有理数混合运算培优训练题

合集下载

有理数混合运算300题

有理数混合运算300题

有理数混合运算
9 9 9 64. 8 12 5 12 4 12 16 16 16
1 1 1 1 65. 12 2 1 1 1 2 6 12 4
3 66. 0.25 0.5 70 4 5
m n p q 的值是多少?
80.如果 a , b , c 均为正数,且 a b c 152 , b a c 162 , c a b 170 ,那么
abc 的值等于
1 1 1 81. 3 2 1 3 3 5
43. 9.37 12.84 6.24 3.12


40.
2 3 1 3 2 [ (1 2) ( )] 273 4 2 4 273
21 2 ) (13.64) (43 ) 23 23

7
7 2 2 1 7 5 39. 8 3 3 25 5 5 8 2

14.
17 1 3 1 2 5 18 12 4 3





3


有理数混合运算
5 3 1 15. 1 11 4.75 5 12 8 4

16. 8
4 (10.9 | 0.34 1.1|) 25

5 3 17. 8.8 11 4
29.已知
| ab | |a| b 0 ,则 ab a |b|

1 1 1 30. 2 2 2 3 3 3

专题1.33 《有理数》计算题综合训练(培优篇)(专项练习)

专题1.33 《有理数》计算题综合训练(培优篇)(专项练习)

专题1.33 《有理数》计算题综合训练(培优篇)(专项练习)一、解答题1.(1)计算:3100221-5--1-12-21-1-32()()÷+⨯ (2)解方程:1111333302222x ⎧⎫⎡⎤⎛⎫----=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭2.有一列按一定顺序和规律排列的数: 第一个数是; 第二个数是; 第三个数是;…对任何正整数n ,第n 个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a ,那么,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n 个数(即用正整数n 表示第n 数),并且证明你的猜想满足“第n 个数与第(n+1)个数的和等于”;(3)设M 表示,,,…,,这2016个数的和,即,求证:.3.计算:(1)412411-÷; (2)3(72)95-÷; (3)1339(2)()1648-÷⨯; (4)1853()()334÷-÷-;(5) 14(81)2()(8)49-÷⨯-÷-; (6)1331(0.25)(1)244-÷÷-⨯-.4.计算:(1)3521(2)(1)13[()]2-⨯--+-; (2)[(-3)3-(-5)3]÷[(-3)-(-5)];(3) 221143(2)(1)(1)33--⨯-⨯-÷-; (4)2016221(1)(0.5)[2(3)]36---÷⨯---.5.计算:(1) 0.125×(-7)×8; (2) -32-(-8)×(-1)5÷(-1)4; (4) [212-(79-1112+16)×36]÷5; (4) (-370)×(-14)+0.25×24.5+(-512)×(-25%).6.计算 (1)414)21(32)65(41-+-+-+-; (2)2111()()3642-+----;(3)74324.773276.3----; (4).25.032581413125.0-+-+ 7.计算(1)331624⨯÷+; (2))532(0)21(312-÷⨯--;(3))157125(24)3153(15-⨯-+-⨯; (4))8(161571)36()1855(-⨯+-⨯-;(4))]3()6.0321(4[2-÷⨯-+---; (6)4211(10.5)[2(3)]3---⨯⨯--.8.阅读下面文字: 对于(﹣556)+(﹣923)+1734+(﹣312)可以如下计算:原式=[(﹣5)+(﹣56)]+[(﹣9)+(﹣23)]+(17+34)+[(﹣3)+(﹣12)]=[(一5)+(﹣9)+17+(一3)]+[(﹣56)+(﹣23)+34+(﹣12)]=0+(﹣114)=﹣114上面这种方法叫拆项法,你看懂了吗? 仿照上面的方法,请你计算:(﹣112)+(﹣200056)+400034+(﹣199923)9.计算:(1)-2-(+10); (2)0-(-3.6);(3)(-30)-(-6)-(+6)-(-15); (4)232(3)(2)(1)( 1.75)343-----+.10.计算下列各题:(1)3.587-(-5)+(-512)+(+7)-(+314)-(+1.587);(2)(-1)5×{[-423÷(-2)2+(-1.25)×(-0.4)]÷(-19)-32}.10.(1)3131.75613848⎛⎫⎛⎫+----- ⎪ ⎪⎝⎭⎝⎭.(3)()31122.525 2.5485⎛⎫⨯--⨯+⨯- ⎪⎝⎭.(3)()()222017213313⎛⎫-⨯-+-÷- ⎪⎝⎭.11.已知282(41)3830x y y z x -+-+-=,求x +y +z 的值.12. 计算:112⎛⎫- ⎪⎝⎭ ×113⎛⎫- ⎪⎝⎭ ×114⎛⎫- ⎪⎝⎭ ×…×(1-149)×(1-150).14.在数学活动中,小明为了求2341111122222n ++++⋅⋅⋅+的值(结果用n 表示),设计如图所示的几何图形.请你利用这个几何图形求2341111122222n ++++⋅⋅⋅+的值.15.计算:1+111121231232000++⋅⋅⋅+++++++⋅⋅⋅+.16.阅读下面文字:对于5231591736342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ 可以如下计算:原式()()()5231591736342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦ ()()()5231591736342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++-⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦1014⎛⎫=+- ⎪⎝⎭114=-上面这种方法叫拆项法,你看懂了吗? 仿照上面的方法,计算: (1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭(2)235120192018201720163462⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭17.探索研究:(1)比较下列各式的大小(用“<”“>”或“=”连接) ①|3||2|+-_________|32|-;①1123+_______1123+; ①|6||3|+-________|63|-.(2)通过以上比较,请你归纳出当a ,b 为有理数时||||a b +与||a b +的大小关系.(直接写出结果)(3)根据(2)中得出的结论,当||20152015x x +=-时,x 的取值范围是________.若123415a a a a +++=,12345a a a a +++=,则12a a +=________.18.阅读材料:求l+2+22+32+42+…+22013的值.解:设S= l+2+22+32+42+…+20122+22013,将等式两边同时乘2, 得2S=2+22+32+42+52+…+22013+22014. 将下式减去上式,得2S -S=22014-l 即S=22014-l , 即1+2+22+32+42+…+22013= 22014-l 仿照此法计算:(1)1+3+2333++…+100319.2014年“十一”黄金周期间,罗浮山风景区在7天假期中每天旅游的人数变化如下表(正 数表示比前一天多的人数,负数表示比前一天少的人数):(1)请判断7天中游客人数最多的是哪天?最少的是哪天?它们相差多少万人? (2)若9月30日的游客人数为0.3万人,则这7天的游客总人数是多少万人?20.观察下列各式:3211=,332123+=,33321236++=,33332123410+++=…()1请叙述等式左边各个幂的底数与右边幂的底数之间有什么关系? ()2利用上述规律,计算:333331234...100+++++.21.下面是按一定规律排列的一列数: 第1个数:1-(1+12-); 第2个数:2-(1+12-)[1+2(1)3-][1+3(1)4-]; 第3个数:3-(1+12-)[1+2(1)3-][1+3(1)4-][1+4(1)5-][1+5(1)6-]. …(1)分别计算这三个数的结果(直接写答案);(2)写出第2 017个数的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果.22.数学老师布置了一道思考题:“计算121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭”,小红和小明两位同学经过仔细思考,用不同的方法解答了这个问题. 小红的解法:原式的倒数为()2112121123020351210310653031065⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯-=-+-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.所以121121303106510⎛⎫⎛⎫-÷-+-=- ⎪ ⎪⎝⎭⎝⎭. 小明的解法:原式12112151113303610530623010⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-÷+-+=-÷-=-⨯=- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 请你分别用小红和小明的方法计算:113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭.23.观察下列各等式,并回答问题:112⨯=1﹣12;123⨯=12﹣13;134⨯=13﹣14;145⨯=14﹣15;… (1)填空:1n(n 1)+=______(n 是正整数)(2)计算:112⨯ +123⨯+134⨯+145⨯+…+120042005⨯=______.(3)计算:112⨯ +123⨯+134⨯+145⨯+…+1n(n 1)+=______. (4)求113⨯+135⨯+157⨯+179⨯+…+120132015⨯的值.24.计算:196.9130.31310073317 1889.42377.124 111001150÷+⨯-÷+--+参考答案1.(1)3910-(2)90x=【解析】试题分析:(1)先去括号和绝对值符号后,再计算即可;(2)按等式性质称项、两边同时乘2,直至系数为1即可;试题解析:(1)原式=() 125112478391192020 ---⨯--==-+;(2)12{12[12(12x-3)-3]-3}-3=01 2{12[12(12x-3)-3]-3}=31 2[12(12x-3)-3]-3=61 2[12(12x-3)-3]=91 2(12x-3)-3=181 2(12x-3)=2112x-3=4212x=45x=902.(1)第5个;(2);证明过程见解析;(3)证明过程见解析.【解析】试题分析:(1)由已知规律可得;(2)先根据已知规律写出第n、n+1个数,再根据分式的运算化简可得;(3)将每个分式根据﹣=<<=﹣,展开后再全部相加可得结论.试题解析:(1)由题意知第5个数a==;(2)①第n个数为,第(n+1)个数为,①+=(+)=×=×=,即第n个数与第(n+1)个数的和等于;(3)①1﹣=<=1,=<<=1﹣,﹣=<<=﹣,…﹣=<<=﹣,﹣=<<=﹣,①1﹣<+++…++<2﹣,即<+++…++<,①.考点:(1)分式的混合运算;(2)规律型;(3)数字的变化类3.(1)1311-;(2)1815-;(3)103-;(4)1;(5)-2;(6)-14【解析】试题分析:(1)(2)(3)利用带分数的性质,把复杂的数写成两个数的和,再用乘法分配律计算;(4)(5)(6)把乘数运算,带分数,统一成假分数的乘积形式,约分求解.试题解析:(1)4411411 12412123 11114411411⎛⎫⎛⎫-÷=-+⨯-⨯+⨯=-⎪ ⎪⎝⎭⎝⎭.(2)3311311 72972728 55995915⎛⎫⎛⎫⎛⎫-÷=-+⨯=-⨯+⨯=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(3)1339454810 2164816393⎛⎫⎛⎫⎛⎫-÷⨯=-⨯⨯=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(4)185103431 334385⎛⎫⎛⎫⎛⎫⎛⎫÷-÷-=⨯-⨯-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.(5)()()()()()1444812881816824999⎛⎫⎛⎫-÷⨯-÷-=-⨯⨯-÷-=÷-=- ⎪⎪⎝⎭⎝⎭. (6)()()13334710.251414244234⎛⎫⎛⎫-÷÷-⨯-=-⨯⨯-⨯-=- ⎪ ⎪⎝⎭⎝⎭. 4.(1) 154-;(2)49;(3)-22;(4)-10 【解析】(1)原式=18(1)134-⨯---, =18134--, =154-. (2)原式=[27(125)](35)---÷-+, =(27125)2-+÷, =982÷, =49.(3)原式=231634()()34--⨯⨯-⨯- =166--, =22-.(4)原式=341()6(29)66--⨯⨯--, =11()6(11)6--⨯⨯-, =111-, =10-. 考点:有理数的混合运算. 5.(1)-7;(2)-17;(3)310;(4)100. 【解析】 试题分析:这是一组有理数的混合运算题,在计算时,首先确定好正确的运算顺序,其次注意“符号”问题;具体解题过程中,(1)小题要注意乘法交换律和结合律的使用;(2)小题要特别注意“符号”方面的问题;(3)小题注意乘法分配律的使用;(4)小题注意乘法分配律的逆用. 试题解析:(1)原式=()0.12587⨯⨯- =()17⨯- =7-.(2)原式=()()9811---⨯-÷ =98-- =17-. (3)原式=()1122833625⎡⎤--+⨯⎢⎥⎣⎦ =51125⎛⎫-⨯ ⎪⎝⎭ =310. (4)原式=11137024.5 5.5444⨯+⨯+⨯ =()137024.5 5.54++ =100. 6.(1)615-; (2)1312- ; (3)-17 ; (4)283【解析】试题分析:进行有理数的加减混合运算时,可先统一成加法,再运用加法交换律,结合律进行运算.试题解析:解:(1)152********⎛⎫⎛⎫-+-+-+- ⎪ ⎪⎝⎭⎝⎭ =][11152444263⎡⎤⎛⎫⎛⎫⎛⎫-+-+-+-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ =-5+(-16) =156-(2)21113642⎛⎫⎛⎫-+---- ⎪ ⎪⎝⎭⎝⎭=21113642⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭=21113264⎛⎫⎛⎫-+-+-+ ⎪ ⎪⎝⎭⎝⎭=-43+14 = 1312-(3)343.7627.24377---- =()343.767.242377⎛⎫⎛⎫-+-+-+- ⎪ ⎪⎝⎭⎝⎭=-11+(-6) =-17(4)1120.125350.25483+-+- =()1112350.258483⎛⎫++-++- ⎪⎝⎭ =()111230.2558843⎛⎫+-++-+ ⎪⎝⎭ =0+3+253=2837.(1)70;(2)123;(3)542-;(4)-385.5;(5)2.2;(6)16.【解析】试题分析:(1)利用有理数的乘方和有理数乘除法法则计算即可;(2)按先乘除,后加减的顺序计算,注意有因数为0; (3)利用乘法分配率进行简算; (4)利用乘法分配率进行简算;(5)按先乘除,后加减,有括号先算括号内的;(6)按照有理数四则混合运算顺序进行计算即可.试题解析:(1)原式=16+18×3=16+54=70;(2)原式=1203-=123;(3)原式=315715()152424531215⨯-+⨯-⨯+⨯=5695105-+-+=1441255-+=-;(4)原式=515536367188180105687.5385.5 1816⨯+⨯-⨯-⨯=+--=-;(5)原式=2[4(10.4)(3)]2[40.6(3)]2[4(0.2)] ---+-÷-=---+÷-=---+-2.2=(6)原式=111711[29]1(7)123666 --⨯⨯-=--⨯-=-+=.8.5 4 -.【解析】试题分析:首先分析(-556)+(-923)+1734+(-312)的运算方法:将带分数分解为一个整数和一个分数;然后重新组合分组:整数一组,分数一组;再分别计算求值.试题解析:(﹣112)+(﹣200056)+400034+(﹣199923)=﹣1+(﹣12)+(﹣2000)+(﹣56)+4000+34+(﹣1999)+(﹣23),=﹣1+(﹣2000)+4000+(﹣1999)+(﹣12)+(﹣56)+34+(﹣23),=(﹣2)+34,=﹣54.点拨:首先阅读材料,结合有理数运算的法则,理解拆项法的原理及应用,然后仿照材料的方法,进行计算.9.(1)-12;(2)3.6(3)-15;(4)-1.【解析】试题分析:根据有理数的减法法则,减去一个数等于加上这个数的相反数,然后根据加法法则求解即可.试题解析:(1)-2-(+10)=-2+(-10)=-12.(2)0-(-3.6)=0+3.6=3.6.(3)(-30)-(-6)-(+6)-(-15)=(-30)+(+6)+(-6)+(+15)=-30+0+15=-15.(4)(-323)-(-234)-(-123)-(+1.75)=-323+234+123+(-134)=(-323+123)+ [(+234)+(-134)]=-2+1 =-1.10.(1)原式=514;(2)原式=3.【解析】【分析】(1)运用加法的运算律,把小数与小数相加,整数与整数相加,分数与分数相加;(2)把带分数化为假分数,除法转化为乘法,再按有理数的混合运算法则计算.【详解】(1)原式=3.587+5-512+7-314-1.587=(3.587-1.587)+(5+7)+(-512-314)=2+12-83 4=51 4 .(2)原式=-1×{[-143÷4+0.5]÷(-19)-9}=-1×[(-23)÷(-19)-9]=-1×(6-9)=-1×(-3)=3.11.(1)52-.(2)1-.(3)10-.【解析】试题分析:(1)化简,利用加法结合律计算.(2)利用乘法分配律计算.(3)先算乘方,再算乘除,最后计算加减.试题解析:(1)3131.75613848⎛⎫⎛⎫+----- ⎪ ⎪⎝⎭⎝⎭7515274848=--+ 22448=- 52=-.(2)()31122.525 2.5485⎛⎫⨯--⨯+⨯- ⎪⎝⎭310122.5 2.5 2.5485=⨯+⨯-⨯35122.5445⎛⎫=⨯+- ⎪⎝⎭22.55⎛⎫=⨯- ⎪⎝⎭1=-.(3)()()222017213313⎛⎫-⨯-+-÷- ⎪⎝⎭()19919=-⨯+÷-()19=-+-10=-.点拨:计算题中的一些运算技巧(1)熟练掌握常用分数和小数的互化:10.52=,10.254=,10.25=,10.1258=,10.110=, 20.45=,30.65=,340.3750.885==,. (2)利用带分数的性质,把复杂的数写成两个数的和,再用乘法分配律计算. (3)多个数相乘,负数是奇数个,最后符号为负;负数是偶数个,最后符号为正. (4) 带分数,统一成假分数的乘积形式,约分计算.(5)有理数的混合运算法则即先算乘方或开方,再算乘法或除法,后算加法或减法.有括号时、先算小括号里面的运算,再算中括号,然后算大括号.运算律:①加法的交换律:a+b=b+a ; ①加法的结合律:(a+b)+c=a+(b+c); ①乘法的交换律:ab=ba ; ①乘法的结合律:(ab )c =a (bc );①乘法对加法的分配律:a (b+c )=ab+ac ; 注:除法没有分配律. 12.3 【解析】【试题分析】根据绝对值、完全平方的非负性得,由题意可知80410830x y y z x -=⎧⎪-=⎨⎪-=⎩,解得21434x y z ⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩,代入得:x +y +z =3.. 【试题解析】由题意可知80410830x y y z x -=⎧⎪-=⎨⎪-=⎩,解得21434x y z ⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩,所以x +y +z =3..【方法点拨】绝对值的非负性与平方的非负性可以和许多数学知识相结合进行考查. 13.150【解析】 【分析】先计算括号内的,然后再根据多个有理数相乘的运算法则进行求解即可. 【详解】112⎛⎫- ⎪⎝⎭ ×113⎛⎫- ⎪⎝⎭ ×114⎛⎫- ⎪⎝⎭×…×(1-149)×(1-150 )=1234484923454950⨯⨯⨯⨯⨯⨯ =150. 【点拨】本题考查了有理数的加、乘混合运算,熟练掌握运算顺序以及运算法则是解题的关键. 14.112n-【分析】把一个面积为1的正方形分成两个面积为12的长方形,接着把面积为12的长方形分成两个面积为14的正方形,再把面积为14的正方形分成两个面积为18的三角形,…,由图形揭示的规律进行解答即可得. 【详解】 由图可知11122=-, 221111222+=-,233111112222++=-, …2111112222n n +++=-, 所以234n n 1111111222222++++⋅⋅⋅+=-.【点拨】本题考查了规律题——图形的变化类,认真观察,通过计算从中发现规律是解题的关键. 15.119992001【分析】根据有理数的混合运算法则计算即可. 【详解】因为1+2+3+…+n =12{(1+2+…+n )+[n +(n -1)+(n -2)+…+1]} = 12 [(1+n )+(2+n -1)+(3+n -2)+…+(n +1)]= 12n (n +1),所以()12112123?··11n n n n n ⎛⎫==- ⎪++++++⎝⎭.所以原式=1+2(12-13)+2(13-14)+…+2(1111)1222000200122001-=+⨯-⨯=119992001【点拨】本题考查的是有理数的混合运算,掌握有理数的混合运算法则是解题的关键,解答时,注意正确找出规律. 16.(1)14-(2)124-【分析】(1)根据例子将每项的整数部分相加,分数部分相加即可解答; (2)根据例子将每项的整数部分相加,分数部分相加即可解答. 【详解】(1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭()115112744362⎛⎫=--+-+--+- ⎪⎝⎭104⎛⎫=+- ⎪⎝⎭14=-(2)原式()235120192018201720163462⎛⎫=-+-++-+-+ ⎪⎝⎭124⎛⎫=-+- ⎪⎝⎭124=-【点拨】此题考察新计算方法,正确理解题意是解题的关键,根据例子即可仿照计算. 17.(1)①>;①=;①>;(2)||||||a b a b ++;(3)0x ,10或10-或5或5-【分析】(1)根据有理数绝对值的化简方法分别化简、计算后进行比较即可;(2)根据(1)的规律即可得到答案;(3)根据(2)的规律即可得到答案.【详解】(1)①因为|3||2|5,|32|1+-=-=,所以|3||2||32|+->-.①因为11112323+=+, 所以11112323+=+. ①因为|6||3|9,|63|3+-=-=,所以|6||3||63|+->-.故答案为>,=,>;(2)当a ,b 异号时,||||||a b a b +>+,当a ,b 同号时,||||||a b a b +=+,所以||||||a b a b ++;(3)由(2)中得出的结论可知,x 与2015-同号,所以x 的取值范围是0x . 因为1234123415,5a a a a a a a a +++=+++=,所以12a a +与34a a +异号,则1210a a +=或10-或5或5-,故答案为0x ,10或10-或5或5-.【点拨】此题考查了有理数绝对值的化简:正数的绝对值等于它本身,零的绝对值是零,负数的绝对值等于它的相反数,以及绝对值的化简方法的应用.18.101312-.先仿照已知条件给的设设S=1+3+2333++…+1003,然后再将等式的两边同时乘以3,就可得出另外一个式子,然后两式相减,即可求出.【详解】解:设S=1+3+2333++…+1003(1),3S=3+2333++…+1003+1013(2)(2)-(1)得:2S=1013-1 ①S=101312- ①1+3+2333++…+1003=101312- 19.(1)0.22万人(2)这7天的游客总人数是3.42万人【分析】(1)根据表格确定出七天内游客人数最多与最少的,求出之差即可;;(2) 根据9月30日的人数,以及表格,求出这7天的游客总人数即可.【详解】解:7天中游客人数最多的是10月3日,最少的是10月7日,它们相差0.58-0.36=0.22(万人).(2) (1) 1日游客人数为0.3+0.16=0.46(万人);2日游客人数为0.46+0.08=0.54(万人);3日游客人数为0.54+0.04=0.58(万人);4日游客人数为0.58-0.04=0.54(万人);5日游客人数为0.54-0.08=0.46(万人);6日游客人数为0.46+0.02=0.48(万人);7日游客人数为0.48-0.12=0.36(万人).0.46+0.54+0.58+0.54+0.46+0.48+0.36=3.42(万人).答:这7天的游客总人数是3.42万人20.(1) 右边幂的底数等于左边各个幂的底数的和;(2)2 5050.【分析】(1)通过观察可知,右边幂的底数等于左边各个幂的底数的和,(2)利用规律即可解决问题.【详解】()1右边幂的底数等于左边各个幂的底数的和,(2)333331234...100+++++,2(123...100)=++++,21100[100]2+=⨯, 25050=.【点拨】本题主要考查数字变化类规律型,解决本题的关键是要熟练掌握学会观察并归纳规律. 21.(1)见解析(2)40332 【分析】(1)按照运算法则运算即可;(2)按照(1)中计算方式,逐步写出第2017个代数式,由此可以写出第2017个数;【详解】(1)第1个数:12;第2个数:32;第3个数:52. (2)第2 017个数:2 017-23403240331(1)(1)(1)(1)1+)[1][1][1][1]23440334034-----++++( =2017-14365403440332345640334034⨯⨯⨯⨯⨯⨯⨯ =2017-12=40332. 【点拨】题目考查了数字的变化规律,解决此类问题的关键是找出所求数字与序号的关系,题目整体难易适中,适合课后训练.22.114- 【解析】【分析】参考小红和小明的两种不同方法计算即可.【详解】解:法1:原式的倒数为()13221132242792812352114614374261437⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯-=-+-+=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ①113221426143714⎛⎫⎛⎫-÷-+-=- ⎪ ⎪⎝⎭⎝⎭; 法2:原式1123215111113426314742624234214⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-÷+-+=-÷-=-÷=-⨯=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 【点拨】灵活采用运算技巧能使计算简化.23.(1)111n n -+ ;(2)20042005 ;(3)1n n +;(4)10072015. 【解析】【分析】(1)根据题意确定出拆项规律,写出第n 个式子即可;(2)根据拆项规律,先拆项再抵消写即可求解;(3)根据拆项规律,先拆项再抵消写即可求解;(4)根据拆项规律,先拆项再抵消写即可求解.【详解】解:(1)111(1)1n n n n =-++(n 是正整数) (2)111111223344520042005++++⋯+⨯⨯⨯⨯⨯ =11111122320042005-+-+⋯+-=1﹣12005 =20042005. (3)1111112233445(1)n n ++++⋯+⨯⨯⨯⨯+ =1111112231n n -+-+⋯+-+ =111n -+ =1n n +. (4)111111335577920132015+++++⨯⨯⨯⨯⨯ =11111111123355720132015⎛⎫⨯-+-+-+⋯+- ⎪⎝⎭ =11122015⎛⎫⨯- ⎪⎝⎭=1201422015⨯=10072015. 故答案为:(1)111n n -+ ;(2)20042005 ;(3)1n n +;(4)10072015. 【点拨】 考查了有理数的混合运算,(4)的关键是将式子变形为11111111123355720132015⎛⎫⨯-+-+-+⋯+- ⎪⎝⎭进行计算. 24.4【分析】根据题意将小数和分数互相转化,将分数除法转变为分数乘法,然后根据分数的乘法运算法则和乘法分配律计算即可.【详解】原式1(6.910.091)33377.12 4.34711188.039.4211+-⨯⎛⎫=⨯-+ ⎪⎝⎭+-=22.78 205111.394111⎛⎫⨯-⎪⎝⎭-=22051.392 205111.3911⎡⎤⎛⎫⨯-⨯⎪⎢⎥⎝⎭⎣⎦-=22⨯=4故答案为4.【点拨】本题考查了含小数的分数乘除混合运算,关键是掌握分数除法的运算法则,并且要将小数转化为分数或分数转化为小数.。

