n 近似满足1*3()n y n N -=∈.已知T 型病毒在体内超过109个时,小白鼠就会死亡,但如果注射了某种药物可有效杀死体内的T 型病毒,为使小白鼠在实验过程中不会死亡,第一次注射该种药物最迟应在第___________天(参考数据:lg30.477=).9.(2021·浙江高一期末)砖雕是江南古建筑雕刻中很重要的一种艺术形式,传统砖雕精致细腻、气韵生动、极富书卷气.如图是一扇环形砖雕,可视为扇形OCD 截去同心扇形OAB 所得部分.已知扇环周长300cm =,大扇形半径100cm OD =,设小扇形半径cm OA x =,AOB θ∠=弧度,则①θ关于x 的函数关系式()x θ=_________.②若雕刻费用关于x 的解析式为()101700w x x =+,则砖雕面积与雕刻费用之比的最大值为________.10.(2021·浙江高一期末)为了响应国家提出的“大众创业,万众创新”的号召,王韦达同学大学毕业后,决定利用所学专业进行自主创业,经过市场调查,生产某小型电子产品需投入年固定成本为2万元,每生产x 万件,需另投入可变成本()C x 万元,在年产量不足8万件时,21()33C x x x =+(万元);在年产量不小于8万件时,100()837C x x x=+-(万元).每件产品售价为7元,假设小王生产的商品当年全部售完.(1)写出年利润()f x (万元)关于年产量x (万件)的函数解析式(注:年利润=年销售收入-固定成本-可变成本);(2)年产量x 为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?1.(2020·全国高考真题(理))在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )A .10名B .18名C .24名D .32名2.(2021·全国高考真题(文))青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录表的数据V 的满足5lg L V =+.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为( )( 1.259≈) A .1.5 B .1.2 C .0.8 D .0.63.(2020·全国高考真题(文))Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I Kt --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为( )(ln19≈3)A .60B .63C .66D .694.(2020·山东海南省高考真题)基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) ( )A .1.2天B .1.8天C .2.5天D .3.5天 5.(2019·全国高考真题(理))2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通练真题讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++. 设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD6.(2018·上海高考真题)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S 中的成员仅以自驾或公交方式通勤.分析显示:当S 中x%(0<x <100)的成员自驾时,自驾群体的人均通勤时间为f (x )={30 , 0<x ≤302x +1800x−90 , 30<x <100 (单位:分钟),而公交群体的人均通勤时间不受x 影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S 的人均通勤时间g (x )的表达式;讨论g (x )的单调性,并说明其实际意义.。

(山东专用)高考数学一轮复习专题17任意角的三角函数(含解析)

(山东专用)高考数学一轮复习专题17任意角的三角函数(含解析)

(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度;
(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决.
2.求扇形面积的关键是求扇形的圆心角、半径、弧长三个量中的任意两个量.
考点三 三角函数的概念
【例 3】 (1)(2018·全国Ⅰ卷)已知角 α 的顶点为坐标原点,始边与 x 轴的非负半轴重合,终边上有两点
值.
2.在解决简单的三角不等式时,利用单位圆及三角函数线是体现数学直观想象核心素养.
【易错注意点】
1.注意易混概念的区别:象限角、锐角、小于 90°的角是概念不同的三类角.第一类是象限角,第二、第三
类是区间角.
2.相等的角终边相同,但终边相同的角不一定相等.
3.已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况.
(1)直接利用三角函数的定义,找到给定角的终边上一个点的坐标,及这点到原点的距离,确定这个角的三
角函数值.
(2)已知角的某一个三角函数值,可以通过三角函数的定义列出含参数的方程,求参数的值.
2.三角函数线的应用问题的求解思路
确定单位圆与角的终边的交点,作出所需要的三角函数线,然后求解.
【思维升华】
1.在利用三角函数定义时,点 P 可取终边上任一点,如有可能则取终边与单位圆的交点.|OP|=r 一定是正
(山东专用)高考数学一轮复习专题 17 任意角的三角函数(含解析)
一、【知识精讲】 1.角的概念的推广 (1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. (2)分类按旋转方向不同分为正角、负角、零角.
按终边位置不同分为象限角和轴线角. (3)终边相同的角:所有与角 α 终边相同的角,连同角 α 在内,可构成一个集合 S={β|β=α+2kπ,k ∈Z}. 终边相同的角不一定相等,但相等的角其终边一定相同.

