糖基转移酶的研究概述

合集下载

抗生素糖基转移酶研究进展

抗生素糖基转移酶研究进展

抗生素糖基转移酶研究进展摘要糖苷类抗生素是临床上广泛应用的抗菌和抗肿瘤化合物。

该类化合物在体内由糖基转移酶催化,糖基化反应通常在抗生素生物合成的最后发生,糖基的位置、类型和数量对糖苷类抗生素的活性有很大的影响。

本文综述了糖基转移酶的种类、功能、特性及其在组合生物合成中的应用与研究前景。

关键词抗生素的糖基转移酶抗生素糖苷糖基化概述Recent advances in antibiotic glycosyltransferases ABSTRACT Glycoside antibiotics, a category of compounds widely used clinically for anti?bacterial and anti?cancer, are catalyzed by antibiotic glycosyltransferases (Gtfs) in vivo. The sugar moieties are transferred to the corresponding aglycon by Gtfs, often work at very late stages of biosynthesis of antibiotics. The position, type and number of sugar moieties incorporated to the antibiotics have great impact on its bioactivity. This article provides an overview of the categories, functions, characteristics of Gtfs, their applications in combinatorial biosynthesis, and the prospects for research.KEY WORDS Antibiotic glycosyltransferase; Glycoside antibiotics; Glycosylation抗生素糖苷在临床上主要用于抗菌和抗肿瘤,在抗生素生物合成基因簇中已经发现了很多编码糖基转移酶的基因[1],但人们对抗生素糖基转移酶(antibiotic glycosyltransferases,Gtfs)的特异性和催化机制了解不多。

糖基转移酶的作用

糖基转移酶的作用

糖基转移酶的作用
糖基转移酶是一类重要的酶,它们在生物体内发挥着重要的作用。

糖基转移酶是一种催化酶,它们能够将一个糖基从一个分子转移到另一个分子上,从而改变分子的结构和性质。

糖基转移酶的作用非常广泛,它们参与了许多生物过程,如糖代谢、脂质代谢、核酸代谢等。

在糖代谢中,糖基转移酶能够将糖基从一种糖分子转移到另一种糖分子上,从而形成新的糖分子。

这种转移过程是糖代谢中的关键步骤,它能够调节糖代谢的速率和方向。

在脂质代谢中,糖基转移酶能够将糖基从一种脂质分子转移到另一种脂质分子上,从而改变脂质分子的结构和性质。

这种转移过程是脂质代谢中的关键步骤,它能够调节脂质代谢的速率和方向。

在核酸代谢中,糖基转移酶能够将糖基从一种核酸分子转移到另一种核酸分子上,从而改变核酸分子的结构和性质。

这种转移过程是核酸代谢中的关键步骤,它能够调节核酸代谢的速率和方向。

除了参与生物代谢过程外,糖基转移酶还能够参与许多其他生物过程,如信号转导、细胞分化、细胞凋亡等。

这些过程都需要糖基转移酶的参与,从而实现生物体内的正常生理功能。

糖基转移酶是一类非常重要的酶,它们在生物体内发挥着重要的作用。

糖基转移酶能够参与许多生物过程,如糖代谢、脂质代谢、核酸代谢等,从而调节生物体内的代谢速率和方向。

此外,糖基转移
酶还能够参与许多其他生物过程,如信号转导、细胞分化、细胞凋亡等,从而实现生物体内的正常生理功能。

糖生物学论文 糖基转移酶与糖基转移酶抑制剂

糖生物学论文 糖基转移酶与糖基转移酶抑制剂

糖基转移酶与糖基转移酶抑制剂摘要:糖基转移酶在生物体内催化活化的糖连接到不同的受体分子,如蛋白、核酸、寡糖、脂和小分子上,糖基化的产物具有很多生物学功能。

其是糖蛋白、糖脂中糖链生物合成的关键酶之一。

与此同时,对糖基化抑制剂的研究也是必要的。

两者在治疗一些因为糖基转移酶非正常表达引起的疾病有很大作用。

关键词:糖基转移酶;糖基化;糖基化抑制剂前言:糖基转移酶是广泛存在于内质网和高尔基体内的一大类酶,参与体内重要生物活性物质如糖蛋白和糖脂中糖链的合成,其作用是把相应的活性供体(通常是二磷酸核苷NDP-糖)的单糖部分转移至糖、蛋白质、脂类和核酸等,完成后者的糖基化加工,实现其生物学功能。

