Asymptotic electromagnetic fields in models of quantum-mechanical matter interacting with t
Rosen-MorseⅡ势函数的Klein-Gordon方程和Dirac方程束缚态的精确解

Key words Klein-Gordon equation, Dirac equation, bound state, exact solution, Rosen-Morse
potential
1
Introduction
It is well known that exact energy eigenvalues
+ B (E + m) tanh(αr) + (16)
The ground state wave function u0 (r) can be written
(α − Q1 )Q1 sech2 (αr), V− (r) = Q2 1+ B (E + m) Q1
2
+ B (E + m) tanh(αr) − (17)
where W (r) is super potential in the super symmetric quantum mechanics. Substituting the ground state function into Eq. (5), we obtain an equation about the ground state energy, namely W2− dW = (E + m) A(A + α) × dr tanh(αr) + B A(A + α)
(8)
Substituting the expression Eq. (8) into Eq. (7), we obtain three equations as follows: − B 2 (E + m) − αQ1 + Q2 2 + λ0 = 0 , A(A + α) −2B (E + m) + 2Q1 Q2 = 0 , −A(A + α)(E + m) + αQ1 + Q2 1=0. (9) (10) (11)
工程电磁场原理(教师手册)

四、本课程学时分配建议
本课程参考学时:60学时。 以电气工程类专业为例,学时分配比例建议如下:
1. 2. 3. 4. 5. 6. 7. 绪论(含可视化教材的演示) 电磁场的数学物理基础 静态电磁场I: 静电场 静态电磁场II: 恒定电流的电场和磁场 准静态电磁场 动态电磁场与电磁波 实验 2学时 6学时 16学时 14学时 6学时 12学时 4学时
“电磁场”课程的地位与作用:
● “电磁场”课程内容是电气信息类专业本科生所应具备知识结构的必 要组成部分——电气信息类各专业主要课程的核心内容都是电磁现象在特 定范围、条件下的体现,因此,分析电磁现象的定性过程和定量方法是电 气信息类各专业学生掌握专业知识和技能的基础; ● 近代科学技术发展进程表明,电磁场理论是众多交叉学科的生长点 和新兴边缘学科发展的基础; ● 教学实践证明,本课程不仅将为电气信息类学生专业课的学习提供 必须的知识基础,而且将增强学生面向工程实际的适应能力和创造能力, 关系到学生基本素质培养的终极目标。
2. 本课程的理论体系——宏观电磁理论
1865年英国物理学家麦克斯韦(J.C.Maxwell)建立的著名的麦克斯韦 电磁场方程组是宏观电磁理论体系的基础。 宏观电磁理论所涉及的电磁现象和过程的基本特征是: ● 场域(即场空间)中媒质是静止的,或其运动速度远小于光速; ● 场域作为点集,点的尺寸远大于原子间的距离。 本课程所讨论的任一场点,即意味着大量分子的集合 场域中的媒 质被看作为“连续媒质” 该场点处的电磁性能归结为对应的宏观统计平 均效应的表征,即通过宏观等效的物性连续参数(如电导率γ、磁导率μ和介 电常数ε)予以描述。 因而,宏观电磁理论也被称为“连续媒质电动力学”,但决不等同于“量 子电动力学”或“相对论电动力学”,后者已分别延拓到微观粒子或高速运动 体系中电磁现象和过程的研究领域。
爱因斯坦场方程

奥本海默和斯尼德求出此时度量为:
( ( )) g
= −dt2
+
(1
−
αt
)4 3
dr2
+ r2
dθ 2
+ sin2 θdϕ2
α 是一个和引力半径和尘埃半径有关的常数
z 该度量的数量曲率 R 在 t=α -1 时为无穷
大, 表明尘埃在有限时间内塌缩成黑洞
z 对于初始密度为1克/厘米3 ,质量为 1033 克
此时正能量定理不再是场方程的内蕴性 质。这里的深刻原因有待进一步阐明
9、量子引力
宇宙的起源是什么?1948年,伽莫 夫 ( Gamov ) 等 人 提 出 大 爆 炸 模 型,认为宇宙是原始核火球爆炸膨 胀,逐渐降温所形成。大爆炸中产 生时空和物质
目前有三个观测结果支持大爆炸模型 1. 宇宙(加速)膨胀:与大爆炸模型一致 2. 宇宙中的氦丰度:伽莫夫计算出大爆炸模 型宇宙氦元素比例理论值为25%,与观测 结果相符 3. 微观背景辐射:伽莫夫估算出大爆炸产生 的余热为5k左右,可能以黑体辐射的形式 存在
3、麦克斯韦电磁理论(19世纪后期)
电场 磁场
r E
=
(E1
,
E
2
,
E3
)
r H
=
(H1
,
H
2
,
H3
)
C 为电荷的电磁单位与静电单位之比
真空麦克斯韦方程 (只有以太)
⎪⎪⎪⎩⎪⎪⎪⎨⎧ccuur1rdd1EriHivrv=HErr=−==C1C100∂∂∂∂EHtrtr
∇
2
r E
=
1 C2
∂
2
r E
发现
Inverse Problems for Partial Differential Equations

Mathematics Subject Classification (1991): 35R30, 86A22, 80A23, 65M30, 35JXX, 35L With four illustrations.