2023年高考数学一轮复习点点练12三角函数的图象含解析文

2023年高考数学一轮复习点点练12三角函数的图象含解析文

点点练12三角函数的图象一基础小题练透篇1.为了得到函数y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象,只需把函数y =sin2x 的图象( ) A .向左平移π3个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向右平移π6个单位长度2.如图是函数f (x )=cos (πx +φ)⎝⎛⎭⎪⎫0<φ<π2的部分图象,则f (3x 0)=( )A .12B .-12C .32D .-323.函数f (x )=sin (ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<π2的部分图象如图所示,则φ的值为( )A .-π6B .π6C .-π3D .π34.已知f (x )=sin (ωx +φ)(ω>0,|φ|<π2)的最小正周期为π,若其图象向左平移π3个单位长度后关于y 轴对称,则( )A .ω=2,φ=π3B .ω=2,φ=π6C .ω=4,φ=π6D .ω=2,φ=-π65.若ω>0,函数y =cos ⎝ ⎛⎭⎪⎫ωx +π3的图象向右平移π3个单位长度后与函数y =sin ωx的图象重合,则ω的最小值为( )A .112B .52C .12D .326.已知ω>0,顺次连接函数y =sin ωx 与y =cos ωx 的任意三个相邻的交点都构成一个等边三角形,则ω=( )A .πB.6π2C .4π3D .3π 7.函数f (x )=A sin (ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则f (2019)=________.8.已知函数f (x )=3sin ⎝⎛⎭⎪⎫ωx -π6(ω>0)和g (x )=3cos (2x +φ)的图象的对称中心完全相同,若x ∈⎣⎢⎡⎦⎥⎤0,π2,则f (x )的取值范围是________.二能力小题提升篇1.[2022·贵阳市联考]将函数f (x )=sin (2x -π3)的图象向左平移a (a >0)个单位长度得到函数g (x )=cos2x 的图象,则a 的最小值为 ( )A .π3B .5π12C .2π3D .π2.[2022·南昌市测试]已知函数f (x )=sin (ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,若f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3,则 ( )A .ω=2,φ=π6B .ω=53,φ=5π18C .ω=2,φ=π3D .ω=53,φ=π63.[2022·安徽省四校联考]函数f (x )=2sin (ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,将f (x )的图象向左平移π6个单位长度后,得到一个偶函数的图象,则 ( )A .φ=π3B .φ=π6C .φ=-π3D .φ=-π64.函数f (x )=A sin (ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,B ,C 分别为函数f (x )的图象与x 轴、y 轴的交点,|BC |=332.若函数f (x )的图象与直线y =54在(0,3)内的两个交点的坐标分别为(x 1,y 1)和(x 2,y 2),则f (x 1+x 2)= ( )A .-1B .-2C .-3D .-25.[2022·江苏南京检测]已知函数f (x )=2sin (ωx +φ),(其中ω>0,|φ|<π)的部分图象如图,则函数f (x )的解析式为f (x )=________.6.[2022·江西省重点中学联考]函数f (x )=2sin (ωx +φ)⎝⎛⎭⎪⎫ω>0,0<φ<π2的部分图象如图所示,该图象与y 轴相交于点F (0,1),与x 轴相交于点B ,C ,点M 为图象最高点,且三角形MBC 的面积为π,则y =f (x )图象的一个对称中心是________.(写出一个符合题意的即可)三高考小题重现篇1.[2020·全国卷Ⅰ]设函数f (x )=cos (ωx +π6)在[-π,π]的图象大致如图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π22.[2019·全国卷Ⅱ]若x 1=π4,x 2=3π4是函数f (x )=sin ωx (ω>0)两个相邻的极值点,则ω=( )A .2B .32C .1D .123.[2021·全国乙卷]把函数y =f (x )图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y =sin ⎝ ⎛⎭⎪⎫x -π4的图象,则f (x )=( )A .sin ⎝ ⎛⎭⎪⎫x 2-7π12 B.sin ⎝ ⎛⎭⎪⎫x 2+π12C.sin ⎝ ⎛⎭⎪⎫2x -7π12D.sin ⎝⎛⎭⎪⎫2x +π124.[2019·天津卷]已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,|φ|<π)是奇函数,且f (x )的最小正周期为π,将y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x ).若g ⎝ ⎛⎭⎪⎫π4=2,则f ⎝ ⎛⎭⎪⎫3π8=( ) A .-2B .- 2 C .2D .25.[2021·全国甲卷]已知函数f (x )=2cos (ωx +φ)的部分图象如图所示,则f ⎝ ⎛⎭⎪⎫π2=________.6.[2020·江苏卷]将函数y =3sin ⎝ ⎛⎭⎪⎫2x +π4的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是______________.四经典大题强化篇1.某同学用“五点法”画函数f (x )=A sin (ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝⎛⎭⎪⎫5π12,0,求θ的最小值.2.已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f (x )的解析式;(2)将函数y =f (x )的图象上各点的纵坐标保持不变,横坐标缩短到原来的12倍,再把所得的函数图象向左平移π6个单位长度,得到函数y =g (x )的图象,求函数g (x )在区间⎣⎢⎡⎦⎥⎤0,π8上的最小值.点点练12 三角函数的图象一 基础小题练透篇1.答案:D解析:函数y =sin2x 的图象向右平移π6个单位长度,可得到函数y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6=sin ⎝⎛⎭⎪⎫2x -π3的图象.2.答案:D解析:∵f (x )=cos (πx +φ)的图象过点⎝ ⎛⎭⎪⎫0,32,∴32=cos φ,结合0<φ<π2,可得φ=π6.∴由图象可得cos ⎝⎛⎭⎪⎫πx 0+π6=32,πx 0+π6=2π-π6,解得x 0=53. ∴f (3x 0)=f (5)=cos ⎝ ⎛⎭⎪⎫5π+π6=-32. 3.答案:D解析:根据图象可知,函数f (x )的最小正周期T =2πω=2×⎝ ⎛⎭⎪⎫π3+π6=π,则ω=2,当x =12×⎝ ⎛⎭⎪⎫-π6+π3=π12时,函数取得最大值,所以sin ⎝ ⎛⎭⎪⎫2×π12+φ=1⇒π6+φ=π2+2kπ,k ∈Z ⇒φ=π3+2k π,k ∈Z ,又-π2<φ<π2,所以φ=π3.4.答案:D解析:由已知条件得,π=2πω,因而ω=2,所以f (x )=sin (2x +φ),将f (x )的图象向左平移π3个单位长度后得到函数g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π3+φ=sin ⎝ ⎛⎭⎪⎫2x +2π3+φ的图象,由题意知g (x )为偶函数,则2π3+φ=π2+k π,k ∈Z ,即φ=k π-π6,k ∈Z ,又|φ|<π2,所以φ=-π6.5.答案:B解析:函数y =cos ⎝⎛⎭⎪⎫ωx +π3的图象向右平移π3个单位长度后,所得函数图象对应的解析式为y =cos ⎣⎢⎡⎦⎥⎤ω⎝⎛⎭⎪⎫x -π3+π3=cos ⎝ ⎛⎭⎪⎫ωx -ωπ3+π3,其图象与函数y =sin ωx =cos ⎝ ⎛⎭⎪⎫ωx -π2+2k π,k ∈Z 的图象重合,∴-π2+2k π=-ωπ3+π3,k ∈Z ,∴ω=-6k+52,k ∈Z ,又ω>0,∴ω的最小值为52. 6.答案:B解析:当正弦值等于余弦值时,正弦值为±22.由题意,得等边三角形的高为2,边长为2×33×2=263,且边长为函数y =sin ωx 的最小正周期,故2πω=263,解得ω=6π2. 7.答案:-1解析:由函数f (x )=A sin (ωx +φ)(A >0,ω>0,|φ|<π)的部分图象, 可得A =2,2πω=2×⎝ ⎛⎭⎪⎫136-76=2,∴ω=π.再根据图象经过点⎝ ⎛⎭⎪⎫76,0,可得76π+φ=2k π,k ∈Z ,又|φ|<π,令k =1,可得φ=5π6,∴f (x )=2sin ⎝ ⎛⎭⎪⎫πx +5π6,∴f (2019)=2sin ⎝⎛⎭⎪⎫2019π+5π6=-2sin π6=-1.8.