因此糖基转移酶的表达和活性的变化与许多疾病联系在一起,并可作为某些疾病的诊断标志,如α-1,3-半乳糖基转移酶活性在体内的再现会引发自身免疫反应,导致类风湿,并在器官异体移植中引起排斥反应;N-乙酰氨基葡萄糖基转移酶、岩藻糖基转移酶等在成熟细胞中活性的明显升高被视为肿瘤发生的重要标志,并且被认为是肿瘤迁移恶化的重要原因。

因此设计合成糖基转移酶抑制剂,对于寻找抗肿瘤、抗免疫系统等新药研究有重要意义。

1 糖基转移酶的存在糖蛋白是通过蛋白质的糖基化组装实现的,而糖基化过程则通过多种糖基转移酶完成——在肽链合成的同时或合成后,在糖基转移酶的催化下,糖链被连接到肽链的特定糖基化位点上。

糖基转移酶具有高度的底物专一性,即同时对糖基的供体和受体具有专一性。

对糖基转移酶进行研究,是糖基化研究的第1步。

目前已对多种糖基转移酶的结构以及编码它们的基因研究清楚,并认为糖链的合成没有特定的模板,而是通过糖基转移酶将糖基由其供体转移到受体上。

糖链可以认为是基因的次级产物,一个基因编码一个糖基转移酶,一个糖基转移酶专一地催化一个糖苷键的合成;这样一条糖链的合成就需要一个多酶系统,也就对应了一个基因组。

下文简要介绍几类重要的糖基转移酶。

1.1 N-乙酰氨基葡萄糖转移酶(N-acetylglucosa-minyl-transferase,Gnt)糖蛋白中糖链通过还原端的N-乙酰氨基葡萄糖以β-1,4糖苷键与蛋白质肽链上Asn-XXX-Ser/Thr序列(XXX为除脯氨酸以外的氨基酸)中Asn残基上的氨基(-NH2)相连,被称为N-糖链。

糖基转移酶的研究概述汇总

糖基转移酶的研究概述汇总
兔肝GnT1就是一个例子。在制备此酶时, 仅能得到少量纯
, 大量是不吸附在分离柱上不能进一步纯化的酶克隆了编码此酶的基因,由2.5kb
的序列测定得到了此酶的蛋白质一级结构, 由447个残基组成。穿透膜的疏水肤段含
, 可形成α螺旋。“颈”部的酶解点在45位残基, 在这切点和催化结构域之间
其它一些糖基转移酶也有这样高脯氨酸含量的“ 颈”部,这提
)
receptor molecules, such as proteins, nucleic acids, oligosaccharides, the lipid
[1].
glycosylated glycoproteins to study the structure and function of glycoproteins[2].This
, 为此出现了一系列糖类异质体作为分化抗原; 一旦发育成熟, 在细胞表面出现
.如果糖基转移酶在成熟细胞中活性很高, 就会产生癌变, 同时出现了
.在N一糖普键连接的糖链中多聚N一乙酞乳糖胺链的出现被看成是肿瘤的重
, 这类糖链可以降低细胞和基质间的粘着,有利于癌细胞的进一步的入侵.
(BHK) 被Rous肉瘤病毒感染后,GnTV的活性升高2.5倍;一些有转移倾
, 可以为特定的去氧糖单元寻 找新结合位点[34]。 (2)建立配基的化合物
这些化合物包括简单的氨基香豆素类骨架(am inocoum arin scaffolds)、非核 糖体肽
以及芳香化的聚酮配基[25]。但是, 由相 似酶催化进行C2N , C2C 糖基化还有待于进
(3)建立糖供体的化合物库 糖供体要包括很多 UDP 或 TDP 活化的糖和去氧糖。天
N一末端肽端, 接着是跨膜结构域(TMD), 然后是一段所谓的“茎”