Library of Congress Cataloging-in-Publication Data Isakov, Victor, 1947— Inverse problems for partial differential equations / Victor Isakov. p. cm. — (Applied mathematical sciences ; 127) Includes bibliographical references (p. - ) and index. ISBN 978-1-4899-0032-6 1. Inverse problems (Differential equations) 2. Differential equations, Partial. I. Title. II. Series: Applied mathematical sciences (Springer-Verlag New York Inc.) ; v. 127. QA1.A647 vol.127 [QA374] 510s-^dc21 97-16663 [515'.353] Printed on acid-free paper. © 1998 Springer Science+Business Media New York Originally published by Springer-Verlag New York, Inc. in 1998 Softcover reprint of the hardcover 1st edition 1998 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher, except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone. Production managed by Timothy Taylor; manufacturing supervised by Joe Quatela. Typeset by the Bartlett Press, Inc., Marietta, GA. SPIN 10628737 9 8 7 6 5 4 3 2 1 ISBN 978-1-4899-0032-6 ISBN 978-1-4899-0030-2 (eBook) DOI 10.1007/978-1-4899-0030-2
麦克斯韦方程和规范理论的观念起源_杨振宁

以 AB (插图页 VIII,488 页,图 2) 表示从 A 到 B 的电流。以 AB 上方和下方的较大空白区域表示 涡旋,并以分隔这些涡旋的小圆圈表示它们之间 的粒子层,在我们的假说里这些粒子代表电 现象。
* 原文已发表于Physics Today,2014年11月刊,第45—51页
distance)”的成功理论。在英格兰,法拉第(1791— 1867)也因为奥斯特的发现而激动不已,但他缺乏 足够的数学训练,所以无法理解安培的工作。在 1822 年 9 月 3 日写给安培的一封信中,法拉第叹息 道:“很不幸,我不具备足够的数学知识,也不具 备自如地进行抽象推理的能力。我只能从那些相 互密切关联着的事实中摸索出自己的道路。”[1]
早在法拉第的“电紧张态(electrotonic state)”和麦克斯韦的矢量势 (vector potential) 概念中,规范自 由度(gauge freedom)的存在就已经不可避免。它如何演化成为一个支撑粒子物理标准模型的对称原理? 这里有一段值得叙说的故事。
人们常说,继库仑(Charles Augustin de Coulomb)、 高 斯 (Carl Friedrich Gauss)、 安 培 (André Marie Ampère)、 法 拉 第 (Michael Faraday)发 现 了 电学和磁学的四条实验定律之后,麦克斯韦 (James Clerk Maxwell)引入了位移电流,在他的麦 克斯韦方程组中实现了电磁学的伟大综合。这种 说法不能说是错的,但它并没有道出微妙的几何 和物理直觉之间的关联,而正是这种关联促使场 论在 19 世纪取代了超距作用的概念,也正是它带 来了 20 世纪粒子物理中非常成功的标准模型。
Chaos in Dicke model(Dicke模型中的混沌)

Dicke 模型中的混沌摘 要 Dicke 哈密顿函数是一种量子光学模型。
描述了N 个二能级原子与一个单模玻色子场的相互作用。
本文从Dicke 哈密顿函数的量子表达式出发,将其回推到经典表达式。
通过改变耦合参量λ的数值,绘制Poincaré截面。
结果表明,当λ值小于临界值时,Poincaré截面保持规律的周期性的轨迹。
当趋于临界值时,伴有混乱轨迹的出现。
继续增加λ的值,将破坏周期性轨迹,使得整个相空间因为λ值比临界值稍大而变得混乱无序。
同时,本文简单介绍了系统的量子混沌。
关键词 混沌 Dicke 哈密顿 Dicke 模型 经典混沌 量子混沌0 引言第一个发现混沌的是法国数学家、物理学家H.Poincaré (1854-1912)。
1903年提出庞加莱猜想,指出在三体问题中,在一定范围内,其解是随机的[1]。
三体引力相互作用有着惊人的复杂行为,确定性动力学方程有许多解有很强的不可预计性。
到了上个世纪70年代,混沌学的研究在数学、物理、生物、气象、医学等多个学科领域同时展开,形成了世界性的研究热潮。
在以后的几十年中,人们研究了大量量子系统的混沌现象,并给出了量子混沌的特征描述。
进入20世纪90年代,对混沌的研究不仅推动了其他学科的发展,而且其他学科的发展又促进了对混沌的深入研究。
进入21世纪,混沌与其他学科的相互交错、渗透、促进,使得混沌在生物学、数学、物理学、化学、电子学、信息科学、气象学等多个领域中得到了广泛的应用[2]。
近十几年来人们发现很多量子系统中存在量子混沌现象,并且研究了量子混沌与相变、纠缠、隧穿等物理现象之间的关系,得到很多有意义的结果。
本文着手于Dicke 模型,通过数值计算的方法来绘制Poincaré截面,研究系统随参量λ的变化趋势。
1 混沌介绍1.1 混沌研究简史现代科学意义上的混沌的发现,可以追溯到19世纪末20世纪初[1]。
混沌研究的第一个重大突破就是KAM 定理,KAM 定理给出了太阳系稳定性的合理解释,并使人们重新看待统计力学中一系列基本假设和观点。
量子力学索引英汉对照
21-centimeter line, 21厘米线AAbsorption, 吸收Addition of angular momenta, 角动量叠加Adiabatic approximation, 绝热近似Adiabatic process, 绝热过程Adjoint, 自伴的Agnostic position, 不可知论立场Aharonov-Bohm effect, 阿哈罗诺夫-玻姆效应Airy equation, 艾里方程;Airy function, 艾里函数Allowed energy, 允许能量Allowed transition, 允许跃迁Alpha decay, 衰变;Alpha particle, 粒子Angular equation, 角向方程Angular momentum, 角动量Anomalous magnetic moment, 反常磁矩Antibonding, 反键Anti-hermitian operator, 反厄米算符Associated Laguerre polynomial, 连带拉盖尔多项式Associated Legendre function, 连带勒让德多项式Atoms, 原子Average value, 平均值Azimuthal angle, 方位角Azimuthal quantum number, 角量子数BBalmer series, 巴尔末线系Band structure, 能带结构Baryon, 重子Berry's phase, 贝利相位Bessel functions, 贝塞尔函数Binding energy, 束缚能Binomial coefficient, 