七年级数学上册第一单元《有理数》-解答题专项经典题(专题培优)(2)

七年级数学上册第一单元《有理数》-解答题专项经典题(专题培优)(2)

一、解答题1.计算:(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦(2)6÷(-2)3-|-22×3|+3÷2×12+1; 解析:(1)23-;(2)-11 【分析】(1)先计算乘方及括号,再计算乘法,最后计算加减法;(2)先计算乘方和绝对值,再计算乘除法,最后计算加减法.【详解】 (1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦=111(2)23--⨯⨯- =113-+=23-; (2)6÷(-2)3-|-22×3|+3÷2×12+1 =116(8)123122÷--+⨯⨯+ =3312144--++ =-11.【点睛】 此题考查含乘方的有理数的混合运算,掌握运算顺序及运算法则是解题的关键. 2.计算 ①()115112236⎛⎫--+--- ⎪⎝⎭ ②()32112114132⎛⎫⎛⎫-÷-⨯--- ⎪ ⎪⎝⎭⎝⎭③524312(4)()12(152)2-÷-⨯-⨯-+ ④()()213132123242834⎛⎫⎛⎫-÷--+-⨯- ⎪ ⎪⎝⎭⎝⎭⑤222019111()22(1)2⎡⎤---÷--⨯-÷-⎢⎥⎣⎦ 解析:①-2;②458-;③-10;④-9;⑤-13. 【分析】 ①先去括号和绝对值,在进行加减运算即可.②先运算乘方,去括号,再将除法改为乘法,最后进行混合运算即可.③先运算乘方,再去括号,最后进行混合运算即可.④先运算乘方,利用乘法分配律去括号,再将除法改为乘法,最后进行混合运算即可. ⑤先运算乘方,再将除法改为乘法,再去括号,去绝对值,最后进行混合运算即可.【详解】①原式14171236=+-- 386176666=+-- 2=-. ②原式3274()(3)()48=-⨯-⨯--- 2798=-+ 458=-. ③原式3132(4)12(1516)4=-÷-⨯-⨯-+ 181214=⨯-⨯ 10=-.④原式()()()()1171542242424834=⨯--⨯--⨯-+⨯- 8335690=-++-9=-.⑤原式11(12)2(1)4=---÷-⨯÷- 1(142)2=-+-⨯-⨯1(6)2=-+-⨯112=--13=-.【点睛】本题考查有理数的混合运算,掌握有理数混合运算的顺序是解答本题的关键.3.计算(1)28()5(0.4)5+----;(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭; (3)2336()(2)()(6)575⨯---⨯-+-⨯; (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦; (5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦. 解析:(1)3;(2)3;(3)667-;(4)3-;(5)315.4【分析】 (1)先把运算统一为省略加号的和的形式,再利用加法的运算律,把互为相反数的两数先加,从而可得答案;(2)先把除法转化为乘法,再利用乘法的分配律把运算化为:()()()1573636363612-⨯-+⨯--⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(3)把原式化为:()233662557-⨯+-⨯-⨯,逆用乘法的分配律,同步进行乘法运算,最后计算减法即可得到答案; (4)先计算小括号内的运算与乘方运算,再计算中括号内的运算,再计算乘法运算,最后计算加减运算即可得到答案;(5)先计算乘方运算,同步把除法转化为乘法,再计算小括号内的减法运算,同步进行乘法运算,最后计算加法运算即可得到答案.【详解】解:(1)28()5(0.4)5+---- 2850.45=--+ 3.=(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ ()157363612⎛⎫=-+-⨯- ⎪⎝⎭()()()1573636363612=-⨯-+⨯--⨯-123021=-+3.=(3)2336()(2)()(6)575⨯---⨯-+-⨯ ()233662557=-⨯+-⨯-⨯ 2366557⎛⎫=-⨯+- ⎪⎝⎭ 667=-- 667=- (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦()()1132212⎡⎤⎛⎫=---+-⨯--- ⎪⎢⎥⎝⎭⎣⎦ ()313212⎛⎫=---+⨯-+ ⎪⎝⎭ ()31212⎛⎫=---⨯-+ ⎪⎝⎭131=--+3.=-(5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦ ()()1=2.5101632100⨯-⨯-- ()1164=--- 1164=-+ 315.4= 【点睛】本题考查的是含乘方的有理数的混合运算,乘法分配律的应用,掌握运算法则与运算顺序是解题的关键.4.计算:(1)9-(-14)+(-7)-15;(2)12×(-5)-(-3)÷374 (3)-15+(-2)3÷193⎛⎫--- ⎪⎝⎭(4)(-10)3+[(-8)2-(5-32)×9]解析:(1)1;(2)14;(3)1147-;(4)-900. 【分析】(1)先将减法化为加法,再分别把正数和负数相加,将结果相加;(2)先分别计算乘除,再计算加法;(3)先分别计算乘方和括号内的,再计算除法,最后计算加法;(4)先分别计算乘方和括号内的,再将结果相加即可.【详解】解:(1)原式=914(7)(15)++-+-=23(22)+-=1;(2)原式=7460(3)3--- =6074-+=14;(3)原式=115(8)(9)3-+-÷-- =2815(8)()3-+-÷-=315(8)()28-+--=6157-+=1147-; (4)原式=[]100064(4)9-+--⨯=1000(6436)-++=1000100-+=-900.【点睛】本题考查有理数的混合运算.熟记有理数混合运算的运算顺序和每一步的运算法则是解题关键.5.某儿童自行车厂计划一周生产儿童自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天的生产量与计划每天的生产量有出入.实际情况如下表(超产记为正,减(2)这周生产量最多的一天比生产量最少的一天多生产多少辆?(3)该厂实行每周计件工资制,每生产一辆可得50元,若超额完成任务,则超出部分每辆另奖12元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元?解析:(1)该厂本周实际生产自行车1409辆;(2)产量最多的一天比产量最少的一天多生产自行车26辆;(3)该厂工人这一周工资总额是70558元.【分析】(1)根据每天的增减量,依次相加,可得答案;(2)根据每天的增减量,用最多的一天减去最少的一天即可; (3)该厂一周工资=实际自行车产量×50+超额自行车产量×12.【详解】解:(1)1400+5-2-4+13-10+16-9=1409(辆),答:该厂本周实际生产自行车1409辆; (2)16-(-10)=26(辆),答:产量最多的一天比产量最少的一天多生产自行车26辆;(3)50×1409+12×9=70558.答:该厂工人这一周工资总额是70558元.【点睛】本题考查有理数加、减运算的应用,用正数和负数表示.明白“+”是比计划多、“-”是比计划少是解题的关键.6.计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭解析:(1)6;(2)58. 【分析】 (1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.7.计算:(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ (2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭解析:(1)12- ;(2)0【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可(2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可【详解】(1)()110822⎫⎛---÷-⨯- ⎪⎝⎭=1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=102--=-12(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭=()()2386154-⨯---⨯-=243660--+=0【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序.8.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A 和点B 刚好对着直尺上的刻度2和刻度8.(1)写出点A 和点B 表示的数;(2)写出在点B 左侧,并与点B 距离为9.5厘米的直尺左端点C 表示的数;(3)若直尺长度为a 厘米,移动直尺,使得直尺的长边CD 的中点与数轴上的点A 重合,求此时左端点C 表示的数.解析:(1)点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是-6.5;(3)3-0.5a【分析】(1)根据AB=8-2=6,点A 和点B 表示的数是互为相反数,即可得到结果;(2)利用点B 表示的数3减去9.5即可得到答案;(3)利用中点表示的数向左移动0.5a 个单位计算即可.【详解】(1)∵AB=8-2=6,点A 和点B 表示的数是互为相反数,∴点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是:3-9.5=-6.5;(3)∵直尺长度为a 厘米,直尺中点表示的数是-3,∴直尺此时左端点C 表示的数-3-0.5a .【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键.9.计算:(1)()21112424248⎛⎫-+--+⨯- ⎪⎝⎭(2)()()1178245122-÷-⨯--⨯+÷ 解析:(1)9;(2)34【分析】 (1)根据绝对值的性质、乘法分配律计算各项,即可求解;(2)先算乘除,再算加减,即可求解.【详解】解:(1)()21112424248⎛⎫-+--+⨯- ⎪⎝⎭ ()()()11144242424248=-+-⨯-+⨯--⨯-01263=+-+9=;(2)()()1178245122-÷-⨯--⨯+÷ ()()1174204+=---- 34=. 【点睛】本题考查有理数的混合运算,掌握有理数的运算法则是解题的关键.10.如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E 表示的数.解析:(1)1- (2)0.5 (3)3-或7-【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D 是线段AC 的中点;(3)在点B 左侧找一点E ,点E 到点A 的距离是到点B 的距离的2倍,依此即可求解.【详解】解:(1)点B 表示的数为-4+5=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D 表示的数为(-1+2)÷2=1÷2=0.5;(3)点E 在点B 的左侧时,根据题意可知点B 是AE 的中点,AB=|-1+4|=3则点E 表示的数是-4-3=-7.点E 在点B 的右侧时,即点E 在AB 上,则点E 表示的数为-3.【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.11.计算:(1)()()674-+--;(2)()3232--⨯. 解析:(1)17-;(2)14【分析】(1)根据有理数的加减法即可求出值;(2)原式先计算乘方,再计算乘法运算,最后算加减运算即可求出值;【详解】解:(1)原式134=-17=-(2)原式()86=--14=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 12.计算题:(1)3×(﹣4)﹣28÷(﹣7);(2)﹣12020+(﹣2)3×1123⎛⎫-+ ⎪⎝⎭. 解析:(1)﹣8;(2)13. 【分析】(1)先计算乘除,再计算加减,即可得到答案;(2)先计算乘方、然后计算乘法和括号内的运算,再计算加法即可.【详解】解:(1)3×(﹣4)﹣28÷(﹣7)=(﹣12)+4=﹣8;(2)﹣12020+(﹣2)3×1123⎛⎫-+ ⎪⎝⎭. =-1+(-8)×16⎛⎫-⎪⎝⎭ =413-+=13. 【点睛】本题考查了有理数的加减乘除运算,解题的关键是熟练掌握运算法则进行解题.13.计算:()2213113244812⎛⎫-+--⨯-- ⎪⎝⎭. 解析:13【分析】运用乘法的分配律去括号,再按有理数混合运算的顺序计算.【详解】解:原式()19692=-+---()85=--13=【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.14.计算:(1)22123()0.8(5)35⎡⎤-⨯--÷-⎢⎥⎣⎦(2)5233(2)4()(12)1234⨯-+-+--⨯- 解析:(1)13;(2)10. 【分析】(1)依据有理数的混合运算的运算顺序和法则依次运算即可;(2)分别计算乘法、绝对值和后面用乘法分配律计算,再将结果相加、减.【详解】解:(1)原式=12790.8()95⎡⎤-⨯-÷-⎢⎥⎣⎦ =95()()527-⨯-=13; (2)原式=52364[(12)(12)(12)]1234-++⨯--⨯--⨯- =64(589)-++-++ =6412-++=10.【点睛】本题考查有理数的混合运算.解决此题的关键是正确把握运算顺序和每一步的运算法则.注意运算律的运用.15.计算:-32+2×(-1)3-(-9)÷213⎛⎫ ⎪⎝⎭解析:70【分析】先计算乘方,然后计算乘除,再计算加减,即可得到答案.【详解】解:原式=92(1)(9)9-+⨯---⨯=9281--+=70.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则进行解题.16.计算:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭; 解析:(1)6;(2)11.【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可.【详解】解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭, =1312744+-+, =1217+-,=13-7,=6; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭, =()351124444⎛⎫++⨯--⨯- ⎪⎝⎭=11235++-=11.【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序.17.计算:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭; (2)20213281(2)(3)3---÷⨯-. 解析:(1)36-;(2)26.【分析】(1)利用乘法分配律进行简便运算即可;(2)先算乘方,再算乘除,最后计算加减即可.【详解】解:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭ 1174848483612=-⨯+⨯-⨯ 16828=-+-36=-;(2)20213281(2)(3)3---÷⨯- 31(89)8=---⨯⨯ 127=-+26=.【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则并灵活运用运算律准确计算是解题的关键.18.计算:(1)6÷(-3)×(-32) (2)-32×29-+(-1)2019-5÷(-54) 解析:(1)3;(2)1.【分析】(1)根据有理数的乘除混合运算法则计算即可;(2)根据有理数的混合运算法则计算即可.【详解】解:(1)原式=6×1-3⎛⎫ ⎪⎝⎭ ×(-32)=3; (2)原式=-9×29+(-1)-5×4-5⎛⎫ ⎪⎝⎭=-2-1+4=1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.19.(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯- 解析:(1)-29;(2)13.【分析】(1)利用乘法分配律进行简便运算,即可得出结果;(2)先计算有理数的乘方与乘法,再进行加减运算即可.【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭ 37(1242424)812=-⨯-⨯+⨯ (24914)=--+29=-;(2)431(2)2(3)----⨯-1(8)(6)=-----186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键.20.计算:(1)()()34287⨯-+-÷;(2)()223232-+---.解析:(1)16-;(2)6.【分析】(1)先算乘除,后算加法即可;(2)原式先计算乘方运算,再化简绝对值,最后算加减运算即可求出值.【详解】(1)原式12416=--=-(2)原式34926=-+-=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.21.计算(1)442293⎛⎫-÷⨯- ⎪⎝⎭2; (2)313242⎛⎫⨯⨯- ⎪⎝⎭3()32490.5234-⨯-÷+-. 解析:(1)16-;(2)34【分析】(1)按照有理数的四则运算进行运算即可求解;(2)按照有理数的四则运算法则进行运算即可,先算乘方,注意符号.【详解】解:(1)原式944163616499=-⨯⨯=-⨯=-,(2)原式1139 24()(8)8444 =⨯--⨯-⨯+ 39324=-++34=,【点睛】本题考查有理数的加减乘除乘方运算法则,先算乘方,再算乘除,最后算加减,有括号先算括号内的,计算过程中细心即可.22.计算:(1)311 13+(0.25)(4)3 444 ---+--(2)31(2)93 --÷(3)1125 100466() 46311 -⨯-⨯-⨯解析:(1)21;(2)-35;(3)-392【分析】(1)有理数加减混合运算,从左到右以此计算,有小括号先算小括号里面的,可以使用加减交换律和结合律使得计算简便;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减;(3)有理数的混合运算,可以使用乘法分配律使得计算简便.【详解】解:(1)311 13+(0.25)(4)3 444 ---+--=3111 13+434444-+=3111 (13+4)(3) 4444+-=183+ =21(2)31(2)93--÷=893--⨯=827--=35-(3)1125100466()46311-⨯-⨯-⨯ =11101004664633⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=11101004466664633+-⨯-⨯-⨯⨯ =40011120+---=392-【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.23.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣4,+10,﹣8,﹣6,+13,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?解析:(1)回到了球门线的位置;(2)11米;(3)56米【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【详解】解:(1)(+5)+(﹣4)+(+10)+(﹣8)+(﹣6)+(+13)+(﹣10)=(5+10+13)-(4+8+6+10)=28-28=0.答:守门员最后回到了球门线的位置;(2)(3)|+5|+|﹣4|+|+10|+|﹣8|+|﹣6|+|+13|+|﹣10|=5+4+10+8+6+13+10=56(米).答:守门员全部练习结束后,他共跑了56米.【点睛】本题考查了正数和负数以及有理数加减运算的应用等知识点,解题的关键是理解“正”和“负”的相对性,确定具有相反意义的量.24.计算:(1)152|18|()263-⨯-+; (2)20203221124(2)3()3-+÷--⨯. 解析:(1)6;(2)-5【分析】(1)先去掉绝对值,然后根据乘法分配律即可解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)152|18|()263-⨯-+ =18×(12﹣56+23) =18×12﹣18×56+18×23=9﹣15+12=6;(2)20203221124(2)3()3-+÷--⨯ =﹣1+24÷(﹣8)﹣9×19=﹣1+(﹣3)﹣1=﹣5.【点睛】 此题主要考查有理数的混合运算,熟练掌握混合运算顺序是解题关键.25.在数轴上,一只蚂蚁从原点O 出发,它先向左爬了2个单位长度到达点A ,再向右爬了3个单位长度到达点B ,最后向左爬了9个单位长度到达点C .(1)写出A ,B ,C 三点表示的数;(2)根据点C 在数轴上的位置回答,蚂蚁实际上是从原点出发,向什么方向爬了几个单位长度?解析:(1)A ,B ,C 三点表示的数分别是-2,1,-8;(2)向左爬了8个单位.【分析】(1)向左用减法,向右用加法,列式求解即可写出答案;(2)根据C 点表示的数,向右为正,向左为负,继而得出答案.【详解】解:(1)A 点表示的数是0-2=-2,B 点表示的数是-2+3=1,C 点表示的数是1-9=-8;(2)∵O 点表示的数是0;C 点表示的数是-8,∴蚂蚁实际上是从原点出发,向左爬了8个单位.【点睛】本题考查了数轴的知识及有理数的加减法的应用,属于基础题,比较简单,理解向左用减法,向右用加法,是关键.26.探索代数式222a ab b -+与代数式2()a b -的关系(1)当5a =,2b =-时,分别计算两个代数式的值.(2)你发现了什么规律?(3)利用你发现的规律计算:2220182201820192019-⨯⨯+解析:(1)49, 49;(2)a 2−2ab +b 2=(a−b )2;(3)1.【分析】(1)将a 、b 的值分别代入a 2−2ab +b 2与(a−b )2计算可得;(2)根据(1)中的两式的计算结果即可归纳总结出关系式;(3)原式变形后,利用完全平方公式计算可得结果.【详解】解:(1)当a =5,b =−2时,a 2−2ab +b 2=52−2×5×(−2)+(−2)2=25+20+4=49,(a−b )2=[5−(−2)]2=72=49;(2)根据(1)的计算,可得规律:a 2−2ab +b 2=(a−b )2;(3)20182−2×2018×2019+20192=(2018−2019)2=(−1)2=1.【点睛】本题考查了代数式的求值及完全平方公式的应用,解题的关键是掌握代数式的求值方法以及利用完全平方公式简便运算.27.计算(1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭; (2)3221(2)(3)⎡⎤÷---⎣⎦;(3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭. 解析:(1)22;(2)2117-;(3)54-. 【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算括号内的运算,最后除法运算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;【详解】(1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭ 112(24)(24)(24)243⎛⎫⎛⎫=-⨯-+-⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭12616=-+=22;(2)3221(2)(3)⎡⎤÷---⎣⎦()2189=÷--()2117=÷-2117=-; (3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭ 255104=-⨯+ 54=-. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.28.高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升?解析:(1)最后到达的地方在出发点的东边,距出发点15千米;(2)这次养护共耗油19.4升.【分析】(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧; (2)所走的路程是这组数据的绝对值的和,然后乘以0.2,即可求得耗油量.【详解】解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16,=17+7+11+5+16-(9+15+3+6+8),=15.答:最后到达的地方在出发点的东边,距出发点15千米;(2)(17971531168516)0.2++-+++-+-+++-+-++++⨯,=97×02,=19.4(升).答:这次养护共耗油19.4升.【点睛】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.也考查了有理数的加减运算.29.计算:2334[28(2)]--⨯-÷-解析:21-.【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得.【详解】解:原式[]9428(8)=--⨯-÷-, []942(1)=--⨯--, 943=--⨯,912=--,21=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键.30.计算:(1)[]2(2)18(3)24-+--⨯÷ (2)()()243513224⎡⎤----⨯÷-⎢⎥⎣⎦ 解析:(1)10;(2)-15【分析】(1)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】(1)解:原式=4+[18-(-6)]÷4=4+24÷4=4+6=10;(2)解:原式=-1-[9-10÷(-2)]=-1-[9-(-5)]=-1-14=-15.【点睛】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.。