糖基转移酶组织定位

糖基转移酶组织定位

糖基转移酶组织定位介绍糖基转移酶是一类重要的酶,它在生物体内起着关键的催化作用。

糖基转移酶能够将糖基转移给底物分子,从而产生糖基化产物。

糖基化反应是生物体内糖代谢的重要过程之一,它参与了许多生物学过程,如细胞信号传导、细胞识别和免疫应答等。

了解糖基转移酶的组织定位对于深入理解其功能和生理作用具有重要意义。

组织定位研究方法研究糖基转移酶的组织定位通常采用多种方法,包括细胞免疫荧光染色、免疫组织化学、蛋白质印迹、基因表达分析等。

这些方法可以在细胞和组织水平上检测糖基转移酶的存在和定位,从而揭示其在不同组织和细胞类型中的表达模式和功能。

糖基转移酶的组织定位糖基转移酶在不同组织中的定位具有明显的差异。

下面将对几种常见的糖基转移酶进行讨论。

1. 糖基转移酶A糖基转移酶A(GTA)是一类重要的糖基转移酶,它参与了细胞膜糖脂的合成过程。

研究发现,GTA主要定位在高度分化的细胞中,如肝脏、肾脏和肺组织。

这些组织中GTA的表达水平较高,说明其在这些组织中具有重要的生理功能。

2. 糖基转移酶B糖基转移酶B(GTB)是一类参与糖蛋白合成的酶。

研究表明,GTB主要定位在内质网和高尔基体中。

内质网是细胞内蛋白质合成和修饰的重要位置,而高尔基体则参与了蛋白质的后翻译修饰和运输过程。

GTB在这些细胞器中的定位说明其在蛋白质糖基化过程中起着重要作用。

3. 糖基转移酶C糖基转移酶C(GTC)是一类参与细胞膜糖脂的合成的酶。

研究发现,GTC主要定位在细胞质中。

细胞质是细胞内许多生物学过程的重要场所,包括蛋白质合成、能量代谢和信号传导等。

GTC在细胞质中的定位暗示其在这些生物学过程中可能发挥重要的功能。

糖基转移酶组织定位的生理意义糖基转移酶的组织定位对于揭示其功能和生理意义具有重要意义。

不同组织中糖基转移酶的表达模式和定位差异可能与其在不同组织和细胞类型中的特定生理功能相关。

研究发现,糖基转移酶在细胞信号传导中起着重要作用。

细胞信号传导是细胞内外信息传递的关键过程,它参与了细胞的生长、分化、凋亡等生物学过程。

糖基转移酶GnT-V和肿瘤的关系的研究进展

糖基转移酶GnT-V和肿瘤的关系的研究进展

·综 述·糖基转移酶GnT-V 和肿瘤的关系的研究进展耿直* 袁东智△(四川大学华西基础医学与法医学院生理学教研室,四川 成都 610041)摘要 蛋白质的糖基化修饰在多种生物学过程中扮演重要角色,一些特定蛋白的糖基化修饰也在肿瘤转移中具有重要作用。

N-乙酰氨基葡萄糖基转移酶V (N-acetylglucosaminyltransferase-V ,GnT-V )是N-乙酰氨基葡萄糖基转移酶的家族成员之一,参与了多种蛋白质的N-糖基化修饰。

近年研究发现,GnT-V 在多种肿瘤的转移中具有重要作用。

本文聚焦GnT-V ,针对其在肿瘤转移中的最新研究进展进行综述。

关键词:N-乙酰氨基葡萄糖基转移酶V ;转移;肿瘤治疗Research progress on the relationship between GnT-V and neoplasmsGeng Zhi*, Yuan Dong-zhi △(Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University,Chengdu 610041, China)Abstract Glycan modification of protein of cell is playing an important role in many biology processes, and theglycosylation of specific membrane proteins take part in the progress of metastasis.In this review, we introduced N-acetylglucosaminyltransferase-V (GnT-V), which joins N-glycan modification formation, and in recent opinions it plays a role in the tumormetastasis. We also summarized the studies on the relationships between cancer and GnT-V in last four years.Key words: N-acetylglucosaminyltransferase-V; Metastasis; Cancer therapy*作者简介:耿直,男,四川大学基础医学(基地班)专业2016级本科生,Email :**************; △通讯作者:袁东智,男,副教授,主要从事生理学科研与教学,Email :********************。