答案:⎣⎢⎡⎦⎥⎤-32,3解析:由两个三角函数的图象的对称中心完全相同,可知两函数的周期相同,故ω=2,所以f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-π6≤2x -π6≤5π6,所以-12≤sin ⎝⎛⎭⎪⎫2x -π6≤1,故f (x )∈⎣⎢⎡⎦⎥⎤-32,3.二 能力小题提升篇1.答案:B解析:将函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3的图象向左平移a (a >0)个单位长度,可得函数y =sin ⎣⎢⎡⎦⎥⎤2(x +a )-π3=sin ⎣⎢⎡⎦⎥⎤2x +⎝ ⎛⎭⎪⎫2a -π3的图象,所以y =sin ⎣⎢⎡⎦⎥⎤2x +⎝ ⎛⎭⎪⎫2a -π3的图象与g(x )=cos2x 的图象重合.因为g (x )=cos2x =sin ⎝⎛⎭⎪⎫2x +π2,所以2a -π3=2k π+π2,k ∈Z ,即a =k π+5π12,k ∈Z ,当k =0时,可得a min =5π12. 2.答案:C解析:由于f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3,所以直线x =π2+2π32=7π12是函数f (x )图象的对称轴.设f (x )的最小正周期为T ,由图可知34T =7π12-⎝ ⎛⎭⎪⎫-π6=3π4,所以T =π,ω=2πT=2,故f (x )=sin (2x +φ).由于f ⎝ ⎛⎭⎪⎫-π6=sin (-π6×2+φ)=sin ⎝⎛⎭⎪⎫φ-π3=0,且|φ|<π2,所以φ=π3.3.答案:B解析:由最小正周期T =2πω=π,可得ω=2,f (x )的图象向左平移π6个单位长度后为偶函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3+φ的图象,故π3+φ=k π+π2,k ∈Z ,∴φ=k π+π6,k ∈Z .∵|φ|<π2,∴φ=π6.4.答案:B解析:由题中图象可知A =2,且△BOC 为直角三角形,所以|OC |=⎝ ⎛⎭⎪⎫3322-⎝ ⎛⎭⎪⎫522=2,则f (0)=-2,则sin φ=-22,又|φ|<π2,所以φ=-π4,所以f (x )=2sin ⎝⎛⎭⎪⎫ωx -π4.又点B ⎝ ⎛⎭⎪⎫52,0为“五点作图法”中的第三个点,所以52ω-π4=π,所以ω=π2,于是f (x )=2sin ⎝⎛⎭⎪⎫π2x -π4.由π2x -π4=k π+π2(k ∈Z ),得x =2k +32(k ∈Z ),所以函数y =f (x )的图象在(0,3)内的对称轴为直线x =32,则由题意知x 1+x 2=3,所以f (x 1+x 2)=f (3)=2sin ⎝⎛⎭⎪⎫3π2-π4=-2cos π4=- 2.5.答案:2sin ⎝ ⎛⎭⎪⎫25x +π4解析:∵f (x )图象过点(0,2),∴f (0)=2sin φ=2,即sin φ=22. ∵|φ|<π,∴φ=π4或φ=3π4.由图可知函数图象在y 轴右侧第一个最高点坐标为⎝ ⎛⎭⎪⎫5π8,2.若φ=π4,则由5π8ω+π4=π2得ω=25;若φ=3π4,则由5π8ω+3π4=π2得ω=-25(舍去).∴f (x )=2sin ⎝ ⎛⎭⎪⎫25x +π4.6.答案:⎝ ⎛⎭⎪⎫-7π6,0(答案不唯一)解析:由已知得S △MBC =12×2×BC =BC =π,所以最小正周期T =2π=2πω,ω=1.由f(0)=2sin φ=1,得sin φ=12.因为0<φ<π2,所以φ=π6.所以f (x )=2sin ⎝ ⎛⎭⎪⎫x +π6.令x +π6=k π,得x =k π-π6,k ∈Z .故y =f (x )图象的对称中心是⎝ ⎛⎭⎪⎫k π-π6,0,k ∈Z .不妨取k =-1,则y =f (x )图象的一个对称中心是⎝ ⎛⎭⎪⎫-7π6,0.(本题答案不唯一,填⎝ ⎛⎭⎪⎫-7π6,0,⎝ ⎛⎭⎪⎫-π6,0,⎝ ⎛⎭⎪⎫5π6,0,…均可)三 高考小题重现篇1.答案:C解析:方法一 设函数f (x )的最小正周期为T ,由题图可得T <π-⎝ ⎛⎭⎪⎫-4π9且T 2>⎝ ⎛⎭⎪⎫-4π9-(-π),所以10π9<T <13π9,又因为|ω|=2πT ,所以1813<|ω|<95.由题图可知f ⎝ ⎛⎭⎪⎫-4π9=0,且-4π9是函数f (x )的上升零点,所以-4πω9+π6=2k π-π2(k ∈Z ),所以-49ω=2k -23(k ∈Z ),所以|ω|=32|3k -1|(k ∈Z ).又因为1813<|ω|<95,所以k =0,所以|ω|=32,所以T =2π|ω|=2π32=4π3.方法二(五点法) 由函数f (x )的图象知,ω×⎝ ⎛⎭⎪⎫-4π9+π6=-π2,解得ω=32,所以函数f (x )的最小正周期为4π3.2.答案:A解析:由x 1=π4,x 2=3π4是f (x )=sin ωx 两个相邻的极值点,可得T 2=3π4-π4=π2,则T =π=2πω,得ω=2.3.答案:B解析:依题意,将y =sin ⎝⎛⎭⎪⎫x -π4的图象向左平移π3个单位长度,再将所得曲线上所有点的横坐标扩大到原来的2倍,得到f (x )的图象,所以y =sin ⎝⎛⎭⎪⎫x -π4将其图象向左平移π3个单位长度→ y =sin ⎝ ⎛⎭⎪⎫x +π12的图象所有点的横坐标扩大到原来的2倍→ f (x )=sin ⎝ ⎛⎭⎪⎫x 2+π12的图象.4.答案:C解析:∵f (x )的最小正周期为π,∴ω=2. 又f (x )=A sin (2x +φ)为奇函数, ∴φ=k π(k ∈Z ),∵|φ|<π,∴φ=0, ∴f (x )=A sin2x ,则g (x )=A sin x , ∵g ⎝ ⎛⎭⎪⎫π4=2,即A sin π4=2,∴A =2. ∴f (x )=2sin2x , ∴f ⎝⎛⎭⎪⎫3π8=2sin ⎝ ⎛⎭⎪⎫2×3π8= 2.5.答案:- 3解析:方法一(五点作图法) 由题图可知34T =13π12-π3=3π4(T 为f (x )的最小正周期),即T =π,所以2πω=π,即ω=2,故f (x )=2cos (2x +φ).点⎝ ⎛⎭⎪⎫π3,0可看作“五点作图法”中的第二个点,故2×π3+φ=π2,得φ=-π6,即f (x )=2cos ⎝⎛⎭⎪⎫2x -π6,所以f ⎝ ⎛⎭⎪⎫π2=2cos ⎝⎛⎭⎪⎫2×π2-π6=- 3.方法二(代点法) 由题意知,34T =13π12-π3=3π4(T 为f (x )的最小正周期),所以T =π,2πω=π,即ω=2.又点⎝ ⎛⎭⎪⎫π3,0在函数f (x )的图象上,所以2cos ⎝ ⎛⎭⎪⎫2×π3+φ=0,所以2×π3+φ=π2+k π(k ∈Z ),令k =0,则φ=-π6,所以f (x )=2cos ⎝ ⎛⎭⎪⎫2x -π6,所以f ⎝ ⎛⎭⎪⎫π2=2cos ⎝⎛⎭⎪⎫2×π2-π6=-2cos π6=- 3.方法三(平移法) 由题意知,34T =13π12-π3=3π4(T 为f (x )的最小正周期),所以T =π,2πω=π,即ω=2.函数y =2cos2x 的图象与x 轴的一个交点是⎝ ⎛⎭⎪⎫π4,0,对应函数f (x )=2cos (2x +φ)的图象与x 轴的一个交点是⎝ ⎛⎭⎪⎫π3,0,所以f (x )=2cos (2x +φ)的图象是由y =2cos2x 的图象向右平移π3-π4=π12个单位长度得到的,所以f (x )=2cos(2x +φ)=2cos2⎝ ⎛⎭⎪⎫x -π12=2cos ⎝ ⎛⎭⎪⎫2x -π6,所以f ⎝ ⎛⎭⎪⎫π2=2cos ⎝ ⎛⎭⎪⎫2×π2-π6=-2cos π6=-3.6.答案:x =-5π24解析:将函数y =3sin ⎝ ⎛⎭⎪⎫2x +π4的图象向右平移π6个单位长度,得到y =3sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π6+π4=3sin ⎝ ⎛⎭⎪⎫2x -π12的图象,由2x -π12=π2+k π,k ∈Z ,得对称轴方程为x =7π24+12k π,k ∈Z ,其中与y 轴最近的对称轴的方程为x =-5π24.四 经典大题强化篇1.解析:(1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数解析式为f (x )=5sin ⎝⎛⎭⎪⎫2x -6. (2)由(1)知f (x )=5sin ⎝ ⎛⎭⎪⎫2x -π6,得g (x )=5sin ⎝ ⎛⎭⎪⎫2x +2θ-π6. 因为函数y =sin x 图象的对称中心为(k π,0)(k ∈Z ). 令2x +2θ-π6=k π,k ∈Z ,解得x =k π2+π12-θ(k ∈Z ).由于函数y =g (x )的图象关于点⎝ ⎛⎭⎪⎫5π12,0成中心对称,所以令k π2+π12-θ=5π12(k ∈Z ), 解得θ=k π2-π3(k ∈Z ).由θ>0可知,当k =1时,θ取得最小值π6.2.解析:(1)设函数f (x )的最小正周期为T ,由题图可知A =1,T 2=2π3-π6=π2,即T =π,所以π=2πω,解得ω=2,所以f (x )=sin (2x +φ), 又过点⎝ ⎛⎭⎪⎫π6,0,由0=sin ⎝ ⎛⎭⎪⎫2×π6+φ可得π3+φ=2k π(k ∈Z ),则φ=2k π-π3(k ∈Z ),因为|φ|<π2,所以φ=-π3,故函数f (x )的解析式为f (x )=sin ⎝⎛⎭⎪⎫2x -π3.(2)根据条件得g (x )=sin ⎝ ⎛⎭⎪⎫4x +π3, 当x ∈⎣⎢⎡⎦⎥⎤0,π8时,4x +π3∈⎣⎢⎡⎦⎥⎤π3,5π6,所以当x =π8时,g (x )取得最小值,且g (x )min =12.。