二项式系数Biot-Savart law, 毕奥-沙法尔定律Blackbody spectrum, 黑体谱Bloch's theorem, 布洛赫定理Bohr energies, 玻尔能量;Bohr magneton, 玻尔磁子;Bohr radius, 玻尔半径Boltzmann constant, 玻尔兹曼常数Bond, 化学键Born approximation, 玻恩近似Born's statistical interpretation, 玻恩统计诠释Bose condensation, 玻色凝聚Bose-Einstein distribution, 玻色-爱因斯坦分布Boson, 玻色子Bound state, 束缚态Boundary conditions, 边界条件Bra, 左矢Bulk modulus, 体积模量CCanonical commutation relations, 正则对易关系Canonical momentum, 正则动量Cauchy's integral formula, 柯西积分公式Centrifugal term, 离心项Chandrasekhar limit, 钱德拉赛卡极限Chemical potential, 化学势Classical electron radius, 经典电子半径Clebsch-Gordan coefficients, 克-高系数Coherent States, 相干态Collapse of wave function, 波函数塌缩Commutator, 对易子Compatible observables, 对易的可观测量Complete inner product space, 完备内积空间Completeness, 完备性Conductor, 导体Configuration, 位形Connection formulas, 连接公式Conservation, 守恒Conservative systems, 保守系Continuity equation, 连续性方程Continuous spectrum, 连续谱Continuous variables, 连续变量Contour integral, 围道积分Copenhagen interpretation, 哥本哈根诠释Coulomb barrier, 库仑势垒Coulomb potential, 库仑势Covalent bond, 共价键Critical temperature, 临界温度Cross-section, 截面Crystal, 晶体Cubic symmetry, 立方对称性Cyclotron motion, 螺旋运动DDarwin term, 达尔文项de Broglie formula, 德布罗意公式de Broglie wavelength, 德布罗意波长Decay mode, 衰变模式Degeneracy, 简并度Degeneracy pressure, 简并压Degenerate perturbation theory, 简并微扰论Degenerate states, 简并态Degrees of freedom, 自由度Delta-function barrier, 势垒Delta-function well, 势阱Derivative operator, 求导算符Determinant, 行列式Determinate state, 确定的态Deuterium, 氘Deuteron, 氘核Diagonal matrix, 对角矩阵Diagonalizable matrix, 对角化Differential cross-section, 微分截面Dipole moment, 偶极矩Dirac delta function, 狄拉克函数Dirac equation, 狄拉克方程Dirac notation, 狄拉克记号Dirac orthonormality, 狄拉克正交归一性Direct integral, 直接积分Discrete spectrum, 分立谱Discrete variable, 离散变量Dispersion relation, 色散关系Displacement operator, 位移算符Distinguishable particles, 可分辨粒子Distribution, 分布Doping, 掺杂Double well, 双势阱Dual space, 对偶空间Dynamic phase, 动力学相位EEffective nuclear charge, 有效核电荷Effective potential, 有效势Ehrenfest's theorem, 厄伦费斯特定理Eigenfunction, 本征函数Eigenvalue, 本征值Eigenvector, 本征矢Einstein's A and B coefficients, 爱因斯坦A,B系数;Einstein's mass-energy formula, 爱因斯坦质能公式Electric dipole, 电偶极Electric dipole moment, 电偶极矩Electric dipole radiation, 电偶极辐射Electric dipole transition, 电偶极跃迁Electric quadrupole transition, 电四极跃迁Electric field, 电场Electromagnetic wave, 电磁波Electron, 电子Emission, 发射Energy, 能量Energy-time uncertainty principle, 能量-时间不确定性关系Ensemble, 系综Equilibrium, 平衡Equipartition theorem, 配分函数Euler's formula, 欧拉公式Even function, 偶函数Exchange force, 交换力Exchange integral, 交换积分Exchange operator, 交换算符Excited state, 激发态Exclusion principle, 不相容原理Expectation value, 期待值FFermi-Dirac distribution, 费米-狄拉克分布Fermi energy, 费米能Fermi surface, 费米面Fermi temperature, 费米温度Fermi's golden rule, 费米黄金规则Fermion, 费米子Feynman diagram, 费曼图Feynman-Hellman theorem, 费曼-海尔曼定理Fine structure, 精细结构Fine structure constant, 精细结构常数Finite square well, 有限深方势阱First-order correction, 一级修正Flux quantization, 磁通量子化Forbidden transition, 禁戒跃迁Foucault pendulum, 傅科摆Fourier series, 傅里叶级数Fourier transform, 傅里叶变换Free electron, 自由电子Free electron density, 自由电子密度Free electron gas, 自由电子气Free particle, 自由粒子Function space, 函数空间Fusion, 聚变Gg-factor, g-因子Gamma function, 函数Gap, 能隙Gauge invariance, 规范不变性Gauge transformation, 规范变换Gaussian wave packet, 高斯波包Generalized function, 广义函数Generating function, 生成函数Generator, 生成元Geometric phase, 几何相位Geometric series, 几何级数Golden rule, 黄金规则"Good" quantum number, "好"量子数"Good" states, "好"的态Gradient, 梯度Gram-Schmidt