有理数加减乘除混合运算专项训练(三)(人教版)(含答案)

有理数加减乘除混合运算专项训练(三)(人教版)(含答案)

学生做题前请先回答以下问题问题1:有理数加法口诀_________________________;有理数减法法则__________________________________,用字母表示为a-b=________.问题2:请用字母表示加法的交换律和结合律.问题3:有理数的乘法法则、除法法则分别是什么?问题4:请用字母表示乘法的交换律,结合律以及乘法对加法的分配律.问题5:什么是倒数?倒数等于它本身的数是________.问题6:若,利用有理数乘法法则判断的符号.以下是问题及答案,请对比参考:问题1:有理数加法口诀;有理数减法法则,用字母表示为a-b= .答:同号相加合并,异号相加抵消;减去一个数等于加上这个数的相反数,a-b=a+(-b).问题2:请用字母表示加法的交换律和结合律.答:加法交换律:加法结合律:问题3:有理数的乘法法则、除法法则分别是什么?答:有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘,积为0.几个有理数相乘,因数都不为0时,积的符号由负因数的个数决定,当负因数为奇数个时,积为负,当负因数为偶数个时,积为正,并把绝对值相乘.有一个因数为0时,积为0.有理数的除法法则:除以一个数等于乘以这个数的倒数.问题4:请用字母表示乘法的交换律,结合律以及乘法对加法的分配律.答:乘法交换律:;乘法结合律:;乘法对加法的分配律:问题5:什么是倒数?倒数等于它本身的数是.答:乘积为1的两个有理数互为倒数.倒数等于它本身的数是1,-1.问题6:若,利用有理数乘法法则判断的符号.答:的符号为正.有理数加减乘除混合运算专项训练(三)(人教版)一、单选题(共14道,每道7分)1.计算:( )A.-5B.-7C.6D.-6答案:B解题思路:故选B.试题难度:三颗星知识点:有理数加减乘除混合运算2.计算:( )A.-2B.2C.-6D.8答案:A解题思路:故选A.试题难度:三颗星知识点:有理数加减乘除混合运算3.计算:( )A.5B.-4C.-5D.4答案:C解题思路:故选C.试题难度:三颗星知识点:有理数加减乘除混合运算4.计算:( )A.2B.-2C.20D.-14答案:A解题思路:故选A.试题难度:三颗星知识点:有理数加减乘除混合运算5.计算:( )A.-1B.-19C.19D.47答案:B解题思路:故选B.试题难度:三颗星知识点:有理数加减乘除混合运算6.计算:( )A.-15B.9C.-2D.答案:B解题思路:故选B.试题难度:三颗星知识点:有理数加减乘除混合运算7.计算:( )A.-30B.-20C.-6D.4答案:D解题思路:故选D.试题难度:三颗星知识点:有理数加减乘除混合运算8.计算:( )A. B.C. D.9答案:C解题思路:故选C.试题难度:三颗星知识点:有理数加减乘除混合运算9.计算:( )A.-31B.-18C.-4D.-25答案:B解题思路:故选B.试题难度:三颗星知识点:有理数加减乘除混合运算10.计算:( )A.4B.-6C.0D.-2答案:A解题思路:故选A.试题难度:三颗星知识点:有理数加减乘除混合运算11.计算:( )A.-52B.-37C.5D.-2答案:B解题思路:故选B.试题难度:三颗星知识点:有理数加减乘除混合运算12.计算:( )A.-22B.2C.10D.-14答案:A解题思路:故选A.试题难度:三颗星知识点:有理数加减乘除混合运算13.计算:( )A. B.C. D.答案:D解题思路:故选D.试题难度:三颗星知识点:有理数加减乘除混合运算14.计算:( )A. B.0.6C. D.0.9答案:D解题思路:故选D.试题难度:三颗星知识点:有理数加减乘除混合运算。

(必考题)七年级数学上册第一单元《有理数》-解答题专项测试卷(培优练)

(必考题)七年级数学上册第一单元《有理数》-解答题专项测试卷(培优练)