糖基转移酶名词解释_概述及解释说明

糖基转移酶名词解释_概述及解释说明

糖基转移酶名词解释概述及解释说明1. 引言1.1 概述糖基转移酶是一类重要的生物催化剂,它在细胞中起着关键的调控和介导作用。

糖基转移酶能够将一种糖基从一个底物分子上转移到另一个底物分子上,从而改变底物分子的化学性质和功能。

这些底物可以是蛋白质、核酸或其他小分子,糖基转移酶对于细胞内的信号传导、代谢调节以及糖类结构修饰等方面都具有重要作用。

1.2 文章结构本文将围绕糖基转移酶展开详细的解释和说明。

首先,在引言部分我们将对糖基转移酶进行概述,包括定义与原理、功能与作用以及分类与种类等方面的内容。

然后,我们将关注糖基转移酶在生物学意义、医学应用以及工业应用中的重要性。

接下来,我们将介绍研究糖基转移酶所采用的常见方法和技术,并给出一些实例和案例分析。

最后,在结论部分,我们将总结糖基转移酶的重要性和应用价值,并对未来研究提出展望与建议。

1.3 目的本文的目的在于对糖基转移酶进行全面而深入的解释和说明,帮助读者理解糖基转移酶的定义、原理、功能等方面的知识。

同时,通过介绍糖基转移酶在生物学、医学和工业领域中的重要性和应用,以及相关的研究方法和技术,希望进一步引发读者对该领域的兴趣,并为未来研究提供参考和指导。

2. 糖基转移酶概述:2.1 定义与原理:糖基转移酶是一类存在于生物体内的酶,其主要功能是将糖基从一个化合物转移到另一个化合物上。

该过程涉及到底物分子上的糖基团与活性位点上的特定氨基酸残基之间的相互作用。

这样的转移反应可以改变底物分子的特性和功能。

2.2 功能与作用:糖基转移酶在细胞中扮演着关键角色。

它们参与了多种生物学过程,包括代谢调节、细胞信号传导、蛋白质修饰等。

糖基转移酶还参与了糖复合物、磷脂等重要生物分子的合成和修饰,从而影响其稳定性和活性。

此外,糖基转移酶还能够催化毒素代谢和药物代谢过程。

2.3 分类与种类:根据其底物和产物类型的不同,糖基转移酶可被分为多个家族。

常见的糖基转移酶家族包括葡萄糖苷转移酶(GLUT)家族、糖基转移酶1(GT-1)家族和核糖基转移酶(RMT)家族等。

糖基水解酶 糖基转移酶

糖基水解酶 糖基转移酶

糖基水解酶糖基转移酶
糖基水解酶和糖基转移酶是两种与糖代谢相关的酶类。

首先,我们来看一下糖基水解酶。

糖基水解酶是一类酶,它能够催化水解反应,将糖基团从其他化合物中水解出来。

这些酶在生物体内起着至关重要的作用,因为它们能够帮助生物体将碳水化合物分解成可利用的糖类物质,从而提供能量和原料。

糖基水解酶在消化系统中也扮演着重要的角色,帮助人体消化食物中的多糖类物质,将其分解成可被吸收利用的单糖。

接下来,我们来了解一下糖基转移酶。

糖基转移酶是一类酶,它能够催化糖基的转移反应,将糖基团从一个底物转移到另一个底物上。

这些酶在细胞内的糖代谢途径中扮演着重要的角色,例如在糖蛋白的合成过程中,糖基转移酶能够催化糖基的转移,从而形成糖蛋白。

此外,糖基转移酶还参与了细胞表面糖基的修饰过程,影响细胞的信号传导和识别功能。

总的来说,糖基水解酶和糖基转移酶都是与糖代谢相关的重要酶类,在生物体的新陈代谢过程中发挥着重要作用。

它们的活性和功能对于维持生物体内部稳态具有重要意义,也为我们理解生物体内糖代谢途径提供了重要线索。

希望这些信息能够对你有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

糖基转移酶的研究概述邓传怀(河北大学生命科学学院2012生物技术中国保定071000)摘要糖基转移酶在生物体内催化活化的糖连接到不同的受体分子,如蛋白、核酸、寡糖、脂上,糖基化的产物具有很多生物学功能并具有高度的底物专一性。