2020年浙江高考数学一轮复习课堂测试:二次函数与幂函数

课时跟踪检测(十二) 二次函数与幕函数一抓基础,多练小题做到眼疾手快1幕函数y= f(x)经过点(3, 3),则f(x)是()A•偶函数,且在(0,+^ )上是增函数B. 偶函数,且在(0,+^ )上是减函数C .奇函数,且在(0 ,+^ )上是减函数D •非奇非偶函数,且在(0,+^ )上是增函数解析:选D 设幕函数的解析式为y= x a,将(3, 3)代入解析式得3 a= 3,解得1a 2,所以y= x2 .故选D.2. (2018丽水调研股函数f(x) = ax2+ bx+ c(a^ 0, x € R),对任意实数t都有f(2 + t)= f(2-1)成立,在函数值f( —1), f(1), f(2), f(5)中,最小的一个不可能是()A. f(—1)B. f(1)C. f(2)D. f(5)解析:选B 由f(2 + t)= f(2 —t)知函数y= f(x)的图象对称轴为x = 2.当a>0时,易知f(5) = f(—1) > f(1) > f(2);当a v 0 时,f(5) = f(—1) v f(1) v f(2),故最小的不可能是f(1).3. (2018金华模拟)已知幕函数y= f(x)的图象经过点2, 4,则它的单调递增区间为( )A. (0,+^ )B. [0,+^ )C.(―汽0)D. ( — m,+m )解析:选C设幕函数f(x)=x a,••• f(x)的图象经过点2, 1 ,••• 2a= 1,解得a= —2,则f(x) = x—2= 4,且X M 0,••• y= x2在(—s, 0)上递减,在(0,+ s)上递增,•函数f(x)的单调递增区间是(一s, 0).4. 定义:如果在函数y= f(x)定义域内的给定区间[a , b]上存在x o(a v x o< b),满足f(x。

) =f[一fa,则称函数y= f(x)是[a , b]上的“平均值函数”,x°是它的一个均值点,如yb—a=x4是[—1,1]上的平均值函数,0就是它的均值点. 现有函数f(x) = —x2+ mx+ 1是[—1,1]上的平均值函数,则实数m的取值范围是____________ .解析:因为函数f(x)=—x2+ mx+ 1是[—1,1]上的平均值函数,设X 0为均值点,所以X 。

2021版《大高考》高考数学(理)一轮总复习模拟创新题:第2章 第7节函数与方程

全国新课标区模拟精选题:依据高考命题大数据分析,重点关注基础题2,4,力量题9,13. 专项基础测试 模拟精选题 一、选择题1.(2022·陕西西安模拟)已知函数f (x )=⎩⎨⎧2x -1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( )A.12,0B.-2,0C.12D.0解析 当x ≤1时,由f (x )=2x -1=0,得x =0;当x >1时,由f (x )=1+log 2x =0,解得x =12,又由于x >1,所以此时方程无解,函数f (x )的零点只有0.故选D. 答案 D2.(2022·黑龙江佳木斯模拟)已知符号函数sgn(x )=⎩⎨⎧1,x >0,0,x =0,-1,x <0.则函数f (x )=sgn(ln x )-ln x 的零点个数为( ) A.1B.2C.3D.4解析依题意得f (x )=⎩⎪⎨⎪⎧1-ln x ,x >1,0,x =1,-1-ln x ,0<x <1,令f (x )=0得x =e ,1,1e ,所以函数有3个零点,故选C. 答案 C3.(2021·青岛市模拟)函数f (x )=ln(x +1)-2x 的零点所在的大致区间是( ) A.(0,1)B.(1,2)C.(2,e)D.(3,4)解析 利用零点存在性定理得到f (1)·f (2)=(ln 2-2)·(ln 3-1)<0,故选B. 答案 B4.(2021·济宁高三期末)设x 1,x 2是方程ln|x -2|=m (m 为实常数)的两根,则x 1+x 2的值为( )A.4B.2C.-4D.与m 有关解析 方程ln|x -2|=m 的根即函数y =ln|x -2|的图象与直线y =m 的交点的横坐标,由于函数y =ln|x -2|的图象关于x =2对称,且在x =2两侧单调,值域为R ,所以对任意的实数m ,函数y =ln|x -2|的图象与直线y =m 必有两交点,且两交点关于直线x =2对称,故x 1+x 2=4,选A. 答案 A 二、填空题5.(2022·江西十校二联)给定方程⎝ ⎛⎭⎪⎫12x +sin x -1=0,下列命题中:①方程没有小于0的实数解; ②方程有很多个实数解;③方程在(-∞,0)内有且只有一个实数解; ④若x 0是方程的实数解,则x 0>-1. 正确命题是________.解析 在同一坐标系中画出函数y =⎝ ⎛⎭⎪⎫12x-1与y =-sin x (该函数的值域是[-1,1])的大致图象,结合图象可知,它们的交点中,横坐标为负的交点,有且只有一个,因此方程⎝ ⎛⎭⎪⎫12x+sin x-1=0在(-∞ ,0)内有且只有一个实数解,故③正确,①不正确,由图象易知②,④均正确. 答案 ②③④ 三、解答题6.(2021·长春模拟)设函数f (x )=x +1x 的图象为C 1,C 1关于点A (2,1)对称的图象为C 2,C 2对应的函数为g (x ).(1)求g (x )的解析式;(2)若直线y =m 与C 2只有一个交点,求m 的值和交点坐标.解 (1)设点P (x ,y )是C 2上的任意一点,则P (x ,y )关于点A (2,1)对称的点为P ′(4-x ,2-y ),代入f (x )=x +1x ,可得2-y =4-x +14-x,即y =x -2+1x -4,∴g (x )=x -2+1x -4. (2)由⎩⎪⎨⎪⎧y =m ,y =x -2+1x -4,消去y 得x 2-(m +6)x +4m +9=0,Δ=[-(m +6)]2-4(4m +9), ∵直线y =m 与C 2只有一个交点, ∴Δ=0,解得m =0或m =4.当m =0时,经检验合理,交点为(3,0); 当m =4时,经检验合理,交点为(5,4). 创新导向题利用函数零点个数求参数取值范围7.函数y =|x 2-1|x -1-kx 恰有两个零点,则实数k 的范围是( )A.(0,1)B.(0,1)∪(1,2)C.(1,+∞)D.(-∞,2)解析 令y =0,得|x 2-1|x -1=kx ,令y 1=|x 2-1|x -1(x ≠1),y 2=kx ,则y 1=⎩⎪⎨⎪⎧x +1,x <-1或x >1,-x -1,-1≤x <1,图象如图所示,y 2=kx 表示过点(0,0)的直线,∴由题意及图可知k 的取值范围是(0,1)∪(1,2),故选B.答案 B 专项提升测试 模拟精选题 一、选择题8.(2022·湖北荆门模拟)对于函数f (x )=x 2+mx +n ,若f (a )>0,f (b )>0,则函数f (x )在区间(a ,b )内( )A.肯定有零点B.肯定没有零点C.可能有两个零点D.至多有一个零点解析 利用排解法,f (a )·f (b )<0是函数f (x )在区间(a ,b )内有零点的充分不必要条件,故选C. 答案 C9.(2021·湖南衡阳模拟)设方程2x +x +2=0和方程log 2x +x +2=0的根分别为p 和q ,设函数f (x )=(x +p )(x +q )+2,则( ) A.f (2)=f (0)<f (3) B.f (0)<f (2)<f (3) C.f (3)<f (2)=f (0)D.f (0)<f (3)<f (2)解析 ∵方程2x +x +2=0和方程log 2 x +x +2=0的根分别为函数y =2x ,y =log 2 x 与直线y =-x -2的交点横坐标,而函数y =2x ,y =log 2 x 互为反函数,其图象关于y =x 对称,又直线y =-x -2与直线y =x 垂直,且两直线的交点坐标为(-1,-1),∴p +q =-2, 则f (x )=x 2+(p +q )x +pq +2=x 2-2x +pq +2, ∵该二次函数的对称轴为x =1,∴f (2)=f (0)<f (3).故选A. 答案 A 二、填空题10.(2022·天津南开中学模拟)已知函数f (x )=⎩⎨⎧2x -1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.解析 f (x )=⎩⎪⎨⎪⎧2x -1,-x 2-2x=⎩⎪⎨⎪⎧2x -1,x >0,-(x +1)2+1,x ≤0,图象如图:由g (x )=f (x )-m 有3个零点,知f (x )=m 有三个根,则实数m 的范围是(0,1).答案 (0,1)11.(2022·广西南宁模拟)已知函数f (x )=a x +x -b 的零点x 0∈(n ,n +1)(n ∈Z )其中常数a ,b 满足2a =3,3b =2,则n =________.解析 a =log 23>1,b =log 32<1,令f (x )=0,得a x=-x +b ,在同一坐标系中画出函数y =ax和y =-x +b 的图象,如图所示;由图可知,两函数的图象在区间(-1,0)内有交点,所以函数f (x )在区间(-1,0)内有零点,所以n =- 1.答案 -1 三、解答题12.(2021·青岛模拟)已知函数f (x )=|x 2-4x +3|.若关于x 的方程f (x )-a =x 至少有三个不相等的实数根,求实数a 的取值范围.解 f (x )=⎩⎨⎧(x -2)2-1,x ∈(-∞,1]∪[3,+∞),-(x -2)2+1,x ∈(1,3),作出图象如图所示.原方程变形为|x 2-4x +3|=x +a .于是,设y =x +a ,在同一坐标系下再作出y =x +a 的图象.如图.则当直线y =x +a 过点(1,0)时a =-1;当直线y =x +a 与抛物线y =-x 2+4x -3相切时, 由⎩⎨⎧y =x +a ,y =-x 2+4x -3⇒x 2-3x +a +3=0. 由Δ=9-4(3+a )=0,得a =-34.由图象知当a ∈⎣⎢⎡⎦⎥⎤-1,-34时方程至少有三个不等实根.创新导向题利用方程根的个数和函数性质求参数取值范围13.函数f (x )是定义在R 上的偶函数,且满足f (x +2)=f (x ),当x ∈[0,1]时,f (x )=2x ,若在区间[-2,3]上方程ax +2a -f (x )=0恰有四个不相等的实数根,则实数a 的取值范围是________. 解析 由f (x +2)=f (x )得函数f (x )的周期是2,作出函数y =f (x ),y =ax +2a 的部分图象,如图,要使方程ax +2a -f (x )=0恰有四个不相等的实数根,则直线y =ax +2a =a (x +2)的斜率a 满足k AH <a <k AG ,由题意可知G (1,2),H (3,2),A (-2,0),所以k AH =25,k AG =23,所以25<a <23.答案 ⎝ ⎛⎭⎪⎫25,23。