一、解答题1.计算:(1)14-25+13(2)42111|23|()823---+-⨯÷ 解析:(1)2;(2)4【分析】 (1)根据有理数的加减运算,即可求出答案;(2)先计算乘方、绝对值、然后计算乘除,再计算加减运算,即可得到答案.【详解】解:(1)14251311132-+=-+=;(2)42111|23|()823---+-⨯÷=111834--+⨯⨯ =26-+=4.【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则进行解题.2.计算(1)18()5(0.25)4+----(2)2﹣412()(63)7921-+⨯- (3)1373015-⨯ (4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦. 解析:(1)3;(2)37;(3)﹣236;(4)72【分析】 (1)本式为简单的有理数加减运算,从左到右先将分数进行计算,再从左到右计算即可. (2)按照有理数混合运算的顺序,利用乘法分配律直接去括号,再进行运算. (3)将﹣71315分解为﹣7﹣1315,再利用乘方分配律进行计算即可. (4)分别根据有理数的乘方计算出各数,再根据实数混合运算的法则进行计算即可.【详解】解:(1)18()5(0.25)4+---- =118544--+ =3;(2)2﹣412()(63)7921-+⨯- =4122(63)(63)(63)7921⎡⎤-⨯--⨯-+⨯-⎢⎥⎣⎦ =2﹣(﹣36+7﹣6),=2﹣(﹣35)=37;(3)1373015-⨯ =﹣7×30+(﹣1315)×30 =﹣210﹣26=﹣236;(4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦ =341(92)149--⨯-⨯-÷ =912-+=72. 【点睛】此题考查了有理数的混合运算注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.3.计算 ①()115112236⎛⎫--+--- ⎪⎝⎭ ②()32112114132⎛⎫⎛⎫-÷-⨯--- ⎪ ⎪⎝⎭⎝⎭③524312(4)()12(152)2-÷-⨯-⨯-+④()()213132123242834⎛⎫⎛⎫-÷--+-⨯- ⎪ ⎪⎝⎭⎝⎭ ⑤222019111()22(1)2⎡⎤---÷--⨯-÷-⎢⎥⎣⎦ 解析:①-2;②458-;③-10;④-9;⑤-13. 【分析】 ①先去括号和绝对值,在进行加减运算即可.②先运算乘方,去括号,再将除法改为乘法,最后进行混合运算即可.③先运算乘方,再去括号,最后进行混合运算即可.④先运算乘方,利用乘法分配律去括号,再将除法改为乘法,最后进行混合运算即可. ⑤先运算乘方,再将除法改为乘法,再去括号,去绝对值,最后进行混合运算即可.【详解】①原式14171236=+-- 386176666=+-- 2=-. ②原式3274()(3)()48=-⨯-⨯--- 2798=-+ 458=-. ③原式3132(4)12(1516)4=-÷-⨯-⨯-+ 181214=⨯-⨯ 10=-.④原式()()()()1171542242424834=⨯--⨯--⨯-+⨯- 8335690=-++-9=-.⑤原式11(12)2(1)4=---÷-⨯÷- 1(142)2=-+-⨯-⨯1(6)2=-+-⨯112=--【点睛】本题考查有理数的混合运算,掌握有理数混合运算的顺序是解答本题的关键. 4.计算:(1)()()128715--+--; (2)()()3241223125---÷+⨯--. 解析:(1)2-;(2)7.【分析】(1)先去括号,再进行有理数运算即可;(2)根据有理数混合运算顺序和运算法则计算可得.【详解】解:(1)12﹣(﹣8)+(﹣7)﹣15=12+8﹣7﹣15=(12+8)+(﹣7﹣15)=20﹣22=﹣2(2)﹣12﹣(﹣2)3÷45 +3×|1﹣(﹣2)2| =﹣12﹣(﹣8)×54+3×|1﹣4| =﹣12+10+3×|﹣3|=﹣12+10+9=7【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.5.出租车司机张师傅11月1日这一天上午的营运全在一条东西向的街道上进行,如果规定向东为正,那么他这天上午载了五位乘客所行车的里程如下(单位:km ):8+,6-,3+,7-,1+.(1)将最后一名乘客送到目的地时,张师傅距出车地点的位置如何?(2)若汽车耗油为0.08L/km ,则这天上午汽车共耗油多少升?解析:(1)在出车地点西边1千米处;(2)2升【分析】(1)计算张师傅行驶的路程的和即可;(2)计算出每段路程的绝对值的和后乘以0.08,即为这天上午汽车共耗油数.【详解】解:(1)规定向东为正,则向西为负,(+8)+(-6)+(+3)+(-7)+(+1)=8-6+3-7+1答:将最后一名乘客送到目的地,张师傅在出车地点西边1千米处.(2)(8+6+3+7+1)×0.08=2升.答:这天午共耗油2升.【点睛】本题考查了有理数的混合运算,注意要针对不同情况用不同的计算方法.6.给出四个数:3,4--,2,6,计算“24点”,请列出四个符合要求的不同算式. (可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24⨯++=与(213)424++⨯=只是顺序不同,属同一个算式.)算式1:_________________;算式2_______________;算式3:_________________;算式4_______________;解析:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【分析】由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-,可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案.【详解】解:算式1:()()3426121224,-⨯-+⨯=+=算式2:()()()()34263824,-⨯-+-=-⨯-=算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-=故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维.7.计算题:(1)()()121876---+-+;(2)()231513221428⎫⎛---⨯-+ ⎪⎝⎭;63解析:(1)29;(2)5-;(3)4【分析】(1)根据有理数的加减法即可解答本题;(2)根据有理数的乘方和乘法分配律即可解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【详解】解:(1)|-12|-(-18)+(-7)+6=12+18+(-7)+6=30+(-7)+6=23+6=29;(2)23151(32)(21)428---⨯-+ =3513132()428-+⨯-+ =35131323232428-+⨯-⨯+⨯ =-1+24-80+52=-5;(3)16×[1-(-3)2]÷(−13) =16×(1-9)×(-3) =16×(-8)×(-3) =4.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 8.计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭解析:(1)6;(2)58. 【分析】 (1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】329753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.9.计算:()22216232⎫⎛-⨯--⎪⎝⎭ 解析:2【分析】原式先计算乘方,再运用乘法分配律计算,最后进行加减运算即可.【详解】解:()22216232⎫⎛-⨯-- ⎪⎝⎭=2136()432⨯-- =213636432⨯-⨯- =24-18-4=2.【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.10.如图,将一根木棒放在数轴(单位长度为1cm )上,木棒左端与数轴上的点A 重合,右端与数轴上的点B 重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B 时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A 时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为________cm ;(2)图中点A 所表示的数是_______,点B 所表示的数是_______;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?解析:(1)8;(2)14,22;(3)奶奶现在的年龄为67岁.【分析】(1)由观察数轴可知三根这样长的木棒的长度,即可求出这根木棒的长;(2)由所求出的这根木棒的长,结合图中的已知条件即可求得A 和B 所表示的数; (3)根据题意,设数轴上小木棒的A 端表示妙妙的年龄,小木棒的B 端表示奶奶的年龄,则小木棒的长表示二人的年龄差,由此参照(1)中的方法结合已知条件分析解答即可.【详解】(1)观察数轴可知三根这样长的木棒长为30624cm -=,则这根木棒的长为2438cm ÷=;(2)由这根木棒的长为8cm ,所以A 点表示为6+8=14,B 点表示为6+8+8=22;(3)借助数轴,把妙妙和奶奶的年龄差看做木棒AB ,奶奶像妙妙这样大时,可看做点B 移动到点A ,此时点A 向左移后所对应的数为37-,可知奶奶比妙妙大()11937352⎡⎤⎣÷⎦--=,则奶奶现在的年龄为1195267-=(岁). 【点睛】此题考查认识数轴及用数轴表示有理数和有理数的加减法,难度一般,读懂题干要求是关键.11.计算:(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)131121346⎛⎫-⨯-+ ⎪⎝⎭解析:(1)1;(2)9-【分析】(1)先算括号里面的,再算括号外面的即可;(2)根据乘法分配律计算即可;【详解】(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 11463⎡⎤=-+-⨯⎢⎥⎣⎦, 121=-+=;(2)131121346⎛⎫-⨯-+ ⎪⎝⎭, ()()()431121212346=-⨯--⨯+-⨯, 16929=-+-=-;【点睛】 本题主要考查了有理数的混合运算,准确计算是解题的关键.12.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A 和点B 刚好对着直尺上的刻度2和刻度8.(1)写出点A 和点B 表示的数;(2)写出在点B 左侧,并与点B 距离为9.5厘米的直尺左端点C 表示的数;(3)若直尺长度为a 厘米,移动直尺,使得直尺的长边CD 的中点与数轴上的点A 重合,求此时左端点C 表示的数.解析:(1)点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是-6.5;(3)3-0.5a【分析】(1)根据AB=8-2=6,点A 和点B 表示的数是互为相反数,即可得到结果;(2)利用点B 表示的数3减去9.5即可得到答案;(3)利用中点表示的数向左移动0.5a 个单位计算即可.【详解】(1)∵AB=8-2=6,点A 和点B 表示的数是互为相反数,∴点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是:3-9.5=-6.5;(3)∵直尺长度为a 厘米,直尺中点表示的数是-3,∴直尺此时左端点C 表示的数-3-0.5a .【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键.13.在数轴上表示下列各数:14, 1.5,3,0,2.5,52----,并将它们按从小到大的顺序排列.解析:图见解析,153 1.50 2.542--<-<-<<< 【分析】在数轴上表示出各数,再按照从左到右的顺序用“<”号把它们连接起来即可.【详解】解: 5=-5--如图所示:故:1531.502.542--<-<-<<<. 【点睛】本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.14.把下列各数表示在数轴上,再按从大到小的顺序用大于号把这些数连接起来. |3|-,5-,12,0, 2.5-,22-,(1)--. 解析:见解析,|-3|>-(-1)>12>0>-2.5>-22>-5. 【分析】 先在数轴上表示出各数,从右到左用“>”连接起来即可.【详解】解:|3|=3-;224=--,(1)=1--如图所示,,由图可知,|-3|>-(-1)>12>0>-2.5>-22>-5. 【点睛】 本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键. 15.计算(1)3124623⎛⎫⎛⎫-÷-+⨯- ⎪ ⎪⎝⎭⎝⎭(2)()()34011 1.950.50|5|5---+-⨯⨯--+.解析:(1)14;(2)0【分析】(1)先计算乘法和除法,再计算加法;(2)分别计算乘方、乘法和绝对值,再计算加法和减法.【详解】解:(1)原式=2124633⎛⎫⎛⎫-⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭()162=+-14=;(2)原式011055=-++-+=0.【点睛】本题考查有理数的混合运算.(1)中注意要先把除法化为乘法再计算;(2)中注意多个有理数相乘时,只要有一个因数为0,那么积就为0.16.计算:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭; 解析:(1)6;(2)11.【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可.【详解】解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭, =1312744+-+, =1217+-,=13-7,=6;(2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭, =()351124444⎛⎫++⨯--⨯- ⎪⎝⎭=11235++-=11.【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序.17.计算(1)(-1)2019+0.25×(-2)3+4÷23 (2)21233()12323-÷+-⨯+解析:(1)3;(2)-2【分析】(1)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;(2)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;【详解】解:(1)原式=-1+0.25×(-8)+6=-1-2+6=3;(2)原式=12931212323-÷+⨯-⨯+ =-3+6-8+3=-2;【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是熟练掌握运算法则,正确的进行计算.18.计算:-32+2×(-1)3-(-9)÷213⎛⎫ ⎪⎝⎭解析:70【分析】先计算乘方,然后计算乘除,再计算加减,即可得到答案.【详解】解:原式=92(1)(9)9-+⨯---⨯=9281--+=70.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则进行解题.19.计算:(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦(2)6÷(-2)3-|-22×3|+3÷2×12+1; 解析:(1)23-;(2)-11【分析】(1)先计算乘方及括号,再计算乘法,最后计算加减法;(2)先计算乘方和绝对值,再计算乘除法,最后计算加减法.【详解】(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦=111(2)23--⨯⨯- =113-+=23-; (2)6÷(-2)3-|-22×3|+3÷2×12+1 =116(8)123122÷--+⨯⨯+ =3312144--++ =-11.【点睛】 此题考查含乘方的有理数的混合运算,掌握运算顺序及运算法则是解题的关键. 20.计算:(1)45(30)(13)+---;(2)32128(2)4-÷-⨯-. 解析:(1)28;(2)-2【分析】 (1)有理数的加减混合运算,从左往右依次计算即可;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)45(30)(13)+---=4530+13-=15+13=28(2)32128(2)4-÷-⨯- =18844-÷-⨯ =11--=-2.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.21.计算:(1)-8+14-9+20(2)-72-5×(-2) 3+10÷(1-2) 10解析:(1)17;(2)1.【分析】(1)原式利用加法结合律相加即可求出值;(2)原式先计算乘方运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解:(1)814920--++()()=891420--++=17-+34=17(2)2310752+()(1012)--⨯-÷-()1=4958+10--⨯-÷=49+40+10-=1【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.计算下列各题:(1)(14﹣13﹣1)×(﹣12); (2)(﹣2)3+(﹣3)×[(﹣4)2﹣6].解析:(1)13;(2)-38【分析】(1)根据乘法分配律可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.【详解】解:(1)(14﹣13﹣1)×(﹣12) =14×(﹣12)﹣13×(﹣12)﹣1×(﹣12) =(﹣3)+4+12=13;(2)(﹣2)3+(﹣3)×[(﹣4)2﹣6]=(﹣8)+(﹣3)×(16﹣6)=(﹣8)+(﹣3)×10=(﹣8)+(﹣30)=﹣38.【点睛】本题考查有理数的混合计算,掌握有理数混合运算的顺序,会利用简便运算简化运算是解题关键.23.计算:(1)2×(-3)3-4×(-3)(2)-22÷(12-13)×(-58)解析:(1)-42;(2)15【分析】(1)先算乘方、乘法,再算加减法即可;(2)先算括号和乘方,再算乘除即可.【详解】(1)原式 =2(27)12⨯-+=-54+12= 42-.(2)原式 =15 4()68 -÷⨯-=5 468⨯⨯=15.【点睛】本题考查了有理数的运算,掌握运算法则及运算顺序是关键.24.如图,数轴上A,B两点之间的距离为30,有一根木棒MN,设MN的长度为x.MN数轴上移动,M始终在左,N在右.当点N移动到与点A,B中的一个重合时,点M所对应的数为9,当点N移动到线段AB的中点时,点M所对应的数是多少?解析:点M所对应的数为24或-6.【分析】设MN=x,然后分类计算即可:①当点N与点A重合时,点M所对应的数为9,则点N对应的数为x+9;②当点N与点B重合时,点M所对应的数为9,则点N对应的数为x+9.【详解】设MN=x ,①当点N 与点A 重合时,点M 所对应的数为9,则点N 对应的数为x+9,∵AB=30,∴当N 移动到线段AB 的中点时,点N 对应的数为x+9+15=x+24,∴点M 所对应的数为x+24-x=24;②当点N 与点B 重合时,点M 所对应的数为9,则点N 对应的数为x+9,∵AB=30,∴当N 移动到线段AB 的中点时,点N 对应的数为x+9-15=x-6,∴点M 所对应的数为x-6-x=-6;综上,点M 所对应的数为24或-6.【点睛】本题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.数形结合并分类讨论是解题的关键.25.计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭. 解析:(1)1;(2)-1.【分析】(1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解.【详解】(1)()()()923126--⨯-+÷-=962--=1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭ =11891632-+-÷ =1893216-+-⨯ =892-+-=-1.【点睛】 此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.26.(1)()()()()413597--++---+;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭. 解析:(1)-6;(2)715. 【分析】 (1)原式根据有理数的加减法法则进行计算即可得到答案;(2)原式把除法转换为乘法,再进行乘法运算即可得到答案.【详解】解:(1)()()()()413597--++---+=-4-13-5+9+7=-22+9+7=-13+7=-6;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭ =174435⨯⨯ =715. 【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.27.阅读下列材料:(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,即当0x <时,1x x x x ==--.用这个结论可以解决下面问题:(1)已知a ,b 是有理数,当0ab ≠时,求a b a b+的值; (2)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a b a b c+++++的值. 解析:(1)2或2-或0;(2)-1.【分析】 (1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可.【详解】(1)0ab ≠∴①0,0a b >>,==1+1=2a b a b a b a b ++; ②0,0a b <<,==11=2a b a b a b a b+-----; ③0ab <,=1+1=0a b a b+-, 综上所述,当0ab ≠时,a b a b +的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=-即a b c ,,中有两正一负,∴==()1b c a c a b a b c a b c a b c a b c a b c+++---++++-++=-. 【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键.28.小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km ,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小红家与学校之间的距离;(3)如果小明跑步的速度是250m/min ,那么小明跑步一共用了多长时间?解析:(1)见解析;(2)4.5km ;(3)36分钟【分析】(1)根据题意在数轴上标出小彬家和小红家,再标出学校即可;(2)根据数轴上两点距离的计算方法计算即可得出答案;(3)先计算小明总共跑的路程,先向东跑了3.5km ,再向西跑了4.5km ,再向东跑了1km ,用总路程除以跑步速度即可得出答案.【详解】解:(1)如图所示:(2)3.5(1) 4.5()km --=,故小红家与学校之间的距离是4.5km ;(3)小明一共跑了(2 1.51)29()km ++⨯=,跑步用的时间是:900025036÷=(分钟).答:小明跑步一共用了36分钟.【点睛】本题主要考查了数轴上两点间的距离,根据题意列式计算式解决本题的关键.29.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“-”表示成绩小于14秒.解析:9秒.【分析】根据平均成绩的计算方法,先列式计算表格中所有数据的平均数,再加上标准成绩即可得出结果.【详解】解: 1.20.7010.30.20.30.50.18-++--+++=-(秒) 140.113.9-=(秒).答:这个小组8名男生的平均成绩是13.9秒.【点睛】此题考查了有理数的混合运算的实际应用,正确理解题目中正数和负数的含义是列式计算的关键.30.计算:(1)()()30122021π--+---;(2)()41151123618⎛⎫---+÷ ⎪⎝⎭. 解析:(1)18-;(2)-17.【分析】(1)原式第一项利用绝对值代数意义进行化简,第二项利用负整数指数幂的运算法则进行计算,第三项利用零指数幂的运算法则进行化简,最后进行加减运算即可得到答案;(2)原式先计算有理数的乘方,再把除法转化为乘法去括号进行乘法运算,最后进行加减运算即可得到答案.【详解】解:(1)()()30122021π--+---=1118-- =18-;(2)()41151123618⎛⎫---+÷ ⎪⎝⎭ =115118236⎛⎫--+⨯ ⎪⎝⎭=115118+1818236-⨯⨯-⨯ =1-9+6-15 =-17.【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.。

走进重高 培优检测七上 有理数的混合运算、近似数 2.6~2.7

走进重高 培优检测七上 有理数的混合运算、近似数 2.6~2.7

有理数的混合运算、近似数(2.6~2.7)一、选择题(每题3分,共30分)1.据统计,近十年中国累积节能1570000万吨标准煤,1570000这个数用科学记数法表示为 ( )710157.0.⨯A 61057.1.⨯B 71057.1.⨯c 81057.1.⨯D2.计算)4(82)1(32022-÷-⨯-的结果是( )12.A 10.B 10.-C 6.-D3.在算式|53|4口--中的口所在位置,填人下列一种运算符号,能使计算出来的值最小的运算符号是 ( )+.A -.B ⨯.C - .D4.在数学课上,老师让甲、乙、丙、丁四位同学分别做了一道有理数运算题,你认为做对的同学是( ) 甲:;0808392=÷=÷-乙:;06424)34(242=⨯-=⨯- 丙:;163212323623)1236(=⨯-⨯=÷- 丁:.919331)3(2=÷=⨯÷- A.甲 B .乙 C .丙 D .丁5.定义一种新的运算:,2a b a b a +=⋅如:,2212212=⨯+=⋅则1)32(⋅⋅等于( ) 25.A 23.B 49.C 819.D 6.某品牌彩电为了打开市场,促进销售,准备对某特定型号彩电降价,有下列四种方案供选择,其中降价幅度最小的是 ( )A .先降价12%,再降价8%B .先降价8%,再降价12%C .先降价10%,再降价10%D .-次性降价20%7.对于一个自然数行,若能找到正整数x ,y ,使得,xy y x n ++=则称n 为“好数”,例如: ,11113⨯++=则3是一个“好数”,在11,10,9,8这四个数中,“好数”的个数为( )1.A2.B3.C4.D8.按如图所示的程序工作,如果输入的数是3,那么输出的数是(第8题)27.-A 81.B 297.-C 297.D9.定义一种关于整数n 的“F”运算:当n 是奇数时,结果为;53+n 当 n 是偶数时,结果是k n 2(其中k 是使k n 2是奇数的正整数),并且运算重复进行,例如:取,58=n 第一次经“F”运算是29,第二次经“F”运算是92,第三次经“F”运算是23,第四次经“F”运算是74……若,9=n 则第2017次运算结果是 ( )1.A2.B 7.C 8.D10.如果),21()21)(21)(21)(21(256842+++++= x 那么1+x 是( )A .-个奇数B .-个质数C .-个整数的平方D .-个奇数的立方二、填空题(每题4分,共24分)11.近似数41015.1⨯精确到_________位,若要精确到万位,则近似数为__________.12.某冷库的室温为,4C o -有一批食品需要在C 19-的温度下冷藏,如果每小时降,3C 那么______小时能降到所要求的温度.13.请将“7,-2,-3,1”这四个数进行加、减、乘、除、乘方混合运算,使运算结果为24或-24(可以加括号,但不可使用绝对值和相反数参与运算,每个数必须用一次且只能用一次),写出你的算式:__________________________.14.某校园餐厅把WiFi 密码做成了数学题,小亮在餐厅就餐时,思索了一会儿,输入密码,顺利地连接到了校园餐厅的网络,他输入的密码是________.(第14题)15.阅读理解:313434121,3121232361,2111121221=⨯-=-=⨯-=-=⨯-=,,41 -阅读以上材料后计算: ++++201712156131=++++901177211556113421113019_____________. 16.计算:=+++++++++++100321132112111 __________. 三、解答题(共66分)17.(8分)计算:.56)3(72)1(2+⨯--⨯-.)32(27894)211()3)(2(332÷-⨯-- ).71(321.720)71()35)(3(-⨯+⨯--⨯- ].)3(2[)3()211()1(2)4(24-+⨯+÷-+-- 18.(8分)把一个四位数x ,先四舍五人到十位,得到近似数y ,再四舍五入到百位,得到近似数z ,再四舍五人到千位,恰好得到3000.(1)原四位数x 的最大值为多少?最小值为多少?(2)将x 的最大值与最小值的差用科学记数法表示出来(结果精确到千位).19.(8分)规定这样一种运算:),|(|21b a b a b a ++-=∆例如:.3)32|32(|2132=++-=∆ (1)求43∆和)2()3(-∆-的值.(2)将1,2,3,…,50这50个自然数,任意分为25组,每组两个数,现将每组的两个数中任一数值记作a ,另一个记作b ,代入代数式)|(|21b a b a ++-中进行计算,求出其结果,25组数代人后可求得25个值,求这25个值的和的最大值.20.(8分)按要求计算:(1)若a ,b 是非零有理数,且,0||||=+b b a a 求||ab ab 的值. (2)已知a 是最小正整数,b ,c 是有理数,且.0)23(|2|2=+++c a b 求4422++-+c a c ac 的值. 21.(10分)如图所示,有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列问题:(第21题)(1)从中取出2张卡片,使这2张卡片上数字乘积最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?(3)从中取出2张卡片,使这2张卡片上数字通过乘方运算得到的数最大,如何抽取?最大值是多少?(4)从中取出4张卡片,用学过的运算方法,使结果为24,如何抽取?写出运算式子(一种即可).22.(12分)小明的妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具140个,平均每天生产20个,但由于种种原因,实际每天生产量与计划量相比有出入,下表是小明妈妈某周的生产情况(超产记为正、减产记为负):(1)根据记录的数据可知小明妈妈星期三生产玩具__________个.(2)根据记录的数据计算小明妈妈本周实际生产玩具的个数. (3)该厂实行“每日计件工资制”,每生产一个玩具可得工资5元,若超额完成任务,则超过部分每个 另奖3元;少生产一个则倒扣3元,那么小明妈妈这一周的工资总额是多少元?(4)若将上面第(3)问中实行“每日计件工资制”改为实行“每周计件工资制”,其他条件不变,在此计算方式下小明妈妈这一周的工资与按日计件的工资哪一个更多?请说明理由.23.(12分)阅读理解:图1中的每相邻两条线间,有从上至下的几条横线(即“桥”),这样就构成了“天梯”,规定,运算符号“+.-、×、÷”在“天梯”的竖线与横线上运动,它们在运动过程中按自上而下,且逢“桥”必过的规则进行,最后运动到竖线下方的“O”中,将e d c b a ,,,,连接起来,构成一个算式.如“+”号根据规则就应该沿减号方向运动,最后向下进入“O”中,其余3个运算符号分别按规则运动到“O”中后,就得到算式.e d c b a +-⨯÷(第23题)解决问题: (1)根据图2所示的“天梯”写出算式,并计算当32,43,2,5.1,62-==-=-=-=e d c b a 时算式的 值.(2)添加1条横线,使图2中最后结果的“一”“+”位置互换.(3)在图3中设计出一种“天梯”,使列出的算式为.e d c b a -+÷⨯答案。

11有理数的混合运算-2021年七年级数学上册尖子生同步培优题库(教师版含解析)