本文综述了糖基转移酶的种类、功能、特性及其在组合生物合成中的应用与研究前景。

关键词糖基转移酶结构功能应用Outline about research ofglycosyltransferasesDeng Chuanhuai( College of Life Sciences , Biotechnology 2012, Hebei University ,Baoding )Abstract Glycosyltransferase catalyzing the biosynthesis of the sugar attached to different activated receptor molecules, such as proteins, nucleic acids, oligosaccharides, the lipid glycosylation product has many biological functions with a high degree of substrate specificity[1]. In glycosylation project, carried out by enzymatic protein glycosylation and important means of natural glycosylated glycoproteins to study the structure and function of glycoproteins[2].This article provides anoverview of the categories, functions, characteristics of Gtfs, their app lications in combinatorial biosynthesis, and the p rospects for research.Key Words Glycosyltransferase Structure and Function Application糖基转移酶是广泛存在于内质网和高尔基体内的一大类酶类[3],参与体内重要的活性物质如糖蛋白和糖脂中糖链的合成。

其作用是把相应的活性供体(通常是二磷酸核苷NDP-糖)的单糖部分转移至糖、蛋白质、脂类和核酸等,完成后者的糖基化加工实现其生物学功能。

1 糖基转移酶的结构在真核细胞中,绝大多数糖基转移酶都是位于内质网和高尔基体,除个别( 如合成G 寡糖的al,2甘露糖转移酶是I 型膜蛋白)外,它们都是Ⅱ型膜蛋白, 都有着相似的域结构。

首先是一段短的留在胞质的N一末端肽端, 接着是跨膜结构域(TMD), 然后是一段所谓的“茎”(stem)区,余下则是一段很长的球形催化结构域。

其中跨膜域在糖基转移酶的高尔基体膜定位中起着关键作用,而胞质尾端“茎”区的毗邻跨膜域的部分氨基酸则起着辅助作用。

肤链的“茎”区氨基酸对某些蛋白水解酶敏感,易被水解,使催化结构域游离溶解出来,这在糖基转移酶的可溶化和提纯有重要意义。

最近的一项研究表明ST6GalI的“茎”区域在糖蛋白受体的选择有一定作用, 可能是因为“茎”区域影响催化域的三维结构, 对这一区域意义的阐明还有待更多的研究.长期以来,人们对糖基化反应的分子机制一直不甚清楚, 最重要的原因的就是缺乏对糖基转移酶的三维结构的认识。

1994年,Virelink 等利用X射线晶体衍射技术率先完成了对噬菌体T4的β-GlcT ( BGT)的3 D结构的测定。

1999年至今, 人们又相继完成了另外12 种糖基转移酶的3D结构的测定结果发现这13 种糖基转移酶都是α∕β蛋白, 而且只采用了两种折叠模式GT一A 折叠和GT一B折叠( 即上文所提的两个超家族), 通过穿针引线分析(threadinganalysis)发现其余大多数糖基转移酶都采用这两种折叠模式中的一个。

核酸法测定蛋白质一级结构的迅速发展和广泛使用, 也为糖基转移酶的结构研究提供了有用的方法。

因为大多数糖基转移酶是膜结合蛋白, 量很少, 不足以用经典的蛋白质化学方法测定它们的整个结构.目前认为仅是参与糖蛋白和糖脂中糖链合成的糖基转移酶就有上百种, 被克隆的哺乳动物来源的糖基转移酶只有十几种,这些糖基转移酶的cDNA的序列已被测定。