orthogonalization, 格莱姆-施密特正交化法Graphical solution, 图解法Green's function, 格林函数Ground state, 基态Group theory, 群论Group velocity, 群速Gyromagnetic railo, 回转磁比值HHalf-integer angular momentum, 半整数角动量Half-life, 半衰期Hamiltonian, 哈密顿量Hankel functions, 汉克尔函数Hannay's angle, 哈内角Hard-sphere scattering, 硬球散射Harmonic oscillator, 谐振子Heisenberg picture, 海森堡绘景Heisenberg uncertainty principle, 海森堡不确定性关系Helium, 氦Helmholtz equation, 亥姆霍兹方程Hermite polynomials, 厄米多项式Hermitian conjugate, 厄米共轭Hermitian matrix, 厄米矩阵Hidden variables, 隐变量Hilbert space, 希尔伯特空间Hole, 空穴Hooke's law, 胡克定律Hund's rules, 洪特规则Hydrogen atom, 氢原子Hydrogen ion, 氢离子Hydrogen molecule, 氢分子Hydrogen molecule ion, 氢分子离子Hydrogenic atom, 类氢原子Hyperfine splitting, 超精细分裂IIdea gas, 理想气体Idempotent operaror, 幂等算符Identical particles, 全同粒子Identity operator, 恒等算符Impact parameter, 碰撞参数Impulse approximation, 脉冲近似Incident wave, 入射波Incoherent perturbation, 非相干微扰Incompatible observables, 不对易的可观测量Incompleteness, 不完备性Indeterminacy, 非确定性Indistinguishable particles, 不可分辨粒子Infinite spherical well, 无限深球势阱Infinite square well, 无限深方势阱Inner product, 内积Insulator, 绝缘体Integration by parts, 分部积分Intrinsic angular momentum, 内禀角动量Inverse beta decay, 逆衰变Inverse Fourier transform, 傅里叶逆变换KKet, 右矢Kinetic energy, 动能Kramers' relation, 克莱默斯关系Kronecker delta, 克劳尼克LLCAO technique, 原子轨道线性组合法Ladder operators, 阶梯算符Lagrange multiplier, 拉格朗日乘子Laguerre polynomial, 拉盖尔多项式Lamb shift, 兰姆移动Lande g-factor, 朗德g-因子Laplacian, 拉普拉斯的Larmor formula, 拉摩公式Larmor frequency, 拉摩频率Larmor precession, 拉摩进动Laser, 激光Legendre polynomial, 勒让德多项式Levi-Civita symbol, 列维-西维塔符号Lifetime, 寿命Linear algebra, 线性代数Linear combination, 线性组合Linear combination of atomic orbitals, 原子轨道的线性组合Linear operator, 线性算符Linear transformation, 线性变换Lorentz force law, 洛伦兹力定律Lowering operator, 下降算符Luminoscity, 照度Lyman series, 赖曼线系MMagnetic dipole, 磁偶极Magnetic dipole moment, 磁偶极矩Magnetic dipole transition, 磁偶极跃迁Magnetic field, 磁场Magnetic flux, 磁通量Magnetic quantum number, 磁量子数Magnetic resonance, 磁共振Many worlds interpretation, 多世界诠释Matrix, 矩阵;Matrix element, 矩阵元Maxwell-Boltzmann distribution, 麦克斯韦-玻尔兹曼分布Maxwell's equations, 麦克斯韦方程Mean value, 平均值Measurement, 测量Median value, 中位值Meson, 介子Metastable state, 亚稳态Minimum-uncertainty wave packet, 最小不确定度波包Molecule, 分子Momentum, 动量Momentum operator, 动量算符Momentum space wave function, 动量空间波函数Momentum transfer, 动量转移Most probable value, 最可几值Muon, 子Muon-catalysed fusion, 子催化的聚变Muonic hydrogen, 原子Muonium, 子素NNeumann function, 纽曼函数Neutrino oscillations, 中微子振荡Neutron star, 中子星Node, 节点Nomenclature, 术语Nondegenerate perturbationtheory, 非简并微扰论Non-normalizable function, 不可归一化的函数Normalization, 归一化Nuclear lifetime, 核寿命Nuclear magnetic resonance, 核磁共振Null vector, 零矢量OObservable, 可观测量Observer, 观测者Occupation number, 占有数Odd function, 奇函数Operator, 算符Optical theorem, 光学定理Orbital, 轨道的Orbital angular momentum, 轨道角动量Orthodox position, 正统立场Orthogonality, 正交性Orthogonalization, 正交化Orthohelium, 正氦Orthonormality, 正交归一性Orthorhombic symmetry, 斜方对称Overlap integral, 交叠积分PParahelium, 仲氦Partial wave amplitude, 分波幅Partial wave analysis, 分波法Paschen series, 帕邢线系Pauli exclusion principle, 泡利不相容原理Pauli spin matrices, 泡利自旋矩阵Periodic table, 周期表Perturbation theory, 微扰论Phase, 相位Phase shift, 相移Phase velocity, 相速Photon, 光子Planck's blackbody formula, 普朗克黑体辐射公式Planck's constant, 普朗克常数Polar angle, 极角Polarization, 极化Population inversion, 粒子数反转Position, 位置;Position operator, 位置算符Position-momentum uncertainty principles, 位置-动量不确定性关系Position space wave function, 坐标空间波函数Positronium, 