2020-2021学年七年级数学上册尖子生同步培优题典【人教版】专题1.11有理数的混合运算姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•崂山区期末)用分配律计算(14−38−112)×(−43),去括号后正确的是( )A .−14×43−38−112 B .−14×43−38×43−112×43 C .−14×43+38×43−112×43D .−14×43+38×43+112×43【分析】根据乘法分配律可以将括号去掉,本题得以解决,注意符号的变化. 【解析】(14−38−112)×(−43)=−14×43+38×43+112×43, 故选:D .2.(2019秋•丰台区期末)在“﹣(﹣0.3),−13+13,|﹣1|,(﹣2)2,﹣22”这5个算式中,运算结果为非负有理数的个数是( ) A .5B .4C .3D .2【分析】各式化简得到结果,即可作出判断.【解析】﹣(﹣0.3)=0.3,是;−13+13=0,是;|﹣1|=1,是;(﹣2)2=4,是;﹣22=﹣4,不是, 则运算结果为非负数有理数的个数是4, 故选:B .3.(2020•碑林区校级模拟)下列算式中,计算结果是负数的是( ) A .3×(﹣2)B .|﹣1|C .(﹣2)+7D .(﹣1)2【分析】针对各个选项进行计算,根据计算的结果进行判断即可. 【解析】3×(﹣2)=﹣6,|﹣1|=1,(﹣2)+7=5,(﹣1)2=1, 故选:A .4.(2019秋•宿州期末)计算(﹣1)2019+(﹣1)2020的结果是( ) A .2B .﹣1C .0D .1【分析】直接利用有理数的乘方运算法则计算得出答案. 【解析】(﹣1)2019+(﹣1)2020 =﹣1+1 =0. 故选:C .5.(2020•唐山一模)三位同学在计算:(14+16−12)×12,用了不同的方法:小小说:12的14,16,12分别是3,2和6,所以结果应该是3+2﹣6=﹣1; 聪聪说:先计算括号里面的数,14+16−12=−112,再乘以12得到﹣1;明明说:利用分配律,把12与14,16,−12分别相乘得到结果是﹣1对于三个同学的计算方式,下面描述正确的是( ) A .三个同学都用了运算律 B .聪聪使用了加法结合律C .明明使用了分配律D .小小使用了乘法交换律【分析】根据题意和各个选项中的说法可以判断哪个选项中的描述是正确的,本题得以解决. 【解析】由题意可得,只有明明的方法是使用了乘法分配律,故选项C正确,选项A、B、D描述错误;故选:C.6.(2019秋•卫辉市期末)若x、y互为相反数,c、d互为倒数,m的绝对值为9,则(x+y3)2019−(−cd)2020+m的值为()A.8B.9C.10D.8或﹣10【分析】利用相反数,倒数,以及绝对值的代数意义求出各自的值,代入原式计算即可求出值.【解析】根据题意得:x+y=0,cd=1,m=9或﹣9,当m=9时,原式=0﹣1+9=8;当m=﹣9时,原式=﹣1﹣9=﹣10,故选:D.7.(2019秋•双清区期末)定义一种新运算a⊙b=(a+b)×2,计算(﹣5)⊙3的值为() A.﹣7B.﹣1C.1D.﹣4【分析】原式利用题中的新定义计算即可求出值.【解析】根据题中的新定义得:原式=(﹣5+3)×2=﹣4,故选:D.8.(2019秋•武进区期中)下列说法:①最大的负整数是﹣1;②|a+2019|一定是正数;③若a,b互为相反数,则ab<0;⑥若a为任意有理数,则﹣a2﹣1总是负数.其中正确的有()A.1个B.2个C.3个D.4个【分析】利用相反数、非负数的性质,以及绝对值的代数意义判断即可.【解析】①最大的负整数是﹣1,符合题意;②|a+2019|一定非负数,不符合题意;③若a,b互为相反数,则ab≤0,不符合题意;⑥若a为任意有理数,则﹣a2﹣1总是负数,符合题意.故选:B.9.(2019秋•新乐市期末)下列算式中:①(﹣2019)2020;②﹣18;③39.1﹣|﹣21.9|+(﹣10.5)﹣3;④(0.25−5 8)÷(−178);⑤−48×(12−58+13−1316);⑥32+1.52−3×22−[2−(−0.2)×(−53)];计算结果是正数的有()A.2个B.3个C.4个D.5个【分析】各项计算得到结果,判断即可.【解析】①原式=20192020,符合题意; ②原式=﹣1,不符合题意;③原式=39.1﹣21.9﹣10.5﹣3=3.7,符合题意; ④原式=(−38)×(−815)=15,符合题意; ⑤原式=﹣24+30﹣16+39=29,符合题意;⑥原式=1.5+2.25﹣12﹣2+13=−414+13=−11912,不符合题意, 故选:C .10.(2019秋•德惠市期中)计算(−112)÷(23−14+16)的结果是( )A .17B .−724C .−17D .﹣7【分析】根据有理数的混合运算的法则进行计算即可,在有括号的算式里,要先算括号内的,在没有括号的算式里,先算乘方、然后算乘除、最后算加减.. 【解析】(−112)÷(23−14+16)=(−112)÷(812−312+212) =(−112)÷712 =−17, 故选:C .二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上 11.(2019秋•揭西县期末)计算:1﹣(﹣2)2×(−18)= 112.【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解析】原式=1﹣4×(−18)=1+12=112,故答案为:11212.(2020春•肇州县期末)若a ,b 互为相反数,x ,y 互为倒数,则2(a +b )+74xy 的值是 74.【分析】利用相反数,倒数的性质求出a +b 与xy 的值,代入原式计算即可求出值. 【解析】根据题意得:a +b =0,xy =1, 则原式=2×0+74×1=74.故答案为:74.13.(2020春•海淀区校级月考)计算:﹣223×(−14)+59÷(−123)=13.【分析】先将带分数化为假分数,再算乘除法,最后进行加法运算即可. 【解析】原式=−83×(−14)+59×(−35)=23−13=13, 故答案为13.14.(2019秋•南京月考)已知4个有理数,1,﹣2,﹣3,﹣4,在这4个有理数之间用“+、﹣、×、÷”连接进行四则运算,每个数只用一次,使其结果等于24,你的算法是 [(﹣2)+(﹣3)﹣1]×(﹣4)=24 . 【分析】根据“24点”游戏规则列出算式即可. 【解析】根据题意得:[(﹣2)+(﹣3)﹣1]×(﹣4)=24, 故答案为:[(﹣2)+(﹣3)﹣1]×(﹣4)=2415.(2019秋•虹口区校级月考)若规定一种新运算:a *b =(a +b )÷3,则2*3= 53.【分析】根据a *b =(a +b )÷3,可以求得所求式子的值. 【解析】∵a *b =(a +b )÷3, ∴2*3 =(2+3)÷3 =5×13 =53, 故答案为:53.16.(2019秋•建湖县期中)计算(1﹣2)•(3﹣4)•(5﹣6)•…•(2017﹣2018)•(2019﹣2020)的结果为 1 . 【分析】先计算括号中的减法运算,再利用乘法法则计算即可求出值. 【解析】原式=(﹣1)×(﹣1)×…×(﹣1)(1010个﹣1相乘) =1, 故答案为:117.(2020•黄岩区模拟)定义一种新运算:a ※b ={a −b(a ≥b)3b(a <b),则2※3﹣4※3的值 8 .【分析】根据新定义规定的运算法则列式计算,即可解答本题. 【解析】∵a ※b ={a −b(a ≥b)3b(a <b),∴2※3﹣4※3=3×3﹣(4﹣3)=9﹣1=8,18.(2019秋•西湖区期末)定义新运算:若a@b=n(n是常数),则(a+1)@b=n+1,a@(b+1)=n﹣2.若1@1=2,则1@2=0,2@2=1,2020@2020=﹣2017.【分析】根据题目中的新定义,可以分别计算出题目中所求式子的值.【解析】∵若a@b=n(n是常数),则(a+1)@b=n+1,a@(b+1)=n﹣2,1@1=2,∴1@2=1@(1+1)=2﹣2=0,2@2=(1+1)@2=0+1=1,2@3=﹣1,3@3=0,3@4=﹣2,4@4=﹣1,∴2020@2020=﹣2017,故答案为:0,1,﹣2017.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•成华区期末)计算:(1)16÷(﹣2)3﹣(−18)×(﹣4)+(﹣1)2020;(2)﹣14﹣(1﹣0.5)×13×[2﹣(﹣3)2].【分析】(1)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算.(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解析】(1)16÷(﹣2)3﹣(−18)×(﹣4)+(﹣1)2020=16÷(﹣8)−12+1=﹣2−12+1=−32;(2)﹣14﹣(1﹣0.5)×13×[2﹣(﹣3)2] =﹣1−12×13×(2﹣9) =﹣1−16×(﹣7) =16.20.(2020春•浦东新区期末)计算:(﹣1)2﹣|2﹣5|÷(﹣3)×(1−13). 【分析】根据有理数的乘方、有理数的乘除法和减法可以解答本题. 【解析】(﹣1)2﹣|2﹣5|÷(﹣3)×(1−13) =1﹣3÷(﹣3)×23 =1+3×13×23=1+23 =53.21.(2019秋•南岸区期末)有个填写运算符号的游戏:“2_3_5_9”,在每个“____”上,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果. (1)计算:2+3﹣5﹣9;(2)若2÷3×5 × 9=30,请推算横线上的符号;(3)在“2 ﹣ 3 × 5+9”的横线上填入符号后,使计算所得数最小,直接写出填上符号后的算式及算式的计算结果的最小值.【分析】(1)根据计算法则进行计算即可; (2)根据运算顺序得出103___9=30,因此横线上应是乘号;(3)要使结果最小,其中必有负号,即减号,然后使负数的绝对值最大,因此考虑用乘法,从而得出答案. 【解析】(1)原式=5﹣5﹣9=﹣9;(2)若2÷3×5×9=30,因此“空格”上的符号为“×”; (3)2﹣3×5+9=﹣4, 故答案为:﹣×.22.(2020春•浦东新区期末)一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录为:+6,﹣5,+9,﹣10,+13,﹣9,﹣4(单位:米). (1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远的距离是多少米? (3)守门员全部练习结束后一共跑了多少米?【分析】(1)计算这些数的和,根据和的符号、绝对值得出是否回到原来的位置, (2)计算出每一次离开球门的距离,比较得出答案, (3)计算这些数的绝对值的和即可.【解析】(1)(+6)+(﹣5)+9+(﹣10)+13+(﹣9)+(﹣4)=0, 答:守门员回到了球门线的位置;(2)守门员每次离开球门的距离为:6,1,10,0,13,4,0, 答:守门员离开球门的位置最远是13米; (3)6+5+9+10+13+9+4=56(米) 答:守门员一共走了56米.23.(2020春•姜堰区期中)观察下列各式:31﹣30=2×30…………①32﹣31=2×31…………②33﹣32=2×32…………③…… 探索以上式子的规律:(1)写出第5个等式: 35﹣34=2×34 ; (2)试写出第n 个等式,并说明第n 个等式成立; (3)计算30+31+32+ (32020)【分析】(1)根据已知等式总结规律:3的相邻自然数次幂之差(大数减小数)等于较小次幂的2倍.据此写出第5个等式便可;(2)用字母n 表示上述规律,通过提取公因式法进行证明便可; (3)把原式化成2×30+2×31+2×32+⋯+2×320202,再逆用(2)中公式,把分子每一项化成3的自然数幂之差进行计算便可.【解答】(1)根据题意得,35﹣34=2×34, 故答案为:35﹣34=2×34;(2)根据题意得,3n ﹣3n ﹣1=2×3n ﹣1,证明:左边=3n ﹣1(3﹣1)=2×3n ﹣1=右边,∴3n﹣3n﹣1=2×3n﹣1;(3)30+31+32+…+32020=2×30+2×31+2×32+⋯+2×320202=31−30+32−31+33−32+⋯+32021−320202=32021−1 2.24.(2020春•南岗区校级期中)有20袋大米,以每袋30千克为标准,超过或不足的千克数分别用正负数来表述,记录如下:与标准质量的差值(单位:千克)﹣310 2.5﹣2﹣1.5袋数123842(1)20袋大米中,最重的一袋比最轻的一袋重多少千克?(2)与标准重量比较,20袋大米总计超过多少千克或不足多少千克?(3)若大米每千克售价3.5元,出售这20袋大米可卖多少元?【分析】(1)根据表格中的数据可以求得20袋大米中,最重的一袋比最轻的一袋重多少千克;(2)根据表格中的数据可以求得与标准重量比较,20袋大米总计超过或不足多少千克;(3)根据题意和(2)中的结果可以解答本题.【解析】(1)最重的一袋比最轻的一袋重:2.5﹣(﹣3)=2.5+3=5.5(千克),答:最重的一袋比最轻的一袋重5.5千克;(2)(﹣3)×1+(﹣2)×4+(﹣1.5)×2+1×2+0×3+2×2+2.5×8=8(千克),答:20 袋大米总计超过8千克;(3)3.5×(30×20+8)=2128(元),答:出售这20 袋大米可卖2128元.。

《1.5有理数的乘方》培优同步练习 (原卷+解析)(基础版)

(基础版)2021年人教版七年级数学上册《1.5有理数的乘方》培优同步练习一.选择题(共14小题)1.下列各组数中,不相等的一组是()A.(﹣2)3和﹣23B.(﹣2)2和﹣22C.+(﹣2)和﹣2D.|﹣2|3和|2|32.安徽省统计局数据显示,2021年一季度安徽省生产总值9529.1亿元,同比增长18.7%.其中第二产业增速最快,一季度第二产业增加值3714.3亿元,同比增长22.9%.将数据“9529.1亿”用科学记数法表示()A.0.95291×1013B.9.5291×1012C.9.5291×1011D.9.5291×10103.下列数据是近似数的是()A.我国有56个民族B.一书本的宽为18.72cmC.七年级三班有48人D.1m等于100cm4.在算式(﹣1)□(﹣)的□内填上运算符号,使计算结果最大,这个符号是()A.+B.﹣C.×D.÷5.已知下列各数:﹣(﹣2),﹣34,5.2,﹣|﹣|,(﹣1)2009,0中,其中是非负数的有()A.1个B.2个C.3个D.4个6.2019年全国共享单车投放量达23000000辆,将23000000用科学记数法表示为()A.2.3×107B.23×106C.0.23×108D.2.3×1067.在近似数0.2017中,共有()有效数字.A.5个B.4个C.3个D.2个8.定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8,则(x﹣1)※x的结果为()A.x2B.x2﹣1C.x2+1D.x2﹣2x+19.用四舍五入法,0.00356精确到万分位的近似数是()A.0.003B.0.004C.0.0035D.0.003610.我市某部门2021年年初收入预算为8.24×106元,关于近似数8.24×106,是精确到()A.百分位B.百位C.千位D.万位11.数M精确到0.01时,近似数是2.90,那么数M的范围是()A.2.8≤M<3B.2.80≤M≤3.00C.2.85≤M<2.95D.2.895≤M<2.90512.若a、b互为相反数,c、d互为倒数,m+1的绝对值为5,则式子|m|﹣cd+的值为()A.3B.3或5C.3或﹣5D.413.下列运算正确的是()A.(﹣1)2013×1=﹣1B.(﹣3)2=﹣9C.﹣5+3=8D.﹣|﹣2|=214.某校在一次助募捐款活动中,共募集31083.58元,用四舍五入法将31083.58精确到0.1的近似值为()A.31083B.310830.5C.31083.58D.31083.6二.填空题(共8小题)15.2021年1月1日,“学习强国“平台全国上线,截至2021年5月5日,某市党员“学习强国”客户端注册人数约1290000.数据1290000科学记数法表示为.16.如果a、b互为相反数,c、d互为倒数,那么=.17.已知272=a6=9b,则a2+ab的值为.18.如图是王老师在电脑上下载一份文件的过程示意图,电脑显示,下载这份文件一共需要50分钟,照这样的速度,王老师还要等分钟能下载完这份文件.19.给出一种运算:x*y=x y(x≠0),那么*(﹣2)=.20.计算:﹣(﹣3)2×+|2﹣4|=.21.一颗人造地球卫星运行的速度是7.9×103m/s,一辆小汽车行驶的速度是79km/h.这颗人造地球卫星运行的速度是这辆小汽车行驶速度的倍.22.已知a、b互为相反数,c、d互为倒数,|m|=2,则m+﹣(cd)2的值为.