它们大多有相似的域结构闭, 即:一段短的末端的肤段尾巴在细胞质中, 接着是16-20个残基组成的穿透膜的肤段, 然后是一段长度尚未确定的所谓的“颈”部, 余下的是很长的有催化活性的结构域, 后者在高尔基体的腔内。

肽链中的“颈”部对某些蛋白水解酶敏感, 原来的膜酶经水解后成了可溶性的酶。

后者比前者更为容易分离纯化, 为此多数糖基转移酶的结构研究, 是以水解得到的可溶性酶作起始材料, 得到了它们的cDNA后就能进一步测得酶的其它部分。

兔肝GnT1就是一个例子。

在制备此酶时, 仅能得到少量纯化的酶, 大量是不吸附在分离柱上不能进一步纯化的酶克隆了编码此酶的基因,由2.5kbcDNA的序列测定得到了此酶的蛋白质一级结构, 由447个残基组成。

穿透膜的疏水肤段含有25个残基, 可形成α螺旋。

“颈”部的酶解点在45位残基, 在这切点和催化结构域之间的肤段中有异常多的脯氨酸。

其它一些糖基转移酶也有这样高脯氨酸含量的“颈”部,这提示了糖基转移酶的“颈”部在高尔基体腔内糖基化过程中有特定的作用,例如有利于糖基化蛋白的移动。

2 糖基转移酶的分类糖基转移酶的传统分类方法是根据其所转移的单糖分类, 如半乳糖转移酶, 唾液酸转移酶等; 国际生物化学和分子生物学学会推荐的分类方法是根据底物及产物立体化学异构性分类分为反向型(Inveritgn) 和保留型(Eratinign)这些分类方法存在一个明显的不足, 即不能揭示糖基转移酶的内在结构特征, 彼此同源性极低, 即使同一类糖基转移酶序列相似性也很低。

1997年Campbell 等提出一种新的分类方法, 根据序列同源性、底物/ 产物立体化学异构性以及供体糖进行分类到目前为止,依据这种分类方法糖基转移酶被分为66家族及一个未分类族,出人意料的是如此众多的家族却只采用了两种折叠方式, 从而形成两种超家族, 分别命名为GT-A超家族和GT-B超家族。

这两个超家族之间无论折叠方式, 活性位点还是催化机制都各不相同, 为如何完成糖基化反应这一问题提供了两种不同的答案.3 糖基转移酶的作用机制根据产物的立体化学异构性,糖基转移酶的作用机制分两种:反向型和保留型糖基转移酶。

反向型糖基转移酶的作用机理是双分子亲核取代反应。

利用NDP-糖活化的C-1作为亲电子基团,亲核攻击捕获带有亲核受体原子的糖苷配基,经过一个氧络正碳离子-离子样的过渡态产生一个反向的异头构型,完成一个简单的取代反应;关于保留型糖基转移酶的反应机制目前还没有确切的答案。

参照糖苷酶的反应机制,糖基转移酶很可能经历了二次取代反应,首先形成一种含有共价键的糖基-酶中间体,释放核苷二磷酸,二磷酸基团将受体的羟基受体活化,而后受体再进攻糖基-酶复合体,形成糖苷键。

作为底物或者产物的磷酸盐作为一种碱性催化剂在许多文献中都被报道。

目前以研究保留型糖苷酶催化机制的方法去研究各种转移酶的催化机制已经做了大量工作,但仍没有得出针对参与反应的催化性亲核试剂及动力学及催化学机制层面上成立的共价中间体的最终鉴定结果。

这可能可以作为反驳在糖基转移酶中不存“双取代”机制的证据,但是还有一种可能就是用于研究糖苷酶的研究方法根本不适用于糖基转移酶,因为用于研究这两种酶的底物的性质存在着根本的不同。

所有的糖基转移酶都有高度的底物专一性即对糖基的供体有专一性,而且对糖基的接受体也有专一性,大多数糖基的供体是不同类型的核苷二磷酸激活的单糖不同的单糖用不同的核苷二磷酸活化但同样是葡萄糖基转移酶, 因合成的产物结构不同或合成的部位不同,所用的供体上的核苷二磷酸也不同。