电子偶素Potential energy, 势能Potential well, 势阱Power law potential, 幂律势Power series expansion, 幂级数展开Principal quantum number, 主量子数Probability, 几率Probability current, 几率流Probability density, 几率密度Projection operator, 投影算符Propagator, 传播子Proton, 质子QQuantum dynamics, 量子动力学Quantum electrodynamics, 量子电动力学Quantum number, 量子数Quantum statics, 量子统计Quantum statistical mechanics, 量子统计力学Quark, 夸克RRabi flopping frequency, 拉比翻转频率Radial equation, 径向方程Radial wave function, 径向波函数Radiation, 辐射Radius, 半径Raising operator, 上升算符Rayleigh's formula, 瑞利公式Realist position, 实在论立场Recursion formula, 递推公式Reduced mass, 约化质量Reflected wave, 反射波Reflection coefficient, 反射系数Relativistic correction, 相对论修正Rigid rotor, 刚性转子Rodrigues formula, 罗德里格斯公式Rotating wave approximation, 旋转波近似Rutherford scattering, 卢瑟福散射Rydberg constant, 里德堡常数Rydberg formula, 里德堡公式SScalar potential, 标势Scattering, 散射Scattering amplitude, 散射幅Scattering angle, 散射角Scattering matrix, 散射矩阵Scattering state, 散射态Schrodinger equation, 薛定谔方程Schrodinger picture, 薛定谔绘景Schwarz inequality, 施瓦兹不等式Screening, 屏蔽Second-order correction, 二级修正Selection rules, 选择定则Semiconductor, 半导体Separable solutions, 分离变量解Separation of variables, 变量分离Shell, 壳Simple harmonic oscillator, 简谐振子Simultaneous diagonalization, 同时对角化Singlet state, 单态Slater determinant, 斯拉特行列式Soft-sphere scattering, 软球散射Solenoid, 螺线管Solids, 固体Spectral decomposition, 谱分解Spectrum, 谱Spherical Bessel functions, 球贝塞尔函数Spherical coordinates, 球坐标Spherical Hankel functions, 球汉克尔函数Spherical harmonics, 球谐函数Spherical Neumann functions, 球纽曼函数Spin, 自旋Spin matrices, 自旋矩阵Spin-orbit coupling, 自旋-轨道耦合Spin-orbit interaction, 自旋-轨道相互作用Spinor, 旋量Spin-spin coupling, 自旋-自旋耦合Spontaneous emission, 自发辐射Square-integrable function, 平方可积函数Square well, 方势阱Standard deviation, 标准偏差Stark effect, 斯塔克效应Stationary state, 定态Statistical interpretation, 统计诠释Statistical mechanics, 统计力学Stefan-Boltzmann law, 斯特番-玻尔兹曼定律Step function, 阶跃函数Stem-Gerlach experiment, 斯特恩-盖拉赫实验Stimulated emission, 受激辐射Stirling's approximation, 斯特林近似Superconductor, 超导体Symmetrization, 对称化Symmetry, 对称TTaylor series, 泰勒级数Temperature, 温度Tetragonal symmetry, 正方对称Thermal equilibrium, 热平衡Thomas precession, 托马斯进动Time-dependent perturbation theory, 含时微扰论Time-dependent Schrodinger equation, 含时薛定谔方程Time-independent perturbation theory, 定态微扰论Time-independent Schrodinger equation, 定态薛定谔方程Total cross-section, 总截面Transfer matrix, 转移矩阵Transformation, 变换Transition, 跃迁;Transition probability, 跃迁几率Transition rate, 跃迁速率Translation,平移Transmission coefficient, 透射系数Transmitted wave, 透射波Trial wave function, 试探波函数Triplet state, 三重态Tunneling, 隧穿Turning points, 回转点Two-fold degeneracy , 二重简并Two-level systems, 二能级体系UUncertainty principle, 不确定性关系Unstable particles, 不稳定粒子VValence electron, 价电子Van der Waals interaction, 范德瓦尔斯相互作用Variables, 变量Variance, 方差Variational principle, 变分原理Vector, 矢量Vector potential, 矢势Velocity, 速度Vertex factor, 顶角因子Virial theorem, 维里定理WWave function, 波函数Wavelength, 波长Wave number, 波数Wave packet, 波包Wave vector, 波矢White dwarf, 白矮星Wien's displacement law, 维恩位移定律YYukawa potential, 汤川势ZZeeman effect, 塞曼效应。
一种推广的具有逆场算符Jaynes-Cummings模型中的虚光子效应
( 6 1)
利用 B k r a b l—Haso 公式 [4 ae —C mp el udf 1]
! a ()o ()=L +! r L 一 t v O 、 O t O 2 O , ]+ t t己 !
1  ̄ L 1 O f
a
,
算符 的本征 方程 为
去 川) 去 ( > ( > : )
第1 期
一种推广 的具有逆场算符 J ns C m i s a e — u m n 模型中的虚光子效应 y g
5 7
方程( ) 2 变为
日 :∞() 。+ 。 :+A() Q+ 一 £[ +Q ]
(): t
() =2 f
() 8
。p () , ]
2 M
I ()I £ ,
密 顿量
相 因子 J特 别 是后 者 , . 已成 为量 子 力 学 中最 重 要 的基本 问题之 一 , 其基 本 观念 几 乎渗 透 到物 理
学 的各个领 域 .