三.解答题(共6小题)23.计算:(﹣3)2×()3﹣(﹣9+3).24.计算:(1)﹣23﹣3×(﹣1)2021﹣9÷(﹣3);(2).25.下面是圆圆同学计算一道题的过程:2÷(﹣+)×(﹣3)=[2÷(﹣)+2÷]×(﹣3)=2×(﹣3)×(﹣3)+2×4×(﹣3)=18﹣24=6.圆圆同学这样算正确吗?如果正确请解释理由;如果不正确,请你写出正确的计算过程.26.已知:|a|=3,|b|=5.(1)若ab>0,求a+b值;(2)若ab<0,求(a+b﹣2)2.27.若215=a5=32b,求a+b的值.28.已知一些两位数相乘的算式:53×57,38×32,84×86,652,71×79.(1)观察已知算式,请用文字或符号描述它们的共同特征;(2)计算这些算式,观察计算结果,你能发现什么规律?可以运用你发现的规律直接写出结果的是:(填写序号);①3×26×8;②41×2×82;③2×31×4×17.(3)用你所学的知识证明你发现的规律.(基础版)2021年人教版七年级数学上册《1.5有理数的乘方》培优同步练习参考答案与试题解析一.选择题(共14小题)1.下列各组数中,不相等的一组是()A.(﹣2)3和﹣23B.(﹣2)2和﹣22C.+(﹣2)和﹣2D.|﹣2|3和|2|3【分析】根据有理数的乘方法则和绝对值的性质分别对每一项进行分析,即可得出答案.【解答】解:A、∵(﹣2)3=﹣8,﹣23=﹣8,∴(﹣2)3和﹣23相等;B、∵(﹣2)2=4,﹣22=﹣4,∴(﹣2)2和﹣22不相等;C、∵+(﹣2)=﹣2,∴+(﹣2)和﹣2相等;D、∵|﹣2|3=8,|2|3=8,∴|﹣2|3和|2|3相等;故选:B.【点评】此题考查了有理数的乘方和绝对值,熟练掌握有理数的乘方法则和绝对值的性质是解题的关键.2.安徽省统计局数据显示,2021年一季度安徽省生产总值9529.1亿元,同比增长18.7%.其中第二产业增速最快,一季度第二产业增加值3714.3亿元,同比增长22.9%.将数据“9529.1亿”用科学记数法表示()A.0.95291×1013B.9.5291×1012C.9.5291×1011D.9.5291×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:9529.1亿=9.5291×1011.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列数据是近似数的是()A.我国有56个民族B.一书本的宽为18.72cmC.七年级三班有48人D.1m等于100cm【分析】根据近似数和准确数的定义进行判断.【解答】解:我国有56个民族,其中56为准确数;一书本的宽为18.72cm,其中18.72为近似数;七年级三班有48人,其中48为准确数;1m等于100cm,100为准确数.故选:B.【点评】本题考查了近似数:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.4.在算式(﹣1)□(﹣)的□内填上运算符号,使计算结果最大,这个符号是()A.+B.﹣C.×D.÷【分析】把运算符号放入题中计算,比较即可.【解答】解:根据题意得:(﹣1)+(﹣)=﹣,(﹣1)﹣(﹣)=﹣1+=﹣,(﹣1)×(﹣)=,(﹣1)÷(﹣)=2.则这个符号是÷.故选:D.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.5.已知下列各数:﹣(﹣2),﹣34,5.2,﹣|﹣|,(﹣1)2009,0中,其中是非负数的有()A.1个B.2个C.3个D.4个【分析】从6个数中找到非负数即可.【解答】解:﹣(﹣2),﹣34,5.2,﹣|﹣|,(﹣1)2009,0中,其中是非负数有:其中是非负数的有:﹣(﹣2),5.2,0共3个,【点评】考查了有理数的乘方、有理数、相反数及绝对值的知识,解题的关键是了解正数和0是非负数,难度不大.6.2019年全国共享单车投放量达23000000辆,将23000000用科学记数法表示为()A.2.3×107B.23×106C.0.23×108D.2.3×106【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解答】解:23000000=2.3×107.故选:A.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.7.在近似数0.2017中,共有()有效数字.A.5个B.4个C.3个D.2个【分析】有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字,据此可得答案.【解答】解:在近似数0.2017中,共有4有效数字,分别为2、0、1、7,故选:B.【点评】本题主要考查有效数字,有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.8.定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8,则(x﹣1)※x的结果为()A.x2B.x2﹣1C.x2+1D.x2﹣2x+1【分析】原式利用题中的新定义化简,计算即可得到结果.【解答】解:根据题中的新定义得:原式=(x﹣1)(x+1)=x2﹣1.故选:B.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.9.用四舍五入法,0.00356精确到万分位的近似数是()A.0.003B.0.004C.0.0035D.0.0036【分析】根据近似数的精确度把十万分位上的数字6进行四舍五入即可.【解答】解:0.00356≈0.0036(精确到万分位).【点评】本题考查了近似数和有效数字,经过四舍五入得到的数叫近似数.10.我市某部门2021年年初收入预算为8.24×106元,关于近似数8.24×106,是精确到()A.百分位B.百位C.千位D.万位【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解答】解:因为8.24×106=8240000,所以近似数8.24×106是精确到万位.故选:D.【点评】本题考查了近似数,注意精确到哪一位,即对下一位的数字进行四舍五入,精确到十位或十位以前的数位时,要先用科学记数法表示出这个数,这是经常考查的内容.11.数M精确到0.01时,近似数是2.90,那么数M的范围是()A.2.8≤M<3B.2.80≤M≤3.00C.2.85≤M<2.95D.2.895≤M<2.905【分析】考虑两方面:①千分位舍去得到2.90;②千分位入得到2.90,据此可得答案.【解答】解:数M精确到0.01时,近似数是2.90,那么数M的范围是2.895≤M<2.905,故选:D.【点评】本题主要考查近似数,解题的关键是掌握四舍五入法取近似数.12.若a、b互为相反数,c、d互为倒数,m+1的绝对值为5,则式子|m|﹣cd+的值为()A.3B.3或5C.3或﹣5D.4【分析】利用相反数、倒数的性质,以及绝对值的代数意义求出各自的值,代入原式计算即可求出值.【解答】解:∵a,b互为相反数,c,d互为倒数,m+1的绝对值为5,∴a+b=0,cd=1,|m+1|=5,∴m=﹣6或4,则原式=6﹣1+0=5或4﹣1+0=3.故选:B.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.13.下列运算正确的是()A.(﹣1)2013×1=﹣1B.(﹣3)2=﹣9C.﹣5+3=8D.﹣|﹣2|=2【分析】A、先算乘方,再算乘法;B、根据乘方的计算法则计算即可求解;C、根据有理数加法的计算法则计算即可求解;D、根据绝对值的性质计算即可求解.【解答】解:A、(﹣1)2013×1=﹣1×1=﹣1,故选项正确;B、(﹣3)2=9,故选项错误;C、﹣5+3=﹣2,故选项错误;D、﹣|﹣2|=﹣2,故选项错误.故选:A.【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.14.某校在一次助募捐款活动中,共募集31083.58元,用四舍五入法将31083.58精确到0.1的近似值为()A.31083B.310830.5C.31083.58D.31083.6【分析】对百分位数字四舍五入即可.【解答】解:用四舍五入法将31083.58精确到0.1的近似值为31083.6,故选:D.【点评】本题主要考查近似数,近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.二.填空题(共8小题)15.2021年1月1日,“学习强国“平台全国上线,截至2021年5月5日,某市党员“学习强国”客户端注册人数约1290000.数据1290000科学记数法表示为 1.29×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:1290000=1.29×106.故答案为:1.29×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.如果a、b互为相反数,c、d互为倒数,那么=7.【分析】根据a、b互为相反数,c、d互为倒数,可以得到a+b=0,cd=1,然后即可计算出所求式子的值.【解答】解:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1,∴====7,故答案为:7.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.17.已知272=a6=9b,则a2+ab的值为0或18.【分析】直接利用幂的乘方运算法则将已知变形得出a,b,进而得出答案.【解答】解:∵272=a6=9b,∴36=a6=9b=32b,∴a=±3,b=3,当a=3,b=3时,∴a2+ab=9+9=18,当a=﹣3,b=3时,∴a2+ab=9﹣9=0,故a2+ab的值为0或18.故答案为:0或18.【点评】此题主要考查了有理数的乘方,正确得出a,b的值是解题关键.18.如图是王老师在电脑上下载一份文件的过程示意图,电脑显示,下载这份文件一共需要50分钟,照这样的速度,王老师还要等18分钟能下载完这份文件.【分析】根据下载这份文件一共需要50分钟,图中已完成64%,可以得到还需要50×(1﹣64%)分钟才能完成,然后计算即可.【解答】解:由题意可得,50×(1﹣64%)=50×36%=18(分钟),即王老师还要等18分钟能下载完这份文件,故答案为:18.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.19.给出一种运算:x*y=x y(x≠0),那么*(﹣2)=4.【分析】根据x*y=x y(x≠0)和负整数指数幂,可以求得所求式子的值.【解答】解:∵x*y=x y(x≠0),∴*(﹣2)=()﹣2=4,故答案为:4.【点评】本题考查有理数的混合运算,解答本题的关键是明确负整数指数幂的计算方法.20.计算:﹣(﹣3)2×+|2﹣4|=﹣1.【分析】先算乘方,再算乘法,最后算加减;如果有绝对值,要先做绝对值内的运算.【解答】解:﹣(﹣3)2×+|2﹣4|=﹣9×+2=﹣3+2=﹣1.故答案为:﹣1.【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.21.一颗人造地球卫星运行的速度是7.9×103m/s,一辆小汽车行驶的速度是79km/h.这颗人造地球卫星运行的速度是这辆小汽车行驶速度的360倍.【分析】先统一单位,再相除即可求解.【解答】解:7.9×103m/s=7.9×3600km/h,7.9×3600÷79=360.故这颗人造地球卫星运行的速度是这辆小汽车行驶速度的360倍.故答案为:360.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.22.已知a、b互为相反数,c、d互为倒数,|m|=2,则m+﹣(cd)2的值为1或﹣3.【分析】根据a、b互为相反数,c、d互为倒数,|m|=2,可以得到a+b=0,cd=1,m =±2,然后即可计算出所求式子的值.【解答】解:∵a、b互为相反数,c、d互为倒数,|m|=2,∴a+b=0,cd=1,m=±2,当m=2时,m+﹣(cd)2=2+﹣12=2+0﹣1=1;当m=﹣2时,m+﹣(cd)2=﹣2+﹣12=﹣2+0﹣1=﹣3;故答案为:1或﹣3.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.三.解答题(共6小题)23.计算:(﹣3)2×()3﹣(﹣9+3).【分析】根据有理数的乘方、有理数的乘法和加减法可以解答本题.【解答】解:(﹣3)2×()3﹣(﹣9+3)=9×﹣(﹣6)=+6=6.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.24.计算:(1)﹣23﹣3×(﹣1)2021﹣9÷(﹣3);(2).【分析】(1)根据有理数的乘方、有理数的乘除法和减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【解答】解:(1)﹣23﹣3×(﹣1)2021﹣9÷(﹣3)=﹣8﹣3×(﹣1)+3=﹣8+3+3=﹣2;(2)=﹣1+×+(﹣6)×=﹣1++(﹣)=﹣1++(﹣)=﹣.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.25.下面是圆圆同学计算一道题的过程:2÷(﹣+)×(﹣3)=[2÷(﹣)+2÷]×(﹣3)=2×(﹣3)×(﹣3)+2×4×(﹣3)=18﹣24=6.圆圆同学这样算正确吗?如果正确请解释理由;如果不正确,请你写出正确的计算过程.【分析】根据有理数的混合运算顺序计算即可.【解答】解:2÷(﹣+)×(﹣3)=×(﹣3)=2×(﹣12)×(﹣3)=72.【点评】本题主要考查了有理数的混合运算,熟记有理数的乘除法法则是解答本题的关键.26.已知:|a|=3,|b|=5.(1)若ab>0,求a+b值;(2)若ab<0,求(a+b﹣2)2.【分析】(1)根据两数相乘,同号得正可知有a,b都为正数或a,b都为负数两种情况;(2)根据两数相乘,异号得负可知有a为正数,b为负数或a为负数,b为正数两种情况.【解答】解:∵|a|=3,|b|=5,∴a=±3,b=±5.(1)当ab>0时,a和b同号,当a=3,b=5时,a+b=3+5=8;当a=﹣3,b=﹣5时,a+b=﹣3﹣5=﹣8.∴a+b的值为±8;(2)当ab<0时,a和b异号,当a=3,b=﹣5时,(a+b﹣2)2=(3﹣5﹣2)2=16;当a=﹣3,b=5时,(a+b﹣2)2=(﹣3+5﹣2)2=0.∴(a+b﹣2)2=16或0.【点评】本题考查了有理数的混合运算,体现了分类讨论的数学思想,分类时注意做到不重不漏.27.若215=a5=32b,求a+b的值.【分析】首先根据幂的乘方将底数化为同底,根据同底的幂指数相等列出方程,求解得b 的值,然后将幂的形式化为指数相同的幂,根据指数相同的幂相等,底数相等列算式,求解即可.【解答】解:∵32b=(25)b=25b=215,∴5b=15,∴b=3,∵215=(23)5=a5,∴a=23=8,∴a+b=3+5=8.【点评】此题考查的是有理数的乘方运算,掌握其运算法则是解决此题的关键.28.已知一些两位数相乘的算式:53×57,38×32,84×86,652,71×79.(1)观察已知算式,请用文字或符号描述它们的共同特征;(2)计算这些算式,观察计算结果,你能发现什么规律?可以运用你发现的规律直接写出结果的是:①③(填写序号);①3×26×8;②41×2×82;③2×31×4×17.(3)用你所学的知识证明你发现的规律.【分析】(1)从数的位数上观察,从个位上和十位上的数字观察可得答案;(2)从结果上看前两位与两因数十位上数字的关系,后两位与两因数个位上数字的关系即可;(3)利用所得规律用代数式表示即可.【解答】解:(1)两个两位数相乘,十位上的数相同,个位上的数相加为十;(2)53×57=3021,38×32=1216,84×86=7224,652=65×65=4225,71×79=5609.规律:两个十位上的数相同,个位上的数相加为十的两位数相乘,它们的积为:十位上的数的平方加十位上的数后再乘100,再加上两个个位数的乘积;①3×26×8=24×26=(22+2)×100+4×6=624;2×31×4×17=62×68=(62+6)×100+2×8=4216.②∴41×2×82=82×82,2+2≠10,∴不能用发现的规律计算.故答案为:①③.(3)设一个两位数为,则它们的积为:(10a+b)(10a+10﹣b)=100a2+100a﹣10ab+10a2+10b﹣b2=(a2+a)100+b(10﹣b).其中a是十位上的数,b是个数上的数.【点评】此题考查的是有理数的乘方运算,掌握其运算法则是解决此题的关键.。