4 糖基转移酶的功能2.2.1糖基转移酶在糖类合成中的应用糖类药物在治疗炎症、用作肿瘤疫苗和抗病毒等方面都有其独特的功效。

现在普遍使用的糖类合成方法有两种: 化学合成和酶促合成。

化学合成近年来取得一些进展, 提出了一种全自动寡糖合成法, 但在天然复合产物中以一种糖代替另一种糖仍然困难。

酶促合成凭借其高产量、产物的特异立体化学异构性而愈来愈受人们的青睐。

本来人们以为糖基转移酶的高度底物专一性将会限制糖基转移酶的应用, 但事实并非如此。

首先,GT一A 超家族的部分糖基转移酶有着相对宽松的底物专一性, 它们能用于合成一些非天然寡糖,而且根据糖基转移酶的结构比较能够找到决定其底物专一性的区域,通过改变这些区域的结构, 可以设计出新的糖基转移酶改变或增加其选择性范围。

酶促合成的另一个难题就是糖基供体的获取上, 最近人们利用磷酸一1-己糖核苷转移酶不严格的底物专一性生成结构多样的TDP一糖或UDP一糖。

另外有人提出一种新的方法可以原位重生核苷一糖供体, 减少了合成核苷一糖供体的花费。

相信在不久的将来, 利用糖基转移酶和产生糖基供体的酶人们将建立糖聚合物数据库以供检索。

糖基转移酶与疾病糖基转移酶的表达和活性的变化与许多疾病联系在一起, 并可作为某些疾病的诊断标志, 如α-1,3-半乳糖基转移酶活性在体内的再现会引发自身免疫反应, 导致类风湿, 并在器官异体移植中引起排斥反应; N-乙酰氨基葡萄糖基转移酶、岩藻糖基转移酶等在成熟细胞中活性的明显升高被视为肿瘤发的重要标志, 并且被认为是肿瘤迁移恶化的重要原因. 因此设计合成糖基转移酶抑制剂, 对于寻找抗肿瘤、抗免疫系统等新药研究有重要意义.α1一3 G T 的活性在人体内的重现会引发自身免疫反应.相反, 如果人体内βl一4 半乳糖基转移酶的活性下降, 致使正常的免疫球蛋白G(IgG )分子中的糖链半乳糖含量降低.IgG 是一种糖蛋白, 它的糖含量不高, 约5 % , 最主要的糖链是在CH一2 结构域中的Asn一297上的二分支复杂型的糖链, 即使是这样比较简单的糖链也至少有30 种结构类似仅有极小差异的不同形式, 每种结构被称为一种糖型(glycoform).这种半乳糖缺少的异质体对正常机体而言也是异物, 因此, 它能诱导抗体的产生, 从而也会出现自身免疫, 其症状是类风湿.糖基转移酶的表达和细胞的周期密切有关.在细胞分化阶段, 许多糖基转移酶的基因是表达的, 为此出现了一系列糖类异质体作为分化抗原; 一旦发育成熟, 在细胞表面出现了另一些糖链异质体.如果糖基转移酶在成熟细胞中活性很高, 就会产生癌变, 同时出现了早期的分化抗原.在N一糖普键连接的糖链中多聚N一乙酞乳糖胺链的出现被看成是肿瘤的重要标志, 这类糖链可以降低细胞和基质间的粘着,有利于癌细胞的进一步的入侵.婴幼田鼠肾细胞(BHK) 被Rous肉瘤病毒感染后,GnTV的活性升高2.5倍;一些有转移倾向的肿瘤细胞和非转移的细胞相比,GnTV 的活性高出3一10 倍.岩藻糖基转移酶的活性在肿瘤细胞中也明显升高.糖基转移酶的研究还处于起步阶段, 仅知道一些酶的结构还是远远不够的.更为重要的是了解这些糖基转移酶在多酶系统中是如何协调的, 以及这些酶的表达是受那些因素调控的.这是糖基转移酶今后研究的方向。

相关文档
最新文档