(浙江专版)高考数学一轮复习 第2章 函数、导数及其应用 第7节 函数的图象教师用书-人教版高三全册

第七节 函数的图象1.利用描点法作函数的图象方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、最值等);(4)描点连线.2.利用图象变换法作函数的图象(1)平移变换(2)对称变换①y =f (x )的图象――→关于x 轴对称y =-f (x )的图象; ②y =f (x )的图象――→关于y 轴对称y =f (-x )的图象;③y =f (x )的图象――→关于原点对称y =-f (-x )的图象;④y =a x (a >0且a ≠1)的图象――→关于直线y =x 对称y =log a x (a >0且a ≠1)的图象.(3)伸缩变换①y =f (x )的图象y =f (ax )的图象;②y =f (x )的图象――――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a ,横坐标不变y =af (x )的图象. (4)翻转变换①y =f (x )的图象―――――――――――――→x 轴下方部分翻折到上方x 轴及上方部分不变y =|f (x )|的图象; ②y =f (x )的图象―――――――――――――――→y 轴右侧部分翻折到左侧原y 轴左侧部分去掉,右侧不变y =f (|x |)的图象.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数y =f (1-x )的图象,可由y =f (-x )的图象向左平移1个单位得到.( )(2)函数y =f (x )的图象关于y 轴对称即函数y =f (x )与y =f (-x )的图象关于y 轴对称.( )(3)当x ∈(0,+∞)时,函数y =f (|x |)的图象与y =|f (x )|的图象相同.( )(4)若函数y =f (x )满足f (1+x )=f (1-x ),则函数f (x )的图象关于直线x =1对称.( )[答案] (1)× (2)× (3)× (4)√2.(教材改编)甲、乙二人同时从A 地赶往B 地,甲先骑自行车到两地的中点再改为跑步,乙先跑步到中点再改为骑自行车,最后两人同时到达B 地.已知甲骑车比乙骑车的速度快,且两人骑车速度均大于跑步速度.现将两人离开A 地的距离s 与所用时间t 的函数关系用图象表示,则下列给出的四个函数图象中,甲、乙的图象应该是( )①②③④图2­7­1A .甲是图①,乙是图②B .甲是图①,乙是图④C .甲是图③,乙是图②D .甲是图③,乙是图④ B [设甲骑车速度为V 甲骑,甲跑步速度为V 甲跑,乙骑车速度为V 乙骑,乙跑步速度为V 乙跑,依题意V 甲骑>V 乙骑>V 乙跑>V 甲跑,故选B.]3.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x关于y 轴对称,则f (x )=( )A .ex +1 B .e x -1 C .e -x +1D .e -x -1 D [依题意,与曲线y =e x 关于y 轴对称的曲线是y =e -x ,于是f (x )相当于y =e -x 向左平移1个单位的结果,∴f (x )=e -(x +1)=e-x -1.] 4.(2016·某某高考)函数y =sin x 2的图象是( )D [∵y =sin(-x )2=sin x 2,∴函数为偶函数,可排除A 项和C 项;当x =π2时,sin x 2=sin π24≠1,排除B 项,故选D.]5.若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值X 围是________.【导学号:51062049】(0,+∞) [在同一个坐标系中画出函数y =|x |与y =a -x 的图象,如图所示.由图象知当a >0时,方程|x |=a -x 只有一个解.]作函数的图象作出下列函数的图象: (1)y =⎝ ⎛⎭⎪⎫12|x |;(2)y =|log 2(x +1)|; (3)y =2x -1x -1;(4)y =x 2-2|x |-1. [解] (1)先作出y =⎝ ⎛⎭⎪⎫12x 的图象,保留y =⎝ ⎛⎭⎪⎫12x 图象中x ≥0的部分,再作出y =⎝ ⎛⎭⎪⎫12x 的图象中x >0部分关于y 轴的对称部分,即得y =⎝ ⎛⎭⎪⎫12|x |的图象,如图①实线部分.3分①②(2)将函数y =log 2x 的图象向左平移一个单位,再将x 轴下方的部分沿x 轴翻折上去,即可得到函数y =|log 2(x +1)|的图象,如图②.7分(3)∵y =2+1x -1,故函数图象可由y =1x图象向右平移1个单位,再向上平移2个单位得到,如图③.11分③④(4)∵y =⎩⎪⎨⎪⎧ x 2-2x -1,x ≥0,x 2+2x -1,x <0,且函数为偶函数,先用描点法作出[0,+∞)上的图象,再根据对称性作出(-∞,0)上的图象,得图象如图④.15分[规律方法] 画函数图象的一般方法(1)直接法.当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征直接作出;(2)图象变换法.若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出.易错警示:注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.[变式训练1] 分别画出下列函数的图象:(1)y =|lg x |;(2)y =sin|x |.[解] (1)∵y =|lg x |=⎩⎪⎨⎪⎧ lg x ,x ≥1,-lg x ,0<x <1.∴函数y =|lg x |的图象,如图①.8分(2)当x ≥0时,y =sin|x |与y =sin x 的图象完全相同,又y =sin|x |为偶函数,图象关于y 轴对称,其图象如图②.15分识图与辨图(1)函数y =2x 2-e |x |在[-2,2]的图象大致为( )(2)如图2­7­2,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )图2­7­2A B C D(1)D (2)B [(1)∵f (x )=2x 2-e |x |,x ∈[-2,2]是偶函数,又f (2)=8-e 2∈(0,1),故排除A ,B.设g (x )=2x 2-e x ,则g ′(x )=4x -e x .又g ′(0)<0,g ′(2)>0,∴g (x )在(0,2)内至少存在一个极值点,∴f (x )=2x 2-e |x |在(0,2)内至少存在一个极值点,排除C.故选D.(2)当点P 沿着边BC 运动,即0≤x ≤π4时, 在Rt △POB 中,|PB |=|OB |tan ∠POB =tan x ,在Rt △PAB 中,|PA |=|AB |2+|PB |2=4+tan 2x ,则f (x )=|PA |+|PB |=4+tan 2x +tan x ,它不是关于x 的一次函数,图象不是线段,故排除A 和C ;当点P 与点C 重合,即x =π4时,由上得f ⎝ ⎛⎭⎪⎫π4=4+tan 2π4+tan π4=5+1,又当点P 与边CD 的中点重合,即x =π2时,△PAO 与△PBO 是全等的腰长为1的等腰直角三角形,故f ⎝ ⎛⎭⎪⎫π2=|PA |+|PB |=2+2=22,知f ⎝ ⎛⎭⎪⎫π2<f ⎝ ⎛⎭⎪⎫π4,故又可排除D.综上,选B.][规律方法] 函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.[变式训练2] (1)已知函数f (x )的图象如图2­7­3所示,则f (x )的解析式可以是( )图2­7­3A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1 D .f (x )=x -1x(2)(2017·某某二模)函数y =a +sin bx (b >0且b ≠1)的图象如图2­7­4所示,那么函数y =log b (x -a )的图象可能是( )图2­7­4(1)A (2)C [(1)由函数图象可知,函数f (x )为奇函数,应排除B ,C.若函数为f (x )=x -1x,则x →+∞时,f (x )→+∞,排除D ,故选A. (2)由题图可得a >1,且最小正周期T =2πb<π,所以b >2,则y =log b (x -a )是增函数,排除A 和B ;当x =2时,y =log b (2-a )<0,排除D ,故选C.]函数图象的应用☞角度1 研究函数的性质 已知函数f (x )=x |x |-2x ,则下列结论正确的是( )A .f (x )是偶函数,递增区间是(0,+∞)B .f (x )是偶函数,递减区间是(-∞,1)C .f (x )是奇函数,递减区间是(-1,1)D .f (x )是奇函数,递增区间是(-∞,0)C [将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎪⎨⎪⎧ x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.]☞角度2 确定函数零点的个数已知f (x )=⎩⎪⎨⎪⎧ |lg x |,x >0,2|x |,x ≤0,则函数y =2f 2(x )-3f (x )+1的零点个数是________. 【导学号:51062050】5 [方程2f 2(x )-3f (x )+1=0的解为f (x )=12或1.作出y =f (x )的图象,由图象知零点的个数为5.]☞角度3 求参数的值或取值X 围(2017·某某某某五校联盟一诊)若直角坐标平面内两点P ,Q 满足条件:①P ,Q 都在函数y =f (x )的图象上;②P ,Q 关于原点对称,则称(P ,Q )是函数y =f (x )的一个“伙伴点组”(点组(P ,Q )与(Q ,P )看作同一个“伙伴点组”).已知函数f (x )=⎩⎪⎨⎪⎧ kx -1,x >0,-ln -x ,x <0有两个“伙伴点组”,则实数k 的取值X 围是( )A .(-∞,0)B .(0,1)C.⎝ ⎛⎭⎪⎫0,12 D .(0,+∞)B [根据题意可知,“伙伴点组”的点满足:都在函数图象上,且关于坐标原点对称.可作出函数y =-ln(-x )(x <0)关于原点对称的函数y =ln x (x >0)的图象,使它与直线y =kx -1(x >0)的交点个数为2即可.当直线y =kx -1与y =ln x 的图象相切时,设切点为(m ,ln m ),又y =ln x 的导数为y ′=1x, 即km -1=ln m ,k =1m,解得m =1,k =1, 可得函数y =ln x (x >0)的图象过(0,-1)点的切线的斜率为1,结合图象可知k ∈(0,1)时两函数图象有两个交点.故选B.]☞角度4 求不等式的解集函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图2­7­5所示,那么不等式f xcos x <0的解集为________.图2­7­5 ⎝ ⎛⎭⎪⎫-π2,-1∪⎝ ⎛⎭⎪⎫1,π2 [在⎝ ⎛⎭⎪⎫0,π2上,y =cos x >0,在⎝ ⎛⎭⎪⎫π2,4上,y =cos x <0. 由f (x )的图象知在⎝⎛⎭⎪⎫1,π2上f x cos x <0, 因为f (x )为偶函数,y =cos x 也是偶函数,所以y =f x cos x 为偶函数, 所以f x cos x <0的解集为⎝ ⎛⎭⎪⎫-π2,-1∪⎝⎛⎭⎪⎫1,π2.] [规律方法] 函数图象应用的常见题型与求解方法(1)研究函数性质:①根据已知或作出的函数图象,从最高点、最低点,分析函数的最值、极值. ②从图象的对称性,分析函数的奇偶性.③从图象的走向趋势,分析函数的单调性、周期性.④从图象与x 轴的交点情况,分析函数的零点等.(2)研究方程根的个数或由方程根的个数确定参数的值(X 围):构造函数,转化为两函数图象的交点个数问题,在同一坐标系中分别作出两函数的图象,数形结合求解.(3)研究不等式的解:当不等式问题不能用代数法求解,但其对应函数的图象可作出时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.[思想与方法]1.识图:对于给定函数的图象,要从图象的左右、上下分布X 围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系.2.用图:借助函数图象,可以研究函数的定义域、值域、单调性、奇偶性、对称性等性质.利用函数的图象,还可以判断方程f (x )=g (x )的解的个数,求不等式的解集等.[易错与防X]1.图象变换是针对自变量x 而言的,如从f (-2x )的图象到f (-2x +1)的图象是向右平移12个单位,先作如下变形f (-2x +1)=f ⎝ ⎛⎭⎪⎫-2⎝ ⎛⎭⎪⎫x -12,可避免出错. 2.明确一个函数的图象关于y 轴对称与两个函数的图象关于y 轴对称的不同,前者是自身对称,且为偶函数,后者是两个不同函数的对称关系.3.当图形不能准确地说明问题时,可借助“数”的精确,注重数形结合思想的运用.课时分层训练(九) 函数的图象A 组 基础达标(建议用时:30分钟)一、选择题1.为了得到函数y =2x -2的图象,可以把函数y =2x 的图象上所有的点( ) 【导学号:51062051】A .向右平行移动2个单位长度B .向右平行移动1个单位长度C .向左平行移动2个单位长度D .向左平行移动1个单位长度B [因为y =2x -2=2(x -1),所以只需将函数y =2x 的图象上所有的点向右平移1个单位长度,即可得到y =2(x -1)=2x -2的图象,故B 正确.]2.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )A B C DC [出发时距学校最远,先排除A ,中途堵塞停留,距离没变,再排除D ,堵塞停留后比原来骑得快,因此排除B.]3.(2017·某某某某第一中学能力测试)若函数y =a x-b 的图象如图2­7­6所示,则( )图2­7­6A .a >1,b >1B .a >1,0<b <1C .0<a <1,b >1D .0<a <1,0<b <1D [由题图易知0<a <1,b >0,而函数y =a x-b 的图象是由函数y =a x的图象向下平移b 个单位得到的,且函数y =a x的图象恒过点(0,1),所以由题图可知0<b <1,故选D.]4.已知函数f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,x ,x ≤0,若关于x 的方程f (x )=k 有两个不等的实数根,则实数k 的取值X 围是( )A .(0,+∞) .(-∞,1) C .(1,+∞)D .(0,1]D [作出函数y =f (x )与y =k 的图象,如图所示:由图可知k ∈(0,1],故选D.]5.(2017·某某市镇海中学模拟)若f (x )是偶函数,且当x ∈[0,+∞)时,f (x )=x -1,则f (x -1)<0的解集是( )A .(-1,0)B .(-∞,0)∪(1,2)C .(1,2)D .(0,2)D [由{ x ≥0,f x <0,得0≤x <1.由f (x )为偶函数.结合图象(略)知f (x )<0的解集为-1<x <1.所以f (x -1)<0⇔-1<x -1<1,即0<x <2.] 二、填空题6.已知函数f (x )的图象如图2­7­7所示,则函数g (x )=log 2f (x )的定义域是________. 【导学号:51062052】图2­7­7(2,8] [当f (x )>0时,函数g (x )=log2f (x )有意义,由函数f (x )的图象知满足f (x )>0时,x ∈(2,8].]7.如图2­7­8,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________.图2­7­8f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,f(1,4)x -22-1,x >0[当-1≤x ≤0时,设解析式为y =kx +b ,则⎩⎪⎨⎪⎧-k +b =0,=1,得⎩⎪⎨⎪⎧k =1,=1,∴y =x +1.当x >0时,设解析式为y =a (x -2)2-1. ∵图象过点(4,0),∴0=a (4-2)2-1,得a =14,即y =14(x -2)2-1.综上,f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,f(1,4)x -22-1,x >0.]8.已知定义在R 上的函数y =f (x )对任意的x 都满足f (x +1)=-f (x ),当-1≤x <1时,f (x )=x 3,若函数g (x )=f (x )-log a |x |至少有6个零点,则a 的取值X 围是________.⎝ ⎛⎦⎥⎤0,15∪(5,+∞) [由f (x +1)=-f (x )得f (x +1)=-f (x +2),因此f (x )=f (x +2),函数f (x )是周期为2的周期函数.函数g (x )=f (x )-log a |x |至少有6个零点可转化成y =f (x )与h (x )=log a |x |两函数图象交点至少有6个,需对底数a 进行分类讨论.若a >1,则h (5)=log a 5<1,即a >5.若0<a <1,则h (-5)=log a 5≥-1,即0<a ≤15.所以a 的取值X 围是⎝ ⎛⎦⎥⎤0,15∪(5,+∞).] 三、解答题9.已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],-3,x ∈2,5].(1)在如图2­7­9所示给定的直角坐标系内画出f (x )的图象;图2­7­9(2)写出f (x )的单调递增区间;(3)由图象指出当x 取什么值时f (x )有最值. [解] (1)函数f (x )的图象如图所示.6分(2)由图象可知,函数f (x )的单调递增区间为[-1,0],[2,5].10分 (3)由图象知当x =2时,f (x )min =f (2)=-1, 当x =0时,f (x )max =f (0)=3.15分 10.已知f (x )=|x 2-4x +3|. (1)作出函数f (x )的图象;(2)求函数f (x )的单调区间,并指出其单调性;(3)求集合M ={m |使方程f (x )=m 有四个不相等的实根}.【导学号:51062053】[解] (1)当x 2-4x +3≥0时,x ≤1或x ≥3,∴f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤1或x ≥3,x 2+4x -3,1<x <3,∴f (x )的图象为:(2)由函数的图象可知f (x )的单调区间是(-∞,1],(2,3],(1,2],(3,+∞),其中(-∞,1],(2,3]是减区间;[1,2],[3,+∞)是增区间.10分(3)由f (x )的图象知,当0<m <1时,f (x )=m 有四个不相等的实根,所以M ={m |0<m <1}.15分B 组 能力提升 (建议用时:15分钟)1.已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1mx i =( )A .0B .mC .2mD .4mB [∵f (x )=f (2-x ),∴函数f (x )的图象关于直线x =1对称.又y =|x 2-2x -3|=|(x -1)2-4|的图象关于直线x =1对称,∴两函数图象的交点关于直线x =1对称.当m 为偶数时,∑i =1mx i =2×m2=m ;当m 为奇数时,∑i =1mx i =2×m -12+1=m .故选B.]2.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,og 13x ,x >1,若对任意的x ∈R ,都有f (x )≤|k -1|成立,则实数k 的取值X 围为________.⎝ ⎛⎦⎥⎤-∞,34∪⎣⎢⎡⎭⎪⎫54,+∞ [对任意的x ∈R ,都有f (x )≤|k -1|成立,即f (x )max ≤|k -1|. 因为f (x )的草图如图所示,观察f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,og 13x ,x >1的图象可知,当x =12时,函数f (x )max =14,所以|k -1|≥14,解得k ≤34或k ≥54.]3.已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.(1)求函数f (x )的解析式;(2)若g (x )=f (x )+a x,g (x )在区间(0,2]上的值不小于6,某某数a 的取值X 围.【导学号:51062054】[解] (1)设f (x )图象上任一点坐标为(x ,y ),∵点(x ,y )关于点A (0,1)的对称点(-x,2-y )在h (x )的图象上, ∴2-y =-x +1-x+2,4分∴y =x +1x ,即f (x )=x +1x.7分(2)由题意g (x )=x +a +1x, 且g (x )=x +a +1x≥6,x ∈(0,2].10分 ∵x ∈(0,2],∴a +1≥x (6-x ), 即a ≥-x 2+6x -1.12分令q (x )=-x 2+6x -1,x ∈(0,2],q (x )=-x 2+6x -1=-(x -3)2+8,∴x ∈(0,2]时,q (x )max =q (2)=7, 故a 的取值X 围为[7,+∞).15分。