(必考题)七年级数学上册第一单元《有理数》-解答题专项经典练习卷(课后培优)(1)

一、解答题1.计算:-32+2×(-1)3-(-9)÷213⎛⎫ ⎪⎝⎭ 解析:70 【分析】先计算乘方,然后计算乘除,再计算加减,即可得到答案.【详解】解:原式=92(1)(9)9-+⨯---⨯=9281--+=70.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则进行解题.2.计算:(1)5721()()129336--÷- (2)22115()(3)(12)23-+÷-⨯---⨯ 解析:(1)37;(2)50.【分析】(1)先把除法转化为乘法,然后根据乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】(1)原式=572()(36)152824371293--⨯-=-++=. (2)原式=15(3)(3)(14)2145650-+⨯-⨯---⨯=-++=. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.3.(1)在图所示的数轴上标出以下各数:52-,-5.5,-2,+5, 132 (2)比较以上各数的大小,用“<”号连接起来;(3) 若点A 对应 5.5-,点B 对应132,请计算点A 与点B 之间的距离.解析:(1)画图见解析;(2) 5.5-<52-<2-<132<+5;(3)9. 【分析】(1)先画数轴,根据数轴上原点左边的为负数,原点右边的为正数,在数轴上描出对应各数的点即可得到答案;(2)根据数轴上的数,右边的数大于左边的数,直接用“<”连接即可得到答案;(3)数轴上点A 与点B 对应的数分别为,a b ,则AB a b =-或b a -,根据以上结论代入数据直接计算即可得到答案.【详解】 解:(1)如图,在数轴上表示各数如下:(2)因为数轴上的数,右边的数总大于左边的数:所以按从小到大排列各数为:5.5-<52-<2-<132<+5 (3)因为:A 表示 5.5-,B 表示132, 所以:点A 与点B 之间的距离为:()13 5.5 3.5 5.599.2AB =--=+== 【点睛】本题考查的是利用数轴上的点表示有理数,利用数轴比较有理数的大小,数轴上两点之间的距离,绝对值的含义,掌握以上知识是解题的关键.4.计算(1)28()5(0.4)5+----;(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭; (3)2336()(2)()(6)575⨯---⨯-+-⨯; (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦; (5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦. 解析:(1)3;(2)3;(3)667-;(4)3-;(5)315.4【分析】 (1)先把运算统一为省略加号的和的形式,再利用加法的运算律,把互为相反数的两数先加,从而可得答案;(2)先把除法转化为乘法,再利用乘法的分配律把运算化为:()()()1573636363612-⨯-+⨯--⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(3)把原式化为:()233662557-⨯+-⨯-⨯,逆用乘法的分配律,同步进行乘法运算,最后计算减法即可得到答案; (4)先计算小括号内的运算与乘方运算,再计算中括号内的运算,再计算乘法运算,最后计算加减运算即可得到答案;(5)先计算乘方运算,同步把除法转化为乘法,再计算小括号内的减法运算,同步进行乘法运算,最后计算加法运算即可得到答案.【详解】解:(1)28()5(0.4)5+---- 2850.45=--+ 3.=(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ ()157363612⎛⎫=-+-⨯- ⎪⎝⎭()()()1573636363612=-⨯-+⨯--⨯- 123021=-+3.=(3)2336()(2)()(6)575⨯---⨯-+-⨯ ()233662557=-⨯+-⨯-⨯ 2366557⎛⎫=-⨯+- ⎪⎝⎭ 667=-- 667=- (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦()()1132212⎡⎤⎛⎫=---+-⨯--- ⎪⎢⎥⎝⎭⎣⎦ ()313212⎛⎫=---+⨯-+ ⎪⎝⎭()31212⎛⎫=---⨯-+ ⎪⎝⎭131=--+3.=-(5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦ ()()1=2.5101632100⨯-⨯-- ()1164=--- 1164=-+ 315.4= 【点睛】本题考查的是含乘方的有理数的混合运算,乘法分配律的应用,掌握运算法则与运算顺序是解题的关键.5.某校七年级(1)至(4)班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况:(2)这4个班实际共购书多少本?(3)书店给出一种优惠方案:一次购买不少于15本,其中2本书免费.若每本书的售价为30元,请计算这4个班整体购书的最低总花费是多少元?解析:(1)42,+3,22;(2)118本;(3)3120元.【分析】(1)由于4班实际购入21本,且实际购买数量与计划购买数量的差值=-9,即可得计划购书量=30,进而可把表格补充完整;(2)把每班实际数量相加即可;(3)根据已知求出总费用即可.【详解】解:(1)由于4班实际购入21本书,实际购入数量与计划购入数量的差值=-9,可得计划购入数量=30(本),所以一班实际购入30+12=42本,二班实际购入数量与计划购入数量的差值=33-30=3本,3班实际购入数量=30-8=22本.故答案依次为42,+3,22;(2)4个班一共购入数量=42+33+22+21=118(本);(3)由118157÷=余13得,如果每次购买15本,则可以购买7次,且最后还剩13本书需单独购买,得最低总花费=30×(15-2)×7+30×13=3120(元)..【点睛】本题考查了正负数的应用.在生活实际中利用正负数的计算能力,并通过相关运算来比较大小,进而得出最佳方案;这里要注意,生活中在选择方案时,要注意所有可能的情况. 6.计算:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦(2)121123436⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ 解析:(1)10;(2)3【分析】(1)先算乘方和小括号,再算中括号,后算加减即可;(2)把除法转化为乘法,再用乘法的分配率计算即可.【详解】解:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦ 1[4(1)5]=+--⨯1(45)10=++=;(2)1211121(36)23436234⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121(36)(36)(36)234=-⨯-+⨯--⨯- 182493=-+=.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.7.计算:(1)113623⎛⎫-⨯- ⎪⎝⎭ (2)2233(3)3(2)|4|-÷-+⨯-+-解析:(1)2;(2)-21.【分析】(1)根据有理数的混合运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)113623⎛⎫-⨯-⎪⎝⎭ =1136623-⨯+⨯ =332-+=2;(2)2233(3)3(2)|4|-÷-+⨯-+-=993(8)4-÷+⨯-+=1244--+=-21.【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.8.计算:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭. 解析:(1)0;(2)1-.【分析】(1)原式先把除法转换为乘法,再逆用乘法分配律进行计算即可得到答案;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【详解】解:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭ 45355171271234⎛⎫=⨯--⨯+⨯ ⎪⎝⎭ 4535571271212=-⨯-⨯+ 43517712⎛⎫=--+⨯ ⎪⎝⎭ 5012=⨯ 0=; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭()98427427⎛⎫-⨯+-⨯- ⎝=⎪⎭98=-+1=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.9.计算:()22216232⎫⎛-⨯--⎪⎝⎭ 解析:2【分析】原式先计算乘方,再运用乘法分配律计算,最后进行加减运算即可.【详解】解:()22216232⎫⎛-⨯-- ⎪⎝⎭=2136()432⨯-- =213636432⨯-⨯- =24-18-4=2.【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.10.计算:(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ (2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭解析:(1)12- ;(2)0【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可(2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可【详解】(1)()110822⎫⎛---÷-⨯- ⎪⎝⎭=1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=102--=-12(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭=()()2386154-⨯---⨯-=243660--+=0【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序.11.计算:(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)131121346⎛⎫-⨯-+ ⎪⎝⎭解析:(1)1;(2)9-【分析】(1)先算括号里面的,再算括号外面的即可;(2)根据乘法分配律计算即可;【详解】(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 11463⎡⎤=-+-⨯⎢⎥⎣⎦, 121=-+=;(2)131121346⎛⎫-⨯-+ ⎪⎝⎭, ()()()431121212346=-⨯--⨯+-⨯, 16929=-+-=-;【点睛】 本题主要考查了有理数的混合运算,准确计算是解题的关键.12.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A 和点B 刚好对着直尺上的刻度2和刻度8.(1)写出点A 和点B 表示的数;(2)写出在点B 左侧,并与点B 距离为9.5厘米的直尺左端点C 表示的数;(3)若直尺长度为a 厘米,移动直尺,使得直尺的长边CD 的中点与数轴上的点A 重合,求此时左端点C 表示的数.解析:(1)点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是-6.5;(3)3-0.5a【分析】(1)根据AB=8-2=6,点A 和点B 表示的数是互为相反数,即可得到结果;(2)利用点B 表示的数3减去9.5即可得到答案;(3)利用中点表示的数向左移动0.5a 个单位计算即可.【详解】(1)∵AB=8-2=6,点A 和点B 表示的数是互为相反数,∴点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是:3-9.5=-6.5;(3)∵直尺长度为a 厘米,直尺中点表示的数是-3,∴直尺此时左端点C 表示的数-3-0.5a .【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键.13.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦解析:(1)-6;(2)52-【分析】(1)根据加法运算律计算即可;(2)先算括号里面,再算括号外面的即可;【详解】 (1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭, ()1140363177⎛⎫=-++-+ ⎪⎝⎭, 42=--,=-6;(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦, 111923=--⨯⨯, 312=--,52=-. 【点睛】本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键.14.某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(运进大米记作“+”,运出大米记作“-”,例如:当天运进大米8吨,记作8+吨;当天运出大米15吨,记作15-吨)若经过这一周,该粮仓存有大米88吨.(1)求星期五粮仓大米的进出情况;(2)若大米进出粮仓的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用. 解析:(1)星期五粮仓当天运出大米20吨;(2)2700元.【分析】(1)根据有理数的加法,可得答案;(2)根据单位费用乘以总量,可得答案.【详解】(1)m =88﹣(132﹣32+26﹣23﹣16+42﹣21)=﹣20,∴星期五粮仓当天运出大米20吨;(2)(|﹣32|+|+26|+|﹣23|+|﹣16|+|﹣20|+|+42|+|﹣21|)×15=2700(元), 答:这一周该粮仓需要支付的装卸总费用为2700元.【点睛】本题考查了用正负数表示相反意义的量及有理数加减法的应用,第(2)问利用单位费用乘以总量是解题关键.15.计算:(1)()()674-+--;(2)()3232--⨯. 解析:(1)17-;(2)14【分析】(1)根据有理数的加减法即可求出值;(2)原式先计算乘方,再计算乘法运算,最后算加减运算即可求出值;【详解】解:(1)原式134=-17=-(2)原式()86=--14=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.计算:2334[28(2)]--⨯-÷-解析:21-.【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得.【详解】解:原式[]9428(8)=--⨯-÷-, []942(1)=--⨯--, 943=--⨯,912=--,21=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键.17.将n 个互不相同的整数置于一排,构成一个数组.在这n 个数字前任意添加“+”或“-”号,可以得到一个算式.若运算结果可以为0,我们就将这个数组称为“运算平衡”数组. (1)数组1,2,3,4是否是“运算平衡”数组?若是,请在以下数组中填上相应的符号,并完成运算;1 2 3 4 =(2)若数组1,4,6,m 是“运算平衡”数组,则m 的值可以是多少?(3)若某“运算平衡”数组中共含有n 个整数,则这n 个整数需要具备什么样的规律? 解析:(1)是,+1-2-3+4=0;(2)m=±1,±3,±9,±11;(3)这n 个整数互不相同,在这n 个数字前任意添加“+”或“-”号后运算结果为0.【分析】(1)根据“运算平衡”数组的定义即可求解;(2)根据“运算平衡”数组的定义得到关于m 的方程,解方程即可;(3)根据“运算平衡”数组的定义可以得到n 个数的规律.【详解】解:(1)数组1,2,3,4是“运算平衡”数组,+1-2-3+4=0;(2)要使数组1,4,6,m 是“运算平衡”数组,有以下情况:1+4+6+m=0;-1+4+6+m=0;1-4+6+m=0;1+4-6+m=0;1+4+6-m=0;-1-4+6+m=0;-1+4-6+m=0;-1+4+6-m=0;1-4-6+m=0;1-4+6-m=0;1+4-6-m=0;-1-4-6+m=0;-1-4+6-m=0,-1+4-6-m=0,1-4-6-m=0;-1-4-6-m=0;共16中情况,经计算得m=±1,±3,±9,±11;(3)这n 个整数互不相同,在这n 个数字前任意添加“+”或“-”号后运算结果为0.【点睛】本题考查了新定义问题,理解“运算平衡”数组的定义是解题关键.18.计算(1)442293⎛⎫-÷⨯- ⎪⎝⎭2; (2)313242⎛⎫⨯⨯- ⎪⎝⎭3()32490.5234-⨯-÷+-. 解析:(1)16-;(2)34【分析】 (1)按照有理数的四则运算进行运算即可求解;(2)按照有理数的四则运算法则进行运算即可,先算乘方,注意符号.【详解】解:(1)原式944163616499=-⨯⨯=-⨯=-, (2)原式113924()(8)8444=⨯--⨯-⨯+ 39324=-++ 34=, 【点睛】本题考查有理数的加减乘除乘方运算法则,先算乘方,再算乘除,最后算加减,有括号先算括号内的,计算过程中细心即可.19.计算:2202013(1)(2)4(1)2-÷-⨯---+-. 解析:33【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】 解:2202013(1)(2)4(1)2-÷-⨯---+- =1(2)4192-÷⨯--+ =192(2)4-⨯⨯--+ =3641-+=33.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.20.计算:(1)-8+14-9+20(2)-72-5×(-2) 3+10÷(1-2) 10解析:(1)17;(2)1.【分析】(1)原式利用加法结合律相加即可求出值;(2)原式先计算乘方运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解:(1)814920--++()()=891420--++=17-+34=17(2)2310752+()(1012)--⨯-÷-()1=4958+10--⨯-÷=49+40+10-=1【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.21.计算:(1)2×(-3)3-4×(-3)(2)-22÷(12-13)×(-58) 解析:(1)-42;(2)15【分析】(1)先算乘方、乘法,再算加减法即可;(2)先算括号和乘方,再算乘除即可.【详解】(1)原式 =2(27)12⨯-+=-54+12= 42-.(2)原式 =154()68-÷⨯- =5468⨯⨯=15.【点睛】本题考查了有理数的运算,掌握运算法则及运算顺序是关键.22.如图,数轴上A,B两点之间的距离为30,有一根木棒MN,设MN的长度为x.MN数轴上移动,M始终在左,N在右.当点N移动到与点A,B中的一个重合时,点M所对应的数为9,当点N移动到线段AB的中点时,点M所对应的数是多少?解析:点M所对应的数为24或-6.【分析】设MN=x,然后分类计算即可:①当点N与点A重合时,点M所对应的数为9,则点N对应的数为x+9;②当点N与点B重合时,点M所对应的数为9,则点N对应的数为x+9.【详解】设MN=x,①当点N与点A重合时,点M所对应的数为9,则点N对应的数为x+9,∵AB=30,∴当N移动到线段AB的中点时,点N对应的数为x+9+15=x+24,∴点M所对应的数为x+24-x=24;②当点N与点B重合时,点M所对应的数为9,则点N对应的数为x+9,∵AB=30,∴当N移动到线段AB的中点时,点N对应的数为x+9-15=x-6,∴点M所对应的数为x-6-x=-6;综上,点M所对应的数为24或-6.【点睛】本题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.数形结合并分类讨论是解题的关键.23.点A、B在数轴上所表示的数如图所示,回答下列问题:(1)将A在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C,求出B、C两点间的距离是多少个单位长度?(2)若点B在数轴上移动了m个单位长度到点D,且A、D两点间的距离是3,求m的值.解析:(1)B、C两点间的距离是3个单位长度;(2)m的值为2或8.【分析】(1)利用数轴上平移左移减,右移加可求点C所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC=|2﹣5|=3;(2)分类考虑当点D在点A的左侧与右侧,利用AD=3,求出点D所表示的数,再利用BD=m 求出m 的值即可.【详解】解:(1)点C 所表示的数为﹣3﹣1+9=5,∴BC =|2﹣5|=3.(2)当点D 在点A 的右侧时,点D 所表示的数为﹣3+3=0,所以点B 移动到点D 的距离为m =|2﹣0|=2,当点D 在点A 的左侧时,点D 所表示的数为﹣3﹣3=﹣6,所以点B 移动到点D 的距离为m =|2﹣(﹣6)|=8,答:m 的值为2或8.【点睛】本题考查数轴上平移,两点距离问题,利用AD 的距离分类讨论点D 的位置是解题关键. 24.在数轴上,一只蚂蚁从原点O 出发,它先向左爬了2个单位长度到达点A ,再向右爬了3个单位长度到达点B ,最后向左爬了9个单位长度到达点C .(1)写出A ,B ,C 三点表示的数;(2)根据点C 在数轴上的位置回答,蚂蚁实际上是从原点出发,向什么方向爬了几个单位长度?解析:(1)A ,B ,C 三点表示的数分别是-2,1,-8;(2)向左爬了8个单位.【分析】(1)向左用减法,向右用加法,列式求解即可写出答案;(2)根据C 点表示的数,向右为正,向左为负,继而得出答案.【详解】解:(1)A 点表示的数是0-2=-2,B 点表示的数是-2+3=1,C 点表示的数是1-9=-8;(2)∵O 点表示的数是0;C 点表示的数是-8,∴蚂蚁实际上是从原点出发,向左爬了8个单位.【点睛】本题考查了数轴的知识及有理数的加减法的应用,属于基础题,比较简单,理解向左用减法,向右用加法,是关键.25.计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭. 解析:(1)1;(2)-1.【分析】(1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解.【详解】(1)()()()923126--⨯-+÷-=962--=1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭ =11891632-+-÷ =1893216-+-⨯ =892-+-=-1.【点睛】 此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.26.探索代数式222a ab b -+与代数式2()a b -的关系(1)当5a =,2b =-时,分别计算两个代数式的值.(2)你发现了什么规律?(3)利用你发现的规律计算:2220182201820192019-⨯⨯+解析:(1)49, 49;(2)a 2−2ab +b 2=(a−b )2;(3)1.【分析】(1)将a 、b 的值分别代入a 2−2ab +b 2与(a−b )2计算可得;(2)根据(1)中的两式的计算结果即可归纳总结出关系式;(3)原式变形后,利用完全平方公式计算可得结果.【详解】解:(1)当a =5,b =−2时,a 2−2ab +b 2=52−2×5×(−2)+(−2)2=25+20+4=49,(a−b )2=[5−(−2)]2=72=49;(2)根据(1)的计算,可得规律:a 2−2ab +b 2=(a−b )2;(3)20182−2×2018×2019+20192=(2018−2019)2=(−1)2=1.【点睛】本题考查了代数式的求值及完全平方公式的应用,解题的关键是掌握代数式的求值方法以及利用完全平方公式简便运算.27.(1)()()()()413597--++---+;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭.解析:(1)-6;(2)715. 【分析】 (1)原式根据有理数的加减法法则进行计算即可得到答案;(2)原式把除法转换为乘法,再进行乘法运算即可得到答案.【详解】解:(1)()()()()413597--++---+=-4-13-5+9+7=-22+9+7=-13+7=-6;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭ =174435⨯⨯ =715. 【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.28.计算下列各题:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; (2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭. 解析:(1)19-;(2) 3.-【分析】 (1)利用乘法的分配律把原式化为:()()()1573636362912⨯--⨯-+⨯-,再计算乘法运算,最后计算加减运算即可得到答案; (2)先计算乘方运算与小括号内的运算,同步把除法转化为乘法,再计算乘法运算,最后计算减法运算即可得到答案.【详解】解:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; ()()()1573636362912=⨯--⨯-+⨯- 182021=-+-19=-(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭ ()4452741993⎛⎫=⨯⨯---+⨯ ⎪⎝⎭ 16733⎛⎫=--- ⎪⎝⎭16733=-+ 9 3.3=-=- 【点睛】本题考查的是乘法的分配律的应用,含乘方的有理数的混合运算,掌握以上知识是解题的关键.29.计算(1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭; (2)3221(2)(3)⎡⎤÷---⎣⎦;(3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭. 解析:(1)22;(2)2117-;(3)54-. 【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算括号内的运算,最后除法运算即可得到结果; (3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;【详解】(1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭ 112(24)(24)(24)243⎛⎫⎛⎫=-⨯-+-⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭12616=-+=22;(2)3221(2)(3)⎡⎤÷---⎣⎦()2189=÷--()2117=÷-2117=-; (3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭ 255104=-⨯+ 54=-. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.30.计算(1))()()(2108243-+÷---⨯-;(2))()(22000112376⎡⎤--⨯--÷-⎥⎢⎦⎣. 解析:(1)20-;(2)116-. 【分析】(1)先计算有理数的乘方与乘法,再计算有理数的除法,然后计算有理数的加减法即可得;(2)先计算有理数的乘方,再计算有理数的加减乘除法即可得.【详解】(1)原式108412=-+÷-,10212=-+-,20=-;(2)原式())(112976=--⨯-÷-, ())(11776=--⨯-÷-, )(7176=-+÷-, 116=--, 116=-. 【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键.。