量子不 变 量理 论 是 由 L ws和 Reefl ei isne d首
=(£0 £ ) a+ L , ( _
( _ ] o )。 一 反对 易关系 为
I
{ , 一 ( 口 }= \ +
a
a ( )
-
+
1
0
。f 。
+
)
一
。
1M =
/
() 3
—
口
容易发现算 符 M, 口 Q 和 是超 对 称李 口 , ,
1 物理 模 型
含逆 场 算 符 的含 时 Jye ans—C mmns 型 u ig 模 的哈密顿 量为
1
代 数 的生成元 , 满足 以下关 系
Anti-de Sitter时空中的标量粒子及标量场
Ab s t r a c t :F i r s t l y t h e me t r i c O t Ad S s p a c e —t i me wa s f o r mu l a t e d,a n d t h e n t h e a c t i o ns o f t he s c a l a r p o i n t p a r t i c l e a nd s c a l a r i f e l d we r e s e t u p .Us i ng t h e p r i n c i p l e o f l e a s t a c t i o n,t h e Eu l e r e q u a t i o n s o f t he m a n d t h e n u me r i c a l s o l u t i o n s we r e o b t a i n e d s e pa r a t e l y .Th e r e s u l t o f s c a l a r p a r t i c l e s h o we d t h a t i t s wo r l d l i n e wa s l i k e s o l e n o i d wh i c h wa s t o t a l l y d i f f e r e n t f r o m t h e r e s ul t i n s mo o t h s p a c e,wh i c h a l s o d e mo n s t r a t e d t h a t t h e c u r v e d s pa c e h a d a n e q u i v a l e n t r o l e o f c e n t ip r e t a l f o r c e .Th e a s y mp t o t i c b o un d a r y c o n d i t i o n wa s u s e d f o r s o l v i n g o f s c a l a r f i e l d e q u a t i o n .Th e r e l a t i o n s h i p b e t we e n t h e s c a l a r ie f l d a n d i t s ma s s o r t h e d i me n s i o n s o f s p a c e t i me we r e a n a l y z e d a l s o . Ke y wo r d s :An t i -d e S i t t e r s p a c e t i me;s c a l a r i f e l d;me t ic;wo r r l d l i n e
Doctor of Philosophy in Mathematics:在数学哲学博士
Doctor of Philosophy in MathematicsDepartment of MathematicsClaremont Graduate UniversityDr. Henok Abebe 2002Modeling the Current-Voltage (I-V) Characteristics of the MOSFET Device With Quantum Mechanical Effects Due to Thin Oxide near Si/SiO2Interface Using Asymptotic Methods, Joint with Cal State Long Beach inEngineering and Industrial Applied MathematicsAdvisor: Ellis CumberbatchDr. Yontha Ath Smr 2000Stochastic Properties of Uniformly Optimally Reliable Networksand their Graphs)Advisor: Milton Sobel (UC Northridge), J. Angus, J. Myhre (CMC),H. Krieger (HMC)Dr. Dariouch Herve Babai 1995A Deterministic/Continuous Approach to the Interaction between HIV andthe Immune System: the Dynamics of Antigenic Variation and DiversityAdvisor: Kenneth CookeDr. Steven F. Bellenot 1974Completeness and Reflexivity in Topological Vector Spaces UsingStandard and Nonstandard MethodsAdvisor: Sandy GrabinerDr. Eric Besnard 1997Development of a Method for Predicting Three-Dimensional Flows andIts Application to Transport Aircraft High Lift Systems, Joint with Cal State Long Beach in Engineering and Industrial Applied MathematicsAdvisor: Tuncer Cebeci (CSULB)2004BhanDr.AshishStructure of Gene Expression Networks Derived from Microarray TimeSeries DataAdvisor: T. Gregory Dewey (Keck)Dr. Theodoros Spyridon Bolis1971Differentiable Nuclear ManifoldsAdvisor: Robert JamesDr. Paul O. Chelson 1976Quasi-Random Techniques for Monte Carlo MethodsAdvisor: Jerome SpanierDr. Michael R. Chiaro 1977Dr. Cherlyn Lee Converse 1992Lower bounds for the maximum number of stable pairings for the general marriage problem based on the latin marriage problemAdvisor: Henry A. KriegerDr. Jack Cuzick 1976Advisor: Jerome SpanierDr. Mohamed Osman El Doma1986Analysis of Nonlinear Integra-Differential Equations Arising in Age-Dependent Epidemic ModelsAdvisor: Stavros BusenbergDr. Azzam Elshihabi 1997Disturbance Decoupling with Stability for Nonlinear Systems Using Static / Output Feedback: A Geometric Approach (Jointly with Cal State LongBeach – Engineering Mathematics)Advisor: Fumio Hamano (CSULB)Dr. Claudia Rangel Escareno2003Modeling Biological Responses Using Gene Expression Profiling andLinear Dynamical Statistical ModelsAdvisors: John Angus and David Wild of Keck Graduate Institute Dr. Mohammad (Al Ahmad) Eyadat 2003Comparative Performance Evaluation of Practical Digital WatermarkingEmbedded SchemesAdvisors: Samir Chatterjee, Ali Nadim, Dar-Biau Liu – joint with CalState Long BeachDr. Weifu Fang 1990Identification of Transistor Contact ResistivityAdvisors: Ellis Cumberbatch and Stavros BusenbergDr. Michael E. Frantz 1995On the Interaction of a Cold Front with a Mountain RidgeAdvisor: Ellis CumberbatchDr. Samuel H. Fryer 1988Mathematical Models of Typhoid FeverAdvisor: Kenneth L. CookeDr. Gabriel Lopez-Garza 2003Resonance and Strong Resonance for Semilinear Elliptic Equations in R N Advisor: Adolfo RumbosDr. Chris Giles Graham 1996Cooperative Solution Concepts for Multi-Sided Assignment GamesAdvisor: William F. LucasDr. Gregory Green 1992Confidence Bounds on Functions of Parameters with Applications toReliability TheoryAdvisor: Janet MyhreDr. Hamza Abid-ali Hamza1997The Nucleoli Approach to Multiperson Cooperative GamesAdvisor: William F. LucasDr. Carole Hayakawa 2001Monte Carlo Methods for the Early Detection of Disease-InducedTransformations in TissueAdvisor: Jerome SpanierDr. Susan Kay Herring 1992Statistical Tests for Stochastic DominanceAdvisor: Henry A. KriegerDr. Huy Hoang 2002Experimental and Numerical Investigations of Steady Turbulent JetsFrom Round Ribbed Tubes, Joint with Cal State Long BeachAdvisor: Hamid Rahai (CSULB)Dr. Christopher Hovick 2002Statistical and Structural Dynamic Analysis of the Earthman PeriometerMeasure of Tooth and Implant and Damping Capacity, Joint with Cal State Long BeachAdvisors: Ortwin Ohtmer (CSULB) and John AngusDr. Alice A. Huffman 1975Lifting Isomorphisms Between l-algebras of φ-algebrasAdvisor: Melvin HenriksenDr. Wenzhang Huang 1990Stability and Bifurcation for a Multiple Group Model