2023年新高考数学一轮复习4-1 导数的概念、运算及导数的几何意义(真题测试)含详解

专题4.1 导数的概念、运算及导数的几何意义(真题测试)一、单选题1. (2021·四川省叙永第一中学校高三阶段练习)对于以下四个函数:①y x =;②2y x ;③3y x =;④1y x=.在区间[]1,2上函数的平均变化率最大的是( ) A .①B .②C .③D .④2.(2020·全国·高考真题(理))函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( ) A .21y x =-- B .21y x =-+ C .23y x =-D .21y x =+3.(2006·安徽·高考真题(理))若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 4.(2019·全国·高考真题(文))曲线y =2sin x +cos x 在点(π,–1)处的切线方程为( ) A .10x y --π-= B .2210x y --π-= C .2210x y +-π+=D .10x y +-π+=5.(2016·山东·高考真题(文))若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ) A .sin y x =B .ln y x =C .x y e =D .3y x =6.(2018·全国·高考真题(文))设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x =7.(2016·四川·高考真题(文))设直线l 1,l 2分别是函数f(x)= ln ,01,{ln ,1,x x x x -<<>图象上点P 1,P­2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( ) A .(0,1)B .(0,2)C .(0,+∞)D .(1,+∞)8.(2022·四川省内江市第六中学模拟预测(文))若函数()21f x x =+与()2ln 1g x a x =+的图象存在公共切线,则实数a 的最大值为( )A .e 2B .eCD .2e二、多选题9.(2022·黑龙江·哈尔滨三中高二阶段练习)近两年为抑制房价过快上涨,政府出台了一系列以“限购、限外、限贷、限价”为主题的房地产调控政策.各地房产部门为尽快实现稳定房价,提出多种方案,其中一项就是在规定的时间T 内完成房产供应量任务S .已知房产供应量S 与时间t 的函数关系如图所示,则在以下各种房产供应方案中,在时间[]0,T 内供应效率(单位时间的供应量)不是..逐步提高的( ) A . B .C .D .10.(2022·吉林·长春市第二实验中学高二期中)若曲线()sin 1f x x x =-在πx =处的切线与直线210ax y ++=互相垂直,则( )A .()sin cos f x x x x '=-B .()sin cos f x x x x '=+C .()ππf '=-D .2πa =-11.(2022·广东·二模)吹气球时,记气球的半径r 与体积V 之间的函数关系为r (V ),()r V '为r (V )的导函数.已知r (V )在03V ≤≤上的图象如图所示,若1203V V <≤≤,则下列结论正确的是( )A.()()()()10211021r r r r --<-- B .()()'1'2r r > C .()()121222r V r V V V r ++⎛⎫< ⎪⎝⎭D .存在()012,V V V ∈,使得()()()21021r V r V r V V V --'=12.(2022·全国·高三专题练习)已知0,0a b >>,直线y x a =+与曲线1e 21x y b -=-+相切,则下列不等式成立的是( )A .18ab ≤B .218a b+≤C D .3a b +≤三、填空题13.(2015·天津·高考真题(文))已知函数()()ln ,0,f x ax x x =∈+∞,其中a 为实数,()f x '为()f x 的导函数,若()13f '=,则a 的值为_________.14.(2015·全国·高考真题(文))已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a=________.15.(2020·全国·高考真题(文))曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为______________. 16.(2012·浙江·高考真题(文))定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于C 2:x 2+(y +4) 2 =2到直线l :y =x 的距离,则实数a =______________. 四、解答题17.(2022·浙江·高三专题练习)已知()f x '是一次函数,()()()2212x f x x f x '--=,求()f x 的解析式.18.(2021·全国·高三专题练习)已知曲线313y x =.求该曲线的过点82,3P ⎛⎫ ⎪⎝⎭的切线方程.19.(2022·全国·高三专题练习)已知曲线32y x x =+-在点0P 处的切线1l 平行于直线410x y --=,且点0P 在第三象限. (1)求0P 的坐标;(2)若直线1l l ⊥,且l 也过切点0P ,求直线l 的方程.20.(2011·陕西·高考真题(理))如图,从点1(0,0)P 作x 轴的垂线交曲线xy e =于点1(0,1)Q ,曲线在1Q 点处的切线与x 轴交于点2P ,再从2P 作x 轴的垂线交曲线于点2Q ,依次重复上述过程得到一系列点:1P ,1Q ;2P ,2Q ;;n P ,n Q 记k P 点的坐标为(,0)k x (1,2,,k n =)(1)试求k x 与1k x -的关系(2k n ≤≤) (2)求1122n n PQ P Q P Q +++21.(2022·四川·绵阳中学实验学校模拟预测(文))已知曲线()()()211ln ,2f x x x x ax b a b =+--+∈R 在1x =处的切线经过坐标原点.(1)求b 的值;(2)若()0f x ≤,求a 的取值范围.22.(2020·北京·高考真题)已知函数2()12f x x =-. (Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;(Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值.专题4.1 导数的概念、运算及导数的几何意义(真题测试)一、单选题1. (2021·四川省叙永第一中学校高三阶段练习)对于以下四个函数:①y x =;①2y x ;①3y x =;①1y x=.在区间[]1,2上函数的平均变化率最大的是( ) A .① B .②C .③D .④【答案】C 【解析】 【分析】分析求出四个函数的平均变化率,然后比较即可. 【详解】①21121y x ∆-==∆-,②41321y x ∆-==∆-,③81721y x ∆-==∆-,④1112212y x -∆==-∆-. 故选:C .2.(2020·全国·高考真题(理))函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( ) A .21y x =-- B .21y x =-+ C .23y x =- D .21y x =+【答案】B 【解析】 【分析】求得函数()y f x =的导数()f x ',计算出()1f 和()1f '的值,可得出所求切线的点斜式方程,化简即可. 【详解】()432f x x x =-,()3246f x x x '∴=-,()11f ∴=-,()12f '=-, 因此,所求切线的方程为()121y x +=--,即21y x =-+. 故选:B.3.(2006·安徽·高考真题(理))若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 【答案】A 【解析】【详解】与直线480x y +-=垂直的直线l 为40x y m -+=,即4y x =在某一点的导数为4,而34y x '=,所以4y x =在(1,1)处导数为4,此点的切线为430x y --=,故选A4.(2019·全国·高考真题(文))曲线y =2sin x +cos x 在点(π,–1)处的切线方程为( ) A .10x y --π-= B .2210x y --π-= C .2210x y +-π+= D .10x y +-π+=【答案】C 【解析】 【分析】先判定点(,1)π-是否为切点,再利用导数的几何意义求解. 【详解】当x π=时,2sin cos 1y =π+π=-,即点(,1)π-在曲线2sin cos y x x =+上.2cos sin ,y x x '=-2cos sin 2,x y πππ=∴=-=-'则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=.故选C .5.(2016·山东·高考真题(文))若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ) A .sin y x = B .ln y x = C .x y e = D .3y x =【答案】A 【解析】 【分析】若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y =f (x )的导函数上存在两点,使这点的导函数值乘积为﹣1,进而可得答案. 【详解】解:函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直, 则函数y =f (x )的导函数上存在两点,使这点的导函数值乘积为﹣1, 当y =sin x 时,y ′=cos x ,满足条件;当y =lnx 时,y ′1x=>0恒成立,不满足条件;当y =ex 时,y ′=ex >0恒成立,不满足条件;当y =x 3时,y ′=3x 2>0恒成立,不满足条件; 故选A .6.(2018·全国·高考真题(文))设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x =【答案】D 【解析】 【详解】分析:利用奇函数偶次项系数为零求得1a =,进而得到()f x 的解析式,再对()f x 求导得出切线的斜率k ,进而求得切线方程.详解:因为函数()f x 是奇函数,所以10a -=,解得1a =, 所以3()f x x x =+,2()31x f 'x =+, 所以'(0)1,(0)0f f ==,所以曲线()y f x =在点(0,0)处的切线方程为(0)'(0)y f f x -=, 化简可得y x =,故选D.7.(2016·四川·高考真题(文))设直线l 1,l 2分别是函数f(x)= ln ,01,{ln ,1,x x x x -<<>图象上点P 1,P­2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( ) A .(0,1) B .(0,2) C .(0,+∞) D .(1,+∞)【答案】A 【解析】 【详解】试题分析:设()()111222,ln ,,ln P x x P x x -(不妨设121,01x x ><<),则由导数的几何意义易得切线12,l l 的斜率分别为121211,.k k x x ==-由已知得12122111,1,.k k x x x x =-∴=∴=∴切线1l 的方程分别为()1111ln y x x x x -=-,切线2l 的方程为()2221ln y x x x x +=--,即1111ln y x x x x ⎛⎫-=-- ⎪⎝⎭.分别令0x =得()()110,1ln ,0,1ln .A x B x -++又1l 与2l 的交点为221111112222111121211,ln .1,1,0111211PAB A B P PAB x x x x P x x S y y x S x x x x ∆∆⎛⎫-++>∴=-⋅=<=∴<< ⎪++++⎝⎭,故选A . 8.(2022·四川省内江市第六中学模拟预测(文))若函数()21f x x =+与()2ln 1g x a x =+的图象存在公共切线,则实数a 的最大值为( ) A .e 2B .e CD .2e【答案】B 【解析】 【分析】分别设公切线与()21f x x =+和:()2ln 1C g x a x =+的切点()211,1x x +,()22,2ln 1x a x +,根据导数的几何意义列式,再化简可得2222222ln a x x x =-,再求导分析22()22ln (0)h x x x x x =-⋅>的最大值即可【详解】()2f x x '=,()2a g x x'=,设公切线与()21f x x =+的图象切于点()211,1x x +,与曲线:()2ln 1C g x a x =+切于点()22,2ln 1x a x +,∴()()2221211221212ln 1122ln 2a x x a a x x x x x x x x +-+-===--,故12a x x =,所以212211212ln 2x x x x x x x -=-,∴122222ln x x x x =-⋅,∵12a x x =,故2222222ln a x x x =-,设22()22ln (0)h x x x x x =-⋅>,则()2(12ln )h x x x '=-,∴()h x在上递增,在)+∞上递减,∴max ()e h x h ==, ∴实数a 的最大值为e 故选:B. 二、多选题9.(2022·黑龙江·哈尔滨三中高二阶段练习)近两年为抑制房价过快上涨,政府出台了一系列以“限购、限外、限贷、限价”为主题的房地产调控政策.各地房产部门为尽快实现稳定房价,提出多种方案,其中一项就是在规定的时间T 内完成房产供应量任务S .已知房产供应量S 与时间t 的函数关系如图所示,则在以下各种房产供应方案中,在时间[]0,T 内供应效率(单位时间的供应量)不是..逐步提高的( )A . B .C .D .【答案】ACD 【解析】 【分析】根据变化率的知识,结合曲线在某点处导数的几何意义,可得结果. 【详解】单位时间的供应量逐步提高时,供应量的增长速度越来越快,图象上切线的斜率随着自变量的增加会越来越大,则曲线是上升的,且越来越陡,故函数的图象应一直下凹的.则选项B 满足条件,所以在时间[0,T ]内供应效率(单位时间的供应量)不是逐步提高的是ACD 选项, 故选:ACD.10.(2022·吉林·长春市第二实验中学高二期中)若曲线()sin 1f x x x =-在πx =处的切线与直线210ax y ++=互相垂直,则( )A .()sin cos f x x x x '=-B .()sin cos f x x x x '=+C .()ππf '=-D .2πa =-【答案】BCD 【解析】 【分析】由已知,选项A 、选项B ,可根据给出的曲线解析式直接求导做出判断,选项C ,可将πx =带入求解出的()f x '中进行求解判断,选项D ,根据求解出的()πf '结合直线方程的斜率,利用在πx =处的切线与直线互相垂直即可列出等量关系,求解出a 的值.【详解】选项A ,已知曲线()sin 1f x x x =-,所以()sin cos f x x x x '=+,故该选项错误; 选项B ,已知曲线()sin 1f x x x =-,所以()sin cos f x x x x '=+,故该选项正确;选项C ,因为()sin cos f x x x x '=+,所以()πsin ππcos πf '=+0ππ=-=-,故该选项正确;选项D ,直线210ax y ++=的斜率为2a-,而()ππf '=-,由已知,曲线()sin 1f x x x =-在πx =处的切线与直线210ax y ++=互相垂直,所以(π)12a--=-,所以2πa =-,该选项正确; 故选:BCD.11.(2022·广东·二模)吹气球时,记气球的半径r 与体积V 之间的函数关系为r (V ),()r V '为r (V )的导函数.已知r (V )在03V ≤≤上的图象如图所示,若1203V V <≤≤,则下列结论正确的是( )A .()()()()10211021r r r r --<-- B .()()'1'2r r > C .()()121222r V r V V V r ++⎛⎫< ⎪⎝⎭D .