山西七年级数学上册第一单元《有理数》-解答题专项提高练习(培优)

一、解答题1.某农户家准备出售10袋大米,称得质量如下:(单位:千克)182,180,175,173,182,185,183,181,180,183(1)填空:以180千克作为基准数,可用正、负数表示这10袋大米的质量与180的差为 ;(2)试计算这10袋大米的总质量是多少千克?解析:(1)+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)1804千克【分析】(1)规定超出基准数为正数,则不足部分用负数表示,即可;(2)把第(1)题10个数相加,再加上180×10,即可.【详解】(1)以180千克为基准数,超过180千克的记作正数,低于180千克的记作负数,那么各袋大米的质量分别为:+2,0,−5,-7,+2,+5,+3,+1,0,+3,故答案是:+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)(+2+0−5-7+2+5+3+1+0+3)+ 180×10=1804(千克),答:这10袋大米的总质量是1804千克.【点睛】本题主要考查正负数的意义以及有理数的加减法的实际应用,熟练掌握有理数的加减法运算法则,是解题的关键.2.计算(1)28()5(0.4)5+----;(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭; (3)2336()(2)()(6)575⨯---⨯-+-⨯; (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦; (5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦. 解析:(1)3;(2)3;(3)667-;(4)3-;(5)315.4【分析】 (1)先把运算统一为省略加号的和的形式,再利用加法的运算律,把互为相反数的两数先加,从而可得答案;(2)先把除法转化为乘法,再利用乘法的分配律把运算化为:()()()1573636363612-⨯-+⨯--⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(3)把原式化为:()233662557-⨯+-⨯-⨯,逆用乘法的分配律,同步进行乘法运算,最后计算减法即可得到答案; (4)先计算小括号内的运算与乘方运算,再计算中括号内的运算,再计算乘法运算,最后计算加减运算即可得到答案;(5)先计算乘方运算,同步把除法转化为乘法,再计算小括号内的减法运算,同步进行乘法运算,最后计算加法运算即可得到答案.【详解】解:(1)28()5(0.4)5+---- 2850.45=--+ 3.=(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ ()157363612⎛⎫=-+-⨯- ⎪⎝⎭()()()1573636363612=-⨯-+⨯--⨯- 123021=-+3.=(3)2336()(2)()(6)575⨯---⨯-+-⨯ ()233662557=-⨯+-⨯-⨯ 2366557⎛⎫=-⨯+- ⎪⎝⎭ 667=-- 667=- (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦()()1132212⎡⎤⎛⎫=---+-⨯--- ⎪⎢⎥⎝⎭⎣⎦()313212⎛⎫=---+⨯-+ ⎪⎝⎭ ()31212⎛⎫=---⨯-+ ⎪⎝⎭131=--+3.=-(5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦ ()()1=2.5101632100⨯-⨯-- ()1164=--- 1164=-+ 315.4= 【点睛】本题考查的是含乘方的有理数的混合运算,乘法分配律的应用,掌握运算法则与运算顺序是解题的关键.3.某校七年级(1)至(4)班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况:(2)这4个班实际共购书多少本?(3)书店给出一种优惠方案:一次购买不少于15本,其中2本书免费.若每本书的售价为30元,请计算这4个班整体购书的最低总花费是多少元?解析:(1)42,+3,22;(2)118本;(3)3120元.【分析】(1)由于4班实际购入21本,且实际购买数量与计划购买数量的差值=-9,即可得计划购书量=30,进而可把表格补充完整;(2)把每班实际数量相加即可;(3)根据已知求出总费用即可.【详解】解:(1)由于4班实际购入21本书,实际购入数量与计划购入数量的差值=-9,可得计划购入数量=30(本),所以一班实际购入30+12=42本,二班实际购入数量与计划购入数量的差值=33-30=3本,3班实际购入数量=30-8=22本.故答案依次为42,+3,22;(2)4个班一共购入数量=42+33+22+21=118(本);(3)由118157÷=余13得,如果每次购买15本,则可以购买7次,且最后还剩13本书需单独购买,得最低总花费=30×(15-2)×7+30×13=3120(元)..【点睛】本题考查了正负数的应用.在生活实际中利用正负数的计算能力,并通过相关运算来比较大小,进而得出最佳方案;这里要注意,生活中在选择方案时,要注意所有可能的情况. 4.给出四个数:3,4--,2,6,计算“24点”,请列出四个符合要求的不同算式. (可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24⨯++=与(213)424++⨯=只是顺序不同,属同一个算式.)算式1:_________________;算式2_______________;算式3:_________________;算式4_______________;解析:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【分析】由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-,可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案.【详解】解:算式1:()()3426121224,-⨯-+⨯=+=算式2:()()()()34263824,-⨯-+-=-⨯-=算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-=故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维.5.计算下列各式的值:5(2)131(48)64⎛⎫-+⨯- ⎪⎝⎭(3)22350(5)1--÷--解析:(1)-24.3;(2)-76;(3)-12【分析】(1)先将减法化为加法,再计算加法即可;(2)利用乘法分配律计算即可;(3)先计算乘方,再计算除法,最后计算减法.【详解】解:(1)原式=24 3.2( 3.5)-++-=-24.3;(2)原式=131(48)(48)(48)64⨯--⨯-+⨯- =488(36)-++-=-76;(3)原式=950251--÷-=921---=9(2)(1)-+-+-=-12.【点睛】本题考查有理数的混合运算.熟记运算顺序和每一步的运算法则是解题关键.6.计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭解析:(1)6;(2)58. 【分析】 (1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++ 675=-++6=;4886 ⎪⎝⎭1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.7.321032(2)(3)5-÷---⨯解析:﹣31.【分析】根据有理数的混合运算法则计算即可.【详解】解:321032(2)(3)5-÷---⨯=10-32÷(﹣8)-9×5=10-(﹣4)-45=10+4-45=14-45=﹣31.【点睛】此题主要考察了有理数的混合运算,解题关键是掌握有理数混合运算法则.8.计算:329(1)4(2)34⎛⎫--÷-+-⨯ ⎪⎝⎭. 解析:12-. 【分析】 根据有理数的四则混合运算顺序:“先算乘方,再算乘除,然后算加减”进行计算即可.【详解】 原式311222⎛⎫=-++-=- ⎪⎝⎭. 【点睛】本题考查了有理数的混合运算,掌握运算法则是解题的关键.9.计算:(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ (2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭解析:(1)12- ;(2)0【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可(2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可【详解】(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ =1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =102--=-12(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭=()()2386154-⨯---⨯-=243660--+=0【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序.10.如图,将一根木棒放在数轴(单位长度为1cm )上,木棒左端与数轴上的点A 重合,右端与数轴上的点B 重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B 时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A 时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为________cm ;(2)图中点A 所表示的数是_______,点B 所表示的数是_______;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?解析:(1)8;(2)14,22;(3)奶奶现在的年龄为67岁.【分析】(1)由观察数轴可知三根这样长的木棒的长度,即可求出这根木棒的长;(2)由所求出的这根木棒的长,结合图中的已知条件即可求得A 和B 所表示的数;(3)根据题意,设数轴上小木棒的A 端表示妙妙的年龄,小木棒的B 端表示奶奶的年龄,则小木棒的长表示二人的年龄差,由此参照(1)中的方法结合已知条件分析解答即可.【详解】(1)观察数轴可知三根这样长的木棒长为30624cm -=,则这根木棒的长为2438cm ÷=;(2)由这根木棒的长为8cm ,所以A 点表示为6+8=14,B 点表示为6+8+8=22;(3)借助数轴,把妙妙和奶奶的年龄差看做木棒AB ,奶奶像妙妙这样大时,可看做点B 移动到点A ,此时点A 向左移后所对应的数为37-,可知奶奶比妙妙大()11937352⎡⎤⎣÷⎦--=,则奶奶现在的年龄为1195267-=(岁). 【点睛】此题考查认识数轴及用数轴表示有理数和有理数的加减法,难度一般,读懂题干要求是关键.11.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦解析:(1)-6;(2)52-【分析】(1)根据加法运算律计算即可;(2)先算括号里面,再算括号外面的即可;【详解】(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭, ()1140363177⎛⎫=-++-+ ⎪⎝⎭, 42=--,=-6;(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦, 111923=--⨯⨯, 312=--,52=-. 【点睛】本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键.12.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值; (2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).解析:(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 【分析】(1)根据平方数和绝对值的非负性计算即可;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可;(4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可;【详解】 (1)∵()()22141268+++=----a b c d ,∴()()221412+6+80+++--=a b c d , ∴14a =-,12b =-,6c =,8d =;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+,∵2BD AC =, ∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=; ①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-; ∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键.13.计算(1))()()(2108243-+÷---⨯-;(2))()(22000112376⎡⎤--⨯--÷-⎥⎢⎦⎣. 解析:(1)20-;(2)116-. 【分析】(1)先计算有理数的乘方与乘法,再计算有理数的除法,然后计算有理数的加减法即可得;(2)先计算有理数的乘方,再计算有理数的加减乘除法即可得.【详解】(1)原式108412=-+÷-,10212=-+-,20=-;(2)原式())(112976=--⨯-÷-,())(11776=--⨯-÷-,)(7176=-+÷-, 116=--,116=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键.14.(1)在图所示的数轴上标出以下各数:52- ,-5.5,-2,+5, 132(2)比较以上各数的大小,用“<”号连接起来;(3) 若点A 对应 5.5-,点B 对应132,请计算点A 与点B 之间的距离.解析:(1)画图见解析;(2) 5.5-<52-<2-<132<+5;(3)9.【分析】(1)先画数轴,根据数轴上原点左边的为负数,原点右边的为正数,在数轴上描出对应各数的点即可得到答案;(2)根据数轴上的数,右边的数大于左边的数,直接用“<”连接即可得到答案; (3)数轴上点A 与点B 对应的数分别为,a b ,则AB a b =-或b a -,根据以上结论代入数据直接计算即可得到答案. 【详解】解:(1)如图,在数轴上表示各数如下:(2)因为数轴上的数,右边的数总大于左边的数: 所以按从小到大排列各数为:5.5-<52-<2-<132<+5(3)因为:A 表示 5.5-,B 表示132, 所以:点A 与点B 之间的距离为:()13 5.5 3.5 5.599.2AB =--=+==【点睛】本题考查的是利用数轴上的点表示有理数,利用数轴比较有理数的大小,数轴上两点之间的距离,绝对值的含义,掌握以上知识是解题的关键.15.小李坚持跑步锻炼身体,他以30分钟为基准,将连续七天的跑步时间(单位:分钟)记录如下:10,-8,12,-6,11,14,-3(超过30分钟的部分记为“+”,不足30分钟的部分记为“-”)(1)小李跑步时间最长的一天比最短的一天多跑几分钟?(2)若小李跑步的平均速度为每分钟0.1千米,请你计算这七天他共跑了多少千米? 解析:(1)22分钟;(2)24千米. 【分析】(1)时间差=标准差的最大值-标准差的最小值;(2)先计算出一周的总运动时间,利用路程,速度,时间的关系计算即可. 【详解】(1)()14822--=(分钟).故小李跑步时间最长的一天比最短的一天多跑22分钟. (2)()30710812611143240⨯+-+-++-=(分钟),0.124024⨯=(千米).故这七天他共跑了24千米. 【点睛】本题考查了有理数的混合运算,熟练运用标准差计算时间差,标准时间计算总时间是解题的关键. 16.计算: (1)()11270.754⎛⎫--+-+ ⎪⎝⎭; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭; 解析:(1)6;(2)11. 【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可. 【详解】 解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭, =1312744+-+, =1217+-, =13-7,=6; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭, =()351124444⎛⎫++⨯--⨯- ⎪⎝⎭=11235++- =11. 【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序.17.赣州享有“世界橙乡”的美誉,中华名果赣南脐橙热销世界各地.刚大学毕业的小明把自家的脐橙产品放到了网上售卖,他原计划每天卖100kg 脐橙,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:kg ).)根据记录的数据可知前三天共卖出 kg (2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 kg ; (3)若脐橙按4.5元/kg 出售,且小明需为买家支付运费(平均0.5元/kg ),则小明本周一共赚了多少元?解析:(1)296;(2)29;(3)2868元 【分析】(1)将前三天的销售量相加即可;(2)根据表格销量最多的一天为周六,最少的一天为周五,用周六的销量减去周五的销量即可得到答案;(3)先计算出本周的总销量,再乘以每千克的利润即可. 【详解】(1)4-3-5+300=296(kg ), 故答案为:296;(2)(+21)-(-8)=29(kg ), 故答案为:29;(3)4-3-5+14-8+21-6=17(kg ), 17+100×7=717(kg ), 717×(4.5-0.5)=2868(元), 小明本周一共赚了2868元. 【点睛】此题考查正负数的实际应用,有理数混合运算的实际应用,正确理解表格意义列式计算是解题的关键.18.设0a >,x ,y 为有理数,定义新运算:||a x a x =⨯※.如323|2|6=⨯=※,()414|1|a a -=⨯-※.(1)计算20210※和()20212-※的值. (2)若0y <,化简()23y -※.(3)请直接写出一组,,a x y 的具体值,说明()a x y a x a y +=+※※※不成立. 解析:(1)0;4042;(2)6y -;(3)1a =,2x =,3y =-(答案不唯一) 【分析】(1)根据题意※表示前面的数与后面数的绝对值的积,直接代入数据求解计算; (2)有y<0,得到y 为负数,进而得到-3y 为正数,去绝对值后等于本身-3y ,再代入数据求解即可;(3)按照题意要求写一组具体的,,a x y 的值再验算即可. 【详解】解:(1)根据题意得:202102021|0|0=⨯=※; ()202122021|2|4042-=⨯-=※;(2)因为0y <, 所以30y ->,所以()()232|3|236y y y y -=⨯-=⨯-=-※; (3)由题意,当,,a x y 分别取1a =,2x =,3y =-时,此时()2311※※(-1)=1-=,而11※2※(-3)=2+3=5+,所以,()a x y a x a y +=+※※※不成立. 【点睛】本题是新定义题型,按照题目中给定的运算要求和顺序进行求解即可. 19.计算:(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦(2)6÷(-2)3-|-22×3|+3÷2×12+1; 解析:(1)23-;(2)-11 【分析】(1)先计算乘方及括号,再计算乘法,最后计算加减法; (2)先计算乘方和绝对值,再计算乘除法,最后计算加减法. 【详解】(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦=111(2)23--⨯⨯- =113-+ =23-; (2)6÷(-2)3-|-22×3|+3÷2×12+1 =116(8)123122÷--+⨯⨯+ =3312144--++ =-11. 【点睛】此题考查含乘方的有理数的混合运算,掌握运算顺序及运算法则是解题的关键. 20.计算: (1)117483612⎛⎫-+-⨯ ⎪⎝⎭; (2)20213281(2)(3)3---÷⨯-.解析:(1)36-;(2)26. 【分析】(1)利用乘法分配律进行简便运算即可; (2)先算乘方,再算乘除,最后计算加减即可. 【详解】 解:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭ 1174848483612=-⨯+⨯-⨯16828=-+- 36=-;(2)20213281(2)(3)3---÷⨯-31(89)8=---⨯⨯127=-+ 26=.【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则并灵活运用运算律准确计算是解题的关键.21.将n 个互不相同的整数置于一排,构成一个数组.在这n 个数字前任意添加“+”或“-”号,可以得到一个算式.若运算结果可以为0,我们就将这个数组称为“运算平衡”数组.(1)数组1,2,3,4是否是“运算平衡”数组?若是,请在以下数组中填上相应的符号,并完成运算;1 2 3 4 =(2)若数组1,4,6,m是“运算平衡”数组,则m的值可以是多少?(3)若某“运算平衡”数组中共含有n个整数,则这n个整数需要具备什么样的规律?解析:(1)是,+1-2-3+4=0;(2)m=±1,±3,±9,±11;(3)这n个整数互不相同,在这n个数字前任意添加“+”或“-”号后运算结果为0.【分析】(1)根据“运算平衡”数组的定义即可求解;(2)根据“运算平衡”数组的定义得到关于m的方程,解方程即可;(3)根据“运算平衡”数组的定义可以得到n个数的规律.【详解】解:(1)数组1,2,3,4是“运算平衡”数组,+1-2-3+4=0;(2)要使数组1,4,6,m是“运算平衡”数组,有以下情况:1+4+6+m=0;-1+4+6+m=0;1-4+6+m=0;1+4-6+m=0;1+4+6-m=0;-1-4+6+m=0;-1+4-6+m=0;-1+4+6-m=0;1-4-6+m=0;1-4+6-m=0;1+4-6-m=0;-1-4-6+m=0;-1-4+6-m=0,-1+4-6-m=0,1-4-6-m=0;-1-4-6-m=0;共16中情况,经计算得m=±1,±3,±9,±11;(3)这n个整数互不相同,在这n个数字前任意添加“+”或“-”号后运算结果为0.【点睛】本题考查了新定义问题,理解“运算平衡”数组的定义是解题关键.22.计算:(1)6÷(-3)×(-32)(2)-32×29-+(-1)2019-5÷(-54)解析:(1)3;(2)1.【分析】(1)根据有理数的乘除混合运算法则计算即可;(2)根据有理数的混合运算法则计算即可.【详解】解:(1)原式=6×1-3⎛⎫⎪⎝⎭×(-32)=3;(2)原式=-9×29+(-1)-5×4-5⎛⎫⎪⎝⎭=-2-1+4 =1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 23.(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯-解析:(1)-29;(2)13. 【分析】(1)利用乘法分配律进行简便运算,即可得出结果; (2)先计算有理数的乘方与乘法,再进行加减运算即可. 【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭37(1242424)812=-⨯-⨯+⨯(24914)=--+29=-;(2)431(2)2(3)----⨯- 1(8)(6)=----- 186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键.24.计算:|﹣2|﹣32+(﹣4)×(12-)3解析:162- 【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的. 【详解】解:|﹣2|﹣32+(﹣4)×(12-)3 =2﹣9+(﹣4)×(﹣18) =2+(﹣9)+12=162-. 【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.25.如图,数轴上A,B两点之间的距离为30,有一根木棒MN,设MN的长度为x.MN数轴上移动,M始终在左,N在右.当点N移动到与点A,B中的一个重合时,点M所对应的数为9,当点N移动到线段AB的中点时,点M所对应的数是多少?解析:点M所对应的数为24或-6.【分析】设MN=x,然后分类计算即可:①当点N与点A重合时,点M所对应的数为9,则点N对应的数为x+9;②当点N与点B重合时,点M所对应的数为9,则点N对应的数为x+9.【详解】设MN=x,①当点N与点A重合时,点M所对应的数为9,则点N对应的数为x+9,∵AB=30,∴当N移动到线段AB的中点时,点N对应的数为x+9+15=x+24,∴点M所对应的数为x+24-x=24;②当点N与点B重合时,点M所对应的数为9,则点N对应的数为x+9,∵AB=30,∴当N移动到线段AB的中点时,点N对应的数为x+9-15=x-6,∴点M所对应的数为x-6-x=-6;综上,点M所对应的数为24或-6.【点睛】本题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.数形结合并分类讨论是解题的关键.26.点A、B在数轴上所表示的数如图所示,回答下列问题:(1)将A在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C,求出B、C两点间的距离是多少个单位长度?(2)若点B在数轴上移动了m个单位长度到点D,且A、D两点间的距离是3,求m的值.解析:(1)B、C两点间的距离是3个单位长度;(2)m的值为2或8.【分析】(1)利用数轴上平移左移减,右移加可求点C所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC=|2﹣5|=3;(2)分类考虑当点D在点A的左侧与右侧,利用AD=3,求出点D所表示的数,再利用BD=m 求出m 的值即可. 【详解】解:(1)点C 所表示的数为﹣3﹣1+9=5, ∴BC =|2﹣5|=3.(2)当点D 在点A 的右侧时,点D 所表示的数为﹣3+3=0, 所以点B 移动到点D 的距离为m =|2﹣0|=2,当点D 在点A 的左侧时,点D 所表示的数为﹣3﹣3=﹣6, 所以点B 移动到点D 的距离为m =|2﹣(﹣6)|=8, 答:m 的值为2或8. 【点睛】本题考查数轴上平移,两点距离问题,利用AD 的距离分类讨论点D 的位置是解题关键. 27.计算: (1)152|18|()263-⨯-+; (2)20203221124(2)3()3-+÷--⨯.解析:(1)6;(2)-5 【分析】(1)先去掉绝对值,然后根据乘法分配律即可解答本题; (2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题. 【详解】解:(1)152|18|()263-⨯-+ =18×(12﹣56+23) =18×12﹣18×56+18×23 =9﹣15+12 =6;(2)20203221124(2)3()3-+÷--⨯=﹣1+24÷(﹣8)﹣9×19=﹣1+(﹣3)﹣1 =﹣5. 【点睛】此题主要考查有理数的混合运算,熟练掌握混合运算顺序是解题关键.28.某路公交车从起点经过A ,B ,C ,D 站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数))到终点下车还有多少 人;(2)车行驶在____站至___ 站之间时,车上的乘客最多;(3)若每人乘坐一站需买票0.5元,问该车出车一次能收入多少钱?列式计算. 解析:(1)30;(2)B ,C ;(3)71.5元. 【分析】(1)根据正负数的意义,上车为正数,下车为负数,求出A 、B 、C 、D 站以及终点站的人数,即可得解;(2)根据(1)的计算解答即可;(3)根据各站之间的人数,乘票价0.5元,然后计算即可得解. 【详解】解:(1)根据题意可得:到终点前,车上有16+15-3+12-4+7-10+8-11=30,即30人; 故到终点下车还有30人. 故答案为:30;(2)根据图表:A 站人数为:16+15-3=28(人) B 站人数为:28+12-4=36(人) C 站人数为:36+7-10=33(人) D 站人数为:33+8-11=30(人) 易知B 和C 之间人数最多. 故答案为:B ;C ;(3)根据题意:(16+28+36+33+30)×0.5=71.5(元). 答:该出车一次能收入71.5元. 【点睛】本题考查了正数和负数,有理数的混合运算,读懂图表信息,求出各站点上的人数是解题的关键. 29.计算 (1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭; (2)3221(2)(3)⎡⎤÷---⎣⎦;(3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭. 解析:(1)22;(2)2117-;(3)54-.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算括号内的运算,最后除法运算即可得到结果; (3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;【详解】(1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭112(24)(24)(24)243⎛⎫⎛⎫=-⨯-+-⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭12616=-+=22;(2)3221(2)(3)⎡⎤÷---⎣⎦()2189=÷--()2117=÷-2117=-; (3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭ 255104=-⨯+ 54=-. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.30.把4-,4.5,0,12-四个数在数轴上分别表示出来,再用“<”把它们连接起来.解析:数轴表示见解析,140 4.52-<-<<. 【分析】先根据数轴的定义将这四个数表示出来即可,再根据数轴上的表示的数,左边的总小于右边的用“<”将它们连接起来即可得.【详解】将这四个数在数轴上分别表示出来如下所示:则140 4.52-<-<<.【点睛】本题考查了数轴,熟练掌握数轴的定义是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数混合运算培优训
练题

LEKIBM standardization office【IBM5AB- LEKIBMK08- LEKIBM2C】
初一有理数混合运算培优训练题
1.若m<0,则mm=_____.若3210xy=,则xy
,n互为相反数,则以下结论中错误的序号是_____①2m+2n=0 ②mn=-m2 ③ mn④
1mn
如果a>0,b<0,a

3.如果a>0,b<0,|a|<|b|,则a,b,-a,-b这4个数从小到大的顺序是_____________
4.如果a<0,b>0,b>|-a|,则a,b,-a,-b这4个数从大到小的顺序是
__________________.
5.如果-|a|=|a|,那么a=_____.已知|a|+|b|+|c|=0,则a=_______,b=_____,c=_____.
6.若|a-2|+|b+3|=0,则3a+2b=__________.若|mn|+(m2)2=0,则mn=_______
7.一个两位数,个位上的数字是a,十位上的数字比个位上的数字小3,这个两位数是
_____;当a=5时,这个两位数是__________.若|x+3|+(y-2)2=0,则x-2y=___
8.某品牌服装以a元购进,加20%作为标价.由于服装销路不好,按标价的八五折出售,此
时的售价是_______元,这时仍获利________元.
9.某市出租车收费标准为:起步价8元(包含2千米),2千米后每千米价格为元,则乘坐
出租车走x(x>2)千米应付______元 .若|x-2y|+(y-1)
2
=0,则3x+4y=__

10.设有理数a,b,c在数轴上的对应点如图所示,化简caacab=

abc
0

11.设有理数a,b在数轴上的位置如图所示,化简12ababa.
b
10

a

12.若23x,21y,则xy的值为____若2230ab,则ab=____
13.若2a,13b,且abba,则a+b的值是___________
14.
最小的正整数是_____,最大的负整数是______,绝对值最小的有理数是_____,相反数

等于它本身的数是________,绝对值等于它本身的数是_____________,倒数等于它本身的
数是________,平方等于它本身的数是________.若30mnn,则mn=__
15.下列判断正确的是( )
A.-a一定小于0 B.a一定大于0 C.若a+b=0,则=ab D.若=ab,则a=b
16.下列说法正确的是( )
A.1是最小的正数,最大的负数是-1 B.正数和负数统称有理数
C.一个有理数不是整数就是分数 D.小数不是分数
17.下列说法正确的是( )
A.所有的有理数都可以用数轴上的点来表示B.绝对值等于它相反数的数是负数
C.如果两个数的绝对值相等,那么这两个数相等D.正数的绝对值是正数
18.下列说法正确的是( )
A.绝对值等于它本身的数是正数B.符号不同的两个数互为相反数
C.一个数的相反数一定是负数D.离原点越远的点,表示的数的绝对值越大
19.下列结论正确的是( )
A.若|x|=|y|,则x=-y B.若x=-y,则|x|=|y|
C.若|a|<|b|,则a20.下列说法正确的是( )
A.任何有理数的绝对值都是正数B.两个有理数,绝对值大的反而小
C.一个数的相反数一定是负数D.离原点越远的点,表示的数的绝对值越大
21.下列判断正确的是( )
A.-a一定小于0 B.a一定大于0 C.若a+b=0,则=ab D.=ab,则a=b
22.下列说法正确的有( )
①0乘任何数都得0;②一个数同1相乘,仍得原数;③-1乘任何有理数都等于这个数
的相反数;④互为相反数的两个数相乘,积是1;⑤互为相反数的两个数的绝对值相等.
A.2个 B.3个 C.4个 D.5个
23.下列各式一定成立的是( )
A.22aa B.33aa C.22aa D.33=aa
24.若a+b>0,ab<0且aA.a>0,b<0 B.a>0,b>0 C.a<0,b>0 D.a<0,b<0
25.若2x,y2=9,则xy的值为( )
A.5 B.-5 C.5或1 D.以上都不对
26.下列各数:3,-(-2),(-2)2,(-2)3,-(-22),-(-2)
2,-22
,其中负数有( )

A.2个 B.3个 C.4个 D.5个
27.计算题


32
2
2

11
23340.20.5


8221211(1)()()2(3)0.52368

3
2
2

7111
2192552(0.75)2







221922.510.245

222212111.53232 2
3
3

5

25162450.6258





3

211

328540.125



222118(3)(4)9(0.75)

2014
14
16(2)823




3222112334(0.5)0.2

2221110.5633(0.5) 22
1
3(3)(6)76

3
11112
(1)1123463



3323138(2)1(3)(2)0.25

2 0131111(24)(1)46812 2
11
(370)0.2524.55(25%)(2)42




4351
0.712(15)0.7(15)9494




计算:231002222S. 计算:23203333S.
1. 细胞在分裂过程中,一个细胞第一次分裂成两个,第二次分裂成4个,第三次分裂成8
个,那么第n次时细胞分裂后细胞的个数为____________个.
2. 观察:13=12,13+23=(1+2)2,13+23+33=(1+2+3)2,则13+23+33+43+…
+103=___________________.
3. 研究下列等式,你会发现什么规律?
1×3+1=4=2
2,2×4+1=9=32,3×5+1=16=42,4×6+1=25=52
,…

根据上述规律,写出第n个式子.
4.观察下列各式,完成下列问题.
已知1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,
1+3+5+7+9=25=52,…
(1)仿照上例,计算:1+3+5+7+…+99=____________.
(2)根据上述规律,写出第n个式子.
5.如图是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中
阴影小三角形的个数是
____________________.

6.下面是用棋子摆成的“小屋子”,按如图所示的方式进行摆放,那么摆第10个这样的
“小屋子”需要_______枚棋子,摆第n个这样的“小屋子”需要__________枚棋子.

7.观察下列算式:
①1×322341 ②2×432891 ③3×54215161
把这个规律用含字母的式子表示出来正确的是( )
A.(n1)×(n+1)(n+1)21 B.n×(n+2)(n+1)21
C.n×(n+2)n21 D.(n+1)×(n+2)(n+1)21
8.观察下列各式:
3×5=15,而15=42-1;5×7=35,而35=62-1;
11×13=143,而143=122-1;
请你按以上规律写出第n个算式______________________.
9.观察下列算式:
①1×3-22=3-4 ②2×4-3
2
=8-9

③3×5-42=15-16 ④_____________________
(1)请你按以上规律写出第4个算式__________________;
(2)请你按以上规律写出第n个算式__________________.

10. 2......25223121n=_______________