for Dynamics ofHIV/AIDS TransmissionAdvisor: Kenneth L. CookeDr. Thomas E. Iverson 1975Extensions of the Theory of the Fractional Calculus with an ApplicationAdvisor: Jerome SpanierDr. Richard L. Jow 1983Some Contributions to the Theory of Random SetsAdvisor: Richard VitaleDr. Khalil Antoun Kairouz 2002Numerical and Experimental Investigations of a Turbulent JunctionFlow with Upstream Ribbed Surface, Joint with Cal State Long BeachAdvisor:Hamid R. Rahai (CSULB)Dr. Alice M. King 1975Dr. Rong Kong 1999Transport Theory and Monte Carlo MethodsAdvisor: Jerome SpanierDr. Yongzeng Lai 1999Quasi-Monte Carlo Methods and their ApplicationsAdvisor: Jerome SpanierDr. John Patrick Lambert 1982Some Developments in Optimal and Quasi-Monte Carlo Quadrature and a New Outlook on a Classical Chebyshev ProblemAdvisor: Jerome SpanierDr. Suzanne L. Larson 1984Convexity Conditions on a Class of Lattice Ordered RingsAdvisor: Melvin HenriksenDr. Eugene Lavretsky 1999Neural Networks for Function Approximation and Control System DesignJoint with Cal State Long BeachAdvisor: Robert WilliamsonLe 2004HieuDr.Delamination Detection in Composite Laminates Using Genetic Algorithm Optimization, Joint with Cal State Long Beach in Engineering andIndustrial Applied MathematicsAdvisor: H. P. Chen (CSULB)Dr. Liming Li 1995Quasi-Monte Carlo Methods for Transport EquationsAdvisor: Jerome SpanierDr. Aggie G. Ho Liu 1978Trees, Tree-Like Structures, and Extreme Points in Banach Spaces Advisor: Robert JamesDr. Haisheng Luo 1995Curve Estimation and GraduationAdvisor: John AngusDr. Barry Luong 2003Performance of Reliability Models for the Multimedia-Boardband Gateway (Jointly with California State University, Long Beach – Engineering andIndustrial Applied Mathematics)Advisor: John. AngusDr. Jose Alberto Luzardo-Flores 1997Neural Networks for Approximation and Control of Continuous NonlinearSystems (Jointly with California State University, Long Beach –Engineering Mathematics)Advisor: A. G. ChassiakosDr. Jose Macias 1998An Approximation Method to Solve Non-Homogeneous Wave Equationsand Related Inverse ProblemsAdvisor: Ellis CumberbatchDr. Earl H. Maize 1981Contributions to the Theory of Error Reduction in Quasi-Monte CarloMethodsAdvisor: Jerome SpanierDr. Philip W. McCartney 1978On Some Banach Space Properties Related to the Radon-NikodýmPropertyAdvisor: Robert JamesDr. Jeffrey Louis Molony 1997Local Equivalence of Differential SystemsAdvisor: Courtney ColemanDr. Dan Manh Nguyen 2002An Unified Automated Approach to Surface Approximation Via FiniteElement and Non Uniform Rational B-spline MethodsOrtwin Ohtmer and Ellis Cumberbatch (Jointly with California Advisor:State University, Long Beach)Dr. Dong Nguyen 2000Reliability Modeling and Evaluation in Computer Networks and Distributed SystemsAdvisor: John Angus and Dar-Biau Liu (Jointly with California StateUniversity, Long Beach)Dr. Tien Manh Nguyen 1995Mathematical Modeling and Digital Signal Processing Techniques forModern Digital Communication SystemsAdvisor: Hen-Geul Yeh (Jointly with California State University, LongBeach – Engineering Mathematics)Dr. Giray Ökten 1997Contributions to the Theory of Monte Carlo and Quasi-Monte CarloMethodsAdvisor: Jerome SpanierDr. Kim Joseph Olszewski1998Concatenated Reed-Solomon and Reed-Muller CodecsAdvisor: R. Kumar (Joint with California State University, Long Beach – Engineering Mathematics)Dr. Carlos Orrala 2004Numerical and Experimental Investigations of Two Side-by-SideTurbulent Jets in a Cross-flowAdvisor: Hamid R. Rahai, (Joint with California State University, LongBeach – Engineering and Industrial Applied Mathematics)Dr. Fred Ovadia 1978Contributions to the Theory of Fractional Difference OperatorsAdvisor: Jerome SpanierDr. Claudia L. Pinter 1987The Average Error from the Approximation of Functions and IntegralsAdvisor: Robert WilliamsonDr. Jerry Emmett Purcell 1995FiltersAllpassAdvisor: Ellis Cumberbatch (Joint with California State University, Long Beach – Engineering Mathematics)Dr. Norman Richert 1981Approximation of Complex NumbersDiophantineAdvisor: Jerome SpanierDr. Mary Royston 1995Three-Sided Assignment GamesAdvisor: William F. LucasDr. Thomas R. Savage 1977On Some Problems in the Theory of Von Neumann Regular RingsAdvisor: Melvin HenriksenDr. Henry J. Schultz 1974Dr. Jennifer M. Switkes 2000The Geographic Mosaic Theory in relation to Co-evolutionary Interactions between Two SpeciesAdvisor: Michael MoodyDr. Phuong Yen Thi Tran 1996Asymptotic Reliability of the Hypercube and the D-Octahedral NetworksAdvisor: William F. LucasDr. John C. Tripp 1975Multiplications on Banach SpacesAdvisor: Sandy GrabinerDr. Gregg Turner 1991Spectral conditions for the stabilizability of controlled feedback systemswith piecewise constant delayAdvisor: Kenneth CookeDr. Jorge Xicotencatl Velasco-Hernandez 1991Models of Chagas disease: Stability, Thresholds and Asymptotic Behavior Advisor: Stavros BusenbergDr. Diana W. Verzi 2001A Mathematical Description of Diagrammatic Models for StructuralChanges in Dendritic SpinesAdvisor: Ellis Cumberbatch, Steve Baer – Arizona StateDr. Minaya Villasana de Villagas 2001A Delay Differential Equation Model for Tumor GrowthAdvisor: Ami RadunskayaDr. Rudolf Volz 1982Global Asymptotic Stability of a Periodic Solution to an Epidemic ModelAdvisor: Kenneth CookeDr. Jean H.M. Wang 1981Error Reduction Techniques for Monte Carlo Neutron TransportCalculationsAdvisor: Jerome SpanierDr. Binghui Wu 1992Integrated Semigroup and its Application to Inverse ProblemsAdvisor: Stavros BusenbergDr. Kaiqi Xiong 1997Analysis of a Class of Nonlinear Dynamical Systems and Applications to Neural NetworksAdvisor: Jerome Spanier and Ellis CumberbatchDr. Thomas M. Zachariah 1984Stochastic and Deterministic SetsAdvisor: Richard A. Vitale8/11//04ms。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I