存在()012,V V V ∈,使得()()()21021r V r V r V V V --'=【答案】BD 【解析】 【分析】 A :设()()()()1021tan ,tan =1021r r r r αθ--=--,由图得αθ>,所以该选项错误; B:根据图象和导数的几何意义得()()12r r '>',所以该选项正确; C:设120,3,V V == 3(3)()22r r >,所以该选项错误;D:结合图象和导数的几何意义可以判断该选项正确. 【详解】 解:A :设()()()()1021tan ,tan =1021r r r r αθ--=--,由图得αθ>,所以tan tan ,αθ>所以()()()()10211021r r r r -->--,所以该选项错误;B:由图得图象上点的切线的斜率越来越小,根据导数的几何意义得()()12r r '>',所以该选项正确;C:设()()1212123(3)=(0,3,),2222r V r V V V r r V V r ++⎛⎫= ⎪⎝⎭==∴,因为3()(0)2r r ->3(3)(),2r r -所以3(3)()22r r >,所以该选项错误; D:()()2121r V r V V V --表示1122(,()),(,())A V r V B V r V 两点之间的斜率,()0r V '表示00(,())C V r V 处切线的斜率,由于()012,V V V ∈,所以可以平移直线AB 使之和曲线相切,切点就是点C ,所以该选项正确. 故选:BD12.(2022·全国·高三专题练习)已知0,0a b >>,直线y x a =+与曲线1e 21x y b -=-+相切,则下列不等式成立的是( ) A .18ab ≤B .218a b+≤C D .3a b +≤【答案】AC 【解析】 【分析】利用导数的几何意义,求出a ,b 的关系,再结合均值不等式逐项分析、计算并判断作答. 【详解】设直线y x a =+与曲线1e 21x y b -=-+相切的切点为00(,)x y , 由1e 21x y b -=-+求导得:1e x y -'=,则有01e 1x -=,解得01x =, 因此,0122y a b =+=-,即21a b +=,而0,0a b >>,对于A ,211212()2228a b ab a b +=⋅⋅≤=,当且仅当122a b ==时取“=”,A 正确;对于B ,21214(2)()448b a a b a b a b a b +=++=++≥+=,当且仅当4b a a b =,即122a b ==时取“=”,B 不正确;对于C ,因22332(2)222a a b b a b +=+++=+=,则有232≤,=4a b =时取“=”,由214a b a b+=⎧⎨=⎩得21,36a b ==,所以当21,36a b ==时,max C 正确; 对于D ,由21a b +=,0,0a b >>得,102b <<,11(,1)2a b b +=-∈,而函数3x y =在R 上单调递增,33a b +<,D 不正确. 故选:AC 三、填空题13.(2015·天津·高考真题(文))已知函数()()ln ,0,f x ax x x =∈+∞,其中a 为实数,()f x '为()f x 的导函数,若()13f '=,则a 的值为_________. 【答案】3 【解析】'()ln f x a x a =+,所以'(1)3f a ==.14.(2015·全国·高考真题(文))已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a=________. 【答案】8 【解析】 【详解】试题分析:函数ln y x x =+在(1,1)处的导数为111|1|2x x y x===+=',所以切线方程为;曲线2(2)1y ax a x =+++的导函数的为,因与该曲线相切,可令,当时,曲线为直线,与直线平行,不符合题意;当时,代入曲线方程可求得切点,代入切线方程即可求得.15.(2020·全国·高考真题(文))曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为______________. 【答案】2y x = 【解析】 【分析】设切线的切点坐标为00(,)x y ,对函数求导,利用0|2x y '=,求出0x ,代入曲线方程求出0y ,得到切线的点斜式方程,化简即可. 【详解】设切线的切点坐标为001(,),ln 1,1x y y x x y x=++'=+, 00001|12,1,2x x y x y x ='=+===,所以切点坐标为(1,2), 所求的切线方程为22(1)y x -=-,即2y x =. 故答案为:2y x =.16.(2012·浙江·高考真题(文))定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于C 2:x 2+(y +4) 2 =2到直线l :y =x 的距离,则实数a =______________. 【答案】94【解析】 【详解】试题分析:由新定义可知,直线与曲线相离,圆的圆心到直线的距离为,此时直线与圆相离,根据新定义可知,曲线到直线的距离为,对函数求导得,令,故曲线在处的切线方程为,即,于是曲线到直线的距离为,则有,解得或,当时,直线与曲线相交,不合乎题意;当时,直线与曲线相离,合乎题意.综上所述,.四、解答题17.(2022·浙江·高三专题练习)已知()f x '是一次函数,()()()2212x f x x f x '--=,求()f x 的解析式.【答案】()2442f x x x =++【解析】 【分析】分析可知,函数()f x 为二次函数,可设()()20f x ax bx c a =++≠,根据导数的运算法则结合已知条件可得出关于a 、b 、c 的方程组,解出这三个未知数的值,即可得出函数()f x 的解析式. 【详解】由()f x '为一次函数可知()f x 为二次函数.设()()20f x ax bx c a =++≠,则()2f x ax b '=+.所以,()()()()()()222212212x f x x f x x ax b x ax bx c '--=+--++=,即()()2220a b x b c x c -+-+-=,所以,02020a b b c c -=⎧⎪-=⎨⎪-=⎩,解得442a b c =⎧⎪=⎨⎪=⎩,因此,()2442f x x x =++.18.(2021·全国·高三专题练习)已知曲线313y x =.求该曲线的过点82,3P ⎛⎫⎪⎝⎭的切线方程.【答案】123160x y --=或3320x y -+=. 【解析】 【分析】设出曲线过P 点的切线方程的切点坐标,把切点的横坐标代入到导函数中即可表示出切线的斜率,根据切点坐标和表示出的斜率,写出切线的方程,把P 的坐标带入到切线方程即可得到关于切点横坐标的方程,求出方程的解即可得到切点横坐标的值,分别代入所设的切线方程即可. 【详解】解:设切点坐标为()00,x y ,切点在曲线上,∴在点()00,x y 处切线的斜率为020x x k y x =='=.∴切线方程为()2000y y x x x -=-.又切线过点82,3P ⎛⎫ ⎪⎝⎭,且切点()00,x y 在曲线313y x =上()200030082,31,3y x x y x ⎧-=-⎪⎪∴⎨⎪=⎪⎩整理得3200340x x -+=,即()()200210x x -+=,解得02x =或01x =-.∴当02x =,083y =,即切线斜率为4时,切线的方程为123160x y --=;当01x =-,031y =-,即切线斜率为1时,切线的方程为3320x y -+=.综上,所求切线方程为123160x y --=或3320x y -+=.19.(2022·全国·高三专题练习)已知曲线32y x x =+-在点0P 处的切线1l 平行于直线410x y --=,且点0P 在第三象限. (1)求0P 的坐标;(2)若直线1l l ⊥,且l 也过切点0P ,求直线l 的方程. 【答案】(1)(1,4)--; (2)4170x y ++=. 【解析】 【分析】(1)设点000(,)P x y ,求出给定函数的导数,再利用导数的几何意义,列式计算作答. (2)求出直线l 的斜率,由(1)的结论结合直线的点斜式方程求解作答. (1)由32y x x =+-求导得:231y x '=+,设切点000(,)P x y ,而点0P 在第三象限,即000,0x y <<,依题意,20314x +=,解得:01x =-,此时,04y =-,显然点(1,4)--不在直线410x y --=上,所以切点0P 的坐标为(1,4)--. (2)直线1l l ⊥,而1l 的斜率为4,则直线l 的斜率为14-,又l 过切点0P (1,4)--,于是得直线l 的方程为14(1)4y x +=-+,即4170x y ++=,所以直线l 的方程为:4170x y ++=.20.(2011·陕西·高考真题(理))如图,从点1(0,0)P 作x 轴的垂线交曲线xy e =于点1(0,1)Q ,曲线在1Q 点处的切线与x 轴交于点2P ,再从2P 作x 轴的垂线交曲线于点2Q ,依次重复上述过程得到一系列点:1P ,1Q ;2P ,2Q ;;n P ,n Q 记k P 点的坐标为(,0)k x (1,2,,k n =)(1)试求k x 与1k x -的关系(2k n ≤≤)(2)求1122n n PQ P Q P Q +++【答案】(1)11k k x x -=-()2k n ≤≤(2)11ne e e --- 【解析】 【详解】(1)根据函数的导数求切线方程,然后再求切线与x 轴的交点坐标;(2)尝试求出通项n n P Q 的表达式,然后再求和.(1)设点1k P -的坐标是1(,0)k x -,∵x y e =,∴x y e '=, ∴111(,)k x k k Q x e---,在点111(,)k x k k Q x e ---处的切线方程是111()k k x x k y e e x x ----=-,令0y =,则11k k x x -=-(2k n ).(2)∵10x =,11k k x x --=-,∴(1)k x k =--,∴(1)k x k k k PQ e e--==,于是有 112233n n PQ PQ PQ P Q ++++12(1)1111n k e e e ee -------=++++=-11ne e e --=-, 即112233n n PQ PQ PQ P Q ++++11ne e e --=-.21.(2022·四川·绵阳中学实验学校模拟预测(文))已知曲线()()()211ln ,2f x x x x ax b a b =+--+∈R 在1x =处的切线经过坐标原点.(1)求b 的值; (2)若()0f x ≤,求a 的取值范围. 【答案】(1)32b = (2)[)1,+∞【解析】 【分析】(1)利用导数的几何意义可求得()f x 在1x =处的切线方程,代入坐标原点即可求得b ;(2)采用分离变量的方式可得()1131ln 22a g x x x x x ⎛⎫≥=+-+ ⎪⎝⎭,利用导数可求得()g x 单调性,由此可得()max 1g x =,进而得到a 的取值范围.(1)()1ln x f x x x a x+'=+--,()11f a '∴=-,又()112f a b =--+,()f x ∴在1x =处的切线为:()()1112y a b a x ++-=--,又该切线过原点,112a b a ∴+-=-+,解得:32b =.(2)由(1)得:()()2131ln 22f x x x x ax =+--+,()f x 定义域为()0,∞+;若()0f x ≤恒成立,则1131ln 22a x x x x ⎛⎫≥+-+ ⎪⎝⎭;令()1131ln 22g x x x x x ⎛⎫=+-+ ⎪⎝⎭,则()222ln 212x x x g x x--+-'=; 令()22ln 21h x x x x =--+-,则()()221x x h x x-+'=-;210x x -+>恒成立,()0h x '∴<,()h x ∴在()0,∞+上单调递减,又()10h =,∴当()0,1x ∈时,()0h x '>;当()1,x ∈+∞时,()0h x '<;()g x ∴在()0,1上单调递增,在()1,+∞上单调递减,()()max 131122g x g ∴==-+=,1a ∴≥,即a 的取值范围为[)1,+∞.22.(2020·北京·高考真题)已知函数2()12f x x =-.(Ⅰ)求曲线()y f x =的斜率等于2-的切线方程; (Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值. 【答案】(Ⅰ)2130x y +-=,(Ⅱ)32. 【解析】 【分析】(Ⅰ)根据导数的几何意义可得切点的坐标,然后由点斜式可得结果;(Ⅱ)根据导数的几何意义求出切线方程,再得到切线在坐标轴上的截距,进一步得到三角形的面积,最后利用导数可求得最值. 【详解】(Ⅰ)因为()212f x x =-,所以()2f x x '=-,设切点为()00,12x x -,则022x -=-,即01x =,所以切点为()1,11, 由点斜式可得切线方程为:()1121y x -=--,即2130x y +-=. (Ⅱ)[方法一]:导数法显然0t ≠,因为()y f x =在点()2,12t t -处的切线方程为:()()2122y t t x t --=--, 令0x =,得212y t =+,令0y =,得2122t x t+=,所以()S t =()221121222||t t t +⨯+⋅,不妨设0t >(0t <时,结果一样),则()423241441144(24)44t t S t t t t t++==++,所以()S t '=4222211443(848)(324)44t t t t t+-+-= 222223(4)(12)3(2)(2)(12)44t t t t t t t -+-++==, 由()0S t '>,得2t >,由()0S t '<,得02t <<, 所以()S t 在()0,2上递减,在()2,+∞上递增, 所以2t =时,()S t 取得极小值, 也是最小值为()16162328S ⨯==. [方法二]【最优解】:换元加导数法 ()()2222121121()12(0)2|2|4||t t S t t t t t ++=⋅⋅+=⋅≠.因为()S t 为偶函数,不妨设0t >,221()4S t =⋅,令a =2,0t a a =>.令412()a g a a +=,则面积为21[()]4S g a =,只需求出412()a g a a+=的最小值.34422412312()a a a a g a a a ⋅---='=()()()222223223(2a a a a a a a-++==.因为0a >,所以令()0g a '=,得a = 随着a 的变化,(),()g a g a '的变化情况如下表:所以min [()]g a g ===所以当a =2t =时,2min 1[()]324S t =⨯=. 因为[()]S t 为偶函数,当0t <时,min [()](2)(2)32S t S S =-==. 综上,当2t =±时,()S t 的最小值为32. [方法三]:多元均值不等式法同方法二,只需求出412()(0)a g a a a +=>的最小值.令4312444()a g a a a a a a +==+++≥=当且仅当34a a=,即a =所以当a =2t =时,2min 1[()]324S t =⨯=.因为()S t 为偶函数,当0t <时,min [()](2)(2)32S t S S =-==.综上,当2t =±时,()S t 的最小值为32. [方法四]:两次使用基本不等式法同方法一得到()()()()()22222222222121241646464()41616324||444tt t t S t t t t t t ++++++=≥==+++≥=+++ ,下同方法一. 【整体点评】(Ⅱ)的方法一直接对面积函数求导数,方法二利用换元方法,简化了运算,确定为最优解;方法三在方法二换元的基础上,利用多元均值不等式求得最小值,运算较为简洁;方法四两次使用基本不等式,所有知识最少,配凑巧妙,技巧性较高.60。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20XX届高考数学一轮复习测试:函数(人教版) 说明:本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分;答题时间120分钟。

