糖基转移酶与糖苷酶

合集下载

糖苷酶基因工程及应用

糖苷酶基因工程及应用

糖苷酶基因工程及应用糖苷酶即糖苷水解酶(Glycoside hydrolases, GH,EC3.2.1) ,是一类水解糖苷键(glycosidic bonds)的酶,在生物体糖和糖缀合物的水解与合成过程中扮演着重要角色。

糖苷酶在催化糖苷反应时,如果水分子的氧原子进攻受体葡萄糖上的异头碳,即发生水解反应,但如果是葡萄糖羟基上的氧原子进攻受体葡萄糖上的异头碳,即发生转糖基反应。

对其性质和功能的研究一直是生物学和糖生物学关注的热点。

目前已知的糖苷酶大约有2 500 多种,根据序列相似性分为100 多个家族,每一个家族的酶具有相同的空间结构和反应机制。

糖苷酶根据催化作用机制的不同分为两类: 构型翻转酶和构型保持酶,其中,构型保持酶在催化糖苷键水解的同时,还具有转糖基活性,即糖苷键合成活性,该性质使其成为糖类合成的重要工具。

近年来,随着对该类化合物的深入研究,许多糖基化合物需要经改性后才能满足人们的要求,而糖苷酶在这一任务中无疑将扮演重要角色,利用糖苷酶对糖基化合物的糖基定向改造工程成为一个研究热点。

目前有几种常见的糖苷酶:α-甘露糖苷酶、阿拉伯糖苷酶、β-木糖苷酶、β-葡萄糖苷酶、β-呋喃果糖苷酶、壳三糖苷酶、耐高温β-甘露糖苷酶以及硫代糖苷酶等。

这些酶在生物体内和体外都具有重要的作用。

所以研究糖苷酶具有重要的意义。

1.糖苷酶基因工程糖苷酶可以通过微生物发酵法和提取法得到。

发酵法生产的糖苷酶的微生物主要有黑曲霉(Aspergillus niger)、米曲霉(Aspergillusoryzae)、节杆菌(Arthrobacter sp.)。

但是,自然界现有的糖苷酶普遍存在着含量少、产酶活力低、产物提取分离与纯化困难、稳定性差、底物特异不高、催化能力低等问题, 从而使得糖苷酶的生产成本高、产量低,远不能满足需求,需要对其进行改造使之更加符合人们的要求。

近年来,随着基因工程、酶工程等现代生物技术的迅猛发展,酶分子的改造取得了辉煌成就,这也成为糖苷酶改造的有力工具。

糖及糖组学考试复习题及答案解析

糖及糖组学考试复习题及答案解析

糖及糖组学考试复习题及答案解析1、糖⽣物学:通过运⽤分析化学、合成有机化学、⽣物化学与分⼦⽣物学、遗传学和细胞⽣物学等多学科⼿段研究糖及其衍⽣物的结构、合成代谢、⽣物学功能,以及与疾病的关系的⼀门交叉科学,包括糖化学、糖链合成、糖链在⽣物系统中功能及糖链操作技术等。

2、糖组学:是从分析和破解⼀个⽣物或⼀个细胞全部糖链所含信息这⼀⾓度⼊⼿,研究糖链的分⼦结构、表达调控、功能多样性以及疾病的关系的科学。

3、糖缀合物:⼜叫糖偶联复合物,糖与蛋⽩或脂类形成的共价结合物,如糖蛋⽩、糖脂、糖胺聚糖、蛋⽩聚糖及⼩分⼦糖苷。

4、糖基化反应:核苷糖供体和受体(如单糖、寡糖、蛋⽩质、脂和DNA)在特定的糖基转移酶的催化下⽣成糖基化受体同时释放出核苷酸的过程。

5、糖基转移酶:负责催化糖苷键的合成,是膜结合蛋⽩,有跨膜区,茎区和催化域组成。

糖基转移酶对受体结