Introduction
In this paper we study the scattering of light at non-relativistic and pseudo-relativistic, quantum mechanical electrons moving under the influence of an external potential and minimally coupled to the soft modes of the quantized electromagnetic field. The external potential may be the Coulomb potential generated by a configuration of static nuclei. Our goal is to establish the existence of asymptotic electromagnetic fields on states of the system with the property that the velocities of all electrons present are smaller than the velocity of light, (in a sense to be made mathematically precise). This property is automatically satisfied if one chooses relativistic kinematics in the description of electrons, because the propagation velocity of a massive relativistic particle is smaller than the velocity of light. In contrast, if the kinematics of electrons is non-relativistic these particles can propagate arbitrarily fast, and the condition that the propagation velocities of electrons in a
a) !
asymptotic electromagnetic fields; (a (strong) LSZ asymptotic condition holds for the electromag-
along the boundary of a forward light cone where their amplitude decays in time only like t−(d−1)/2 , If the propagation velocities of charged particles are smaller than the propagation velocity of light then every excitation of the electromagnetic field ends up propagating out of the region where the charged particles are localized and hence does not interact with them, anymore. This feature, existence of asymptotic electromagnetic field operators. along with a decay ∝ t−(d−1)/2 of its amplitude, suffices to rescue Cook’s argument for proving the Our discussion makes it clear what our main technical work has to consist in: We must prove mathematically precise bounds on the velocity of propagation of electrons (”propagation estimates”, see Theorem 1, Sect. II) in physically realistic situations; and we have to establish the invariance of certain domains in Hilbert space under the time evolution
Abstract In models of (non-relativistic and pseudo-relativistic) electrons interacting with static nuclei and with the (ultraviolet-cutoff) quantized radiation field, the existence of asymptotic electromagnetic fields is established. Our results yield some mathematically rigorous understanding of Rayleigh scattering and of the phenomenon of relaxation of isolated atoms to their ground states. Our proofs are based on propagation estimates for electrons inspired by similar estimates known from N -body scattering theory.
1. Theoretical Physics, ETH–H¨ onggerberg, CH–8093 Z¨ urich, Switzerland 2. Department of Mathematics, University of Alabama at Birmingham, Birmingham, AL 35294 18 September, 2000
Asymptotic Electromagnetic Fields in Models of Quantum-Mechanical Matter Interacting with the Quantized Radiation Field
J. Fr¨ ohlich1 ∗, M. Griesemer2 †and B. Schlein1 ‡
∗ †
juerg@itp.phys.ethz.ch marcel@ ‡ schlein@itp.phys.ethz.ch
1
FGSch, 18/9/00—Asymptotic Electromagnetic Fields
2
state of the system are smaller than the velocity of light is a very stringent one. It is satisfied if all electrons remain bound to nuclei. But, in realistic models, such “bound states” are not dense in the Hilbert space of the system. The key physical idea underlying our analysis is very clear and simple: Huygens’ principle for the electromagnetic field implies that, on states with the property that the propagation speeds of all charged particles are smaller than the velocity of light, the strength of interactions between the charged particles and the electromagnetic field tends to 0, as time t tends to ±∞, at an integrable rate. As a consequence, one can use a variant of Cook’s method [Coo57] to prove existence of netic field). Huygens’ principle was first applied in the context of scattering theory for the quantized electromagnetic field by Buchholz [Buc77]. More recently, it was used in [Spo97] to prove asymptotic completeness of Rayleigh scattering in some simple models of electrons permanently confined to nuclei. Cook’s method was used to prove existence of asymptotic fields in simple models of quantum field theory by Hoegh–Krohn in [HK69]. His arguments were inspired by work on scattering theory in the context of axiomatic field theory, in particular Haag–Ruelle scattering theory [Jos65] and Hepp’s analysis of the LSZ asymptotic condition in massive quantum field theories [Hep65]. For models of the kind considered in this paper describing non–relativistic or pseudo–relativistic electrons interacting with massive photons, in a space–time of dimension four or more, Cook’s method (in conjunction with field–operator domain estimates of the type proven in Lemma 5, Sect. II, below) is all it takes to construct asymptotic electromagnetic fields; (see e.g. [Fr¨ o73]). The reason is that the amplitude of a spatially localized excitation of the electromagnetic field propagates into the interior of a forward light cone if the mass of the photon is strictly positive and hence locally decays in time at an integrable rate, ∝ t−d/2 , where d is the dimension of space. This is not so if the photon is massless. Then if d is odd Huygens’ principle tells us that such excitations propagate which is not integrable in dimension d = 3