第Ⅰ卷

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分)。

1..函数0.51log(43)yx的定义域为

( ) A.( 34,1) B.(34,∞)

C.(1,+∞) D. ( 34,1)∪(1,+∞) 2.函数164xy的值域是 ( ) A.[0,) B.[0,4] C.[0,4) D.(0,4) 3.下列四类函数中,有性质“对任意的x>0,y>0,函数f(x)满足f(x+y)=f(x)f(y)”的是( ) A.幂函数 B.对数函数 C.指数函数 D.余弦函数

4.若0x是方程式 lg2xx的解,则0x属于区间 ( ) A.(0,1) B.(1,1.25) C.(1.25,1.75) D.(1.75,2)

5.函数y=log21(x2-6x+17)的值域是 ( )

A.R B.[8,+) C.(-∞,-3] D.[-3,+∞]

6.已知函数()|lg|fxx.若ab且,()()fafb,则ab的取值范围是 ( ) A.(1,) B.[1,) C .(2,) D.[2,)

7.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1x,2x(12xx ).

2121()()fxfxxx恒成立”的只有 ( ) A.1()fxx B.()fxx C.()2fx D.2()fxx

8.若函数f(x)=212log,0,log(),0xxxx,若f(a)>f(―a),则实数a的取值范围是 ( ) A.(1,0)∪(0,1) B.(∞,1)∪(1,+∞)

C.(1,0)∪(1,+∞) D.(∞,1)∪(0,1)

9.函数22xyx的图像大致是 ( )

10.若曲线12yx在点12,aa处的切线与两个坐标围成的三角形的面积为18,则a( ) A.64 B.32 C.16 D.8 11.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15 x 2和L2=2 x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获

得的最大利润为( ) A.45.606 B.45.6 C.45.56 D.45.51

12.设函数的集合211()log(),0,,1;1,0,122Pfxxabab,平面上点的

集合11(,),0,,1;1,0,122Qxyxy,则在同一直角坐标系中,P中函数()fx的图象恰好..经过Q中两个点的函数的个数是 ( ) A.4 B.6 C.8 D.10

第Ⅱ卷 二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题4分,共16分)。 13.函数fx对于任意实数x满足条件12fxfx,若15,f则

5ff__________。

14.已知0t,则函数241ttyt的最小值为____________。

15.已知定义域为0(,)的函数f(x)满足:①对任意x0(,),恒有f(2x)=2f(x)成立;当x](1,2时,f(x)=2-x。给出如下结论:①对任意mZ,有mf(2)=0;②函数f(x)的值域为[0,);③存在nZ,使得nf(2+1)=9;④“函数f(x)在区间(,)ab上单调递减”的充要条件是 “存在Zk,使得1(,)(2,2)kkab”。 其中所有正确结论的序号是 。 16.汽车在行驶过程中,汽油平均消耗率g(即每小时的汽油耗油量,单位:L/h)与汽车行驶的平均速度v(单位:km/h)之间有所示的函数关系:

)1500(5)50(250012vvg “汽油的使用率最高”(即每千米汽油平均消耗量最小,单位:L/km),则汽油的使用率最高时,汽车速度是 (L/km) 三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6个大题,共76分)。

17.(12分)设函数21()axfxbxc是奇函数(,,abc都是整数,且(1)2f,(2)3f. (Ⅰ)求,,abc的值; (Ⅱ)当0x,()fx的单调性如何?用单调性定义证明你的结论.

18.(12分)已知二次函数cbxaxxf2)(。 (Ⅰ)若a>b>c,且f(1)=0,证明f(x)的图象与x轴有2个交点; (Ⅱ)在(1)的条件下,是否存在m∈R,使池f(m)= - a成立时,f(m+3)为正数,若存在,证明你的结论,若不存在,说明理由。 (Ⅲ)若对),()(,,,212121xfxfxxRxx且

,2)]()([21)(21个不等实根有方程xfxfxf),(21xx证明必有一个根属于。

19.(12分)设函数)7()7(),2()2(),()(xfxfxfxfxf上满足在,且在闭区间[0,7]上,只有.0)3()1(ff (Ⅰ)试判断函数)(xfy的奇偶性; (Ⅱ)试求方程0)(xf在闭区间[-2005,2005]上的根的个数,并证明你的结论.

20.(12分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:

C(x)=(010),35kxx若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。 (Ⅰ)求k的值及f(x)的表达式。 (Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。 21.(12分)已知函数2()(1)ln1fxaxax。 (Ⅰ)讨论函数()fx的单调性; (Ⅱ)设2a,证明:对任意12,(0,)xx,1212|()()|4||fxfxxx。

22.(14分)(Ⅰ)已知函数3(x)=x-xf,其图象记为曲线C。 (Ⅰ)求函数(x)f的单调区间; (Ⅱ)证明:若对于任意非零实数1x,曲线C与其在点111P(x,f(x))处的切线交于另一点 222P(x,f(x)),曲线C与其在点222P(x,f(x))处的切线交于另一点333P(x,f(x)),

线段 1122312

2

PP,PP,S,SCS与曲线所围成封闭图形的面积分别记为S则为定值; (Ⅱ)对于一般的三次函数32g(x)=ax+bx+cx+d(a0),请给出类似于(Ⅰ)(ii)的正确命题,并予以证明。

参考答案 一、选择题 1.A;2.C;3.B;4.C;5.C;6.C;7.A;8.C;9.A;10.A;11.B;12.B; 二、填空题

13.51;14.2;15.①②④;16.650v(km/h); 三、解答题

17.解:(Ⅰ)由21()axfxbxc是奇函数,得()()fxfx对定义域内x恒成立,则22()11()()axaxbxcbxcbxcbxc



对对定义域内x恒成立,即0c

(或由定义域关于原点对称得0c)

又12 (1)2(2)3413 2afbfab①②由①得21ab代入②得2330022bbb,

又,,abc是整数,得1ba (Ⅱ)由(Ⅰ)知,211()xfxxxx,当0x,()fx在(,1]上单调递增,在[1,0)上单调递减.下用定义证明之. 设121xx,则21121212121211()()()xxfxfxxxxxxxxx= 12121()(1)xxxx,因为121xx,120xx,12

110xx

12()()0fxfx,故()fx在(,1]上单调递增;

同理,可证()fx在[1,0)上单调递减. 18.解:(Ⅰ))(,04,00,0)1(2xfacbcacbacbaf且且的图

象与x轴有两个交点. (Ⅱ)0)(1,0)1(xff为的一个根,由韦达定理知另一根为

ac,,,10,00cabcbaacca又且

10)1)((macamacma则13233acm )(xf在(1,+∞)单调递增,0)1()3(fmf,即存在这样的m使0)3(mf (Ⅲ)令)]()([21)()(21xfxfxfxg,则)(xg是二次函数. 0)]()([41]2)()()(][2)()()([)()(22121221121xfxfxfxfxfxfxfxfxgxg0)(0)()(),()(2121xgxgxgxfxf又的根必有一个属于),(21xx.

19.解:∵f(x)是R上的奇函数,且在[0,+∞]上是增函数, ∴f(x)是R上的增函数。于是不等式可等价地转化为f(cos2θ-3)>f(2mcosθ-4m), 即cos2θ-3>2mcosθ-4m,即cos2θ-mcosθ+2m-2>0。 设t=cosθ,则问题等价地转化为函数

g(t)=t2-mt+2m-2=(t-2m)2-42m+2m-2在[0,1]上的值恒为正,又转化为函数g(t)在[0,1]上的最小值为正。 ∴当2m<0,即m<0时,g(0)=2m-2>0m>1与m<0不符;

当0≤2m≤1时,即0≤m≤2时,g(m)=-42m+2m-2>0 4-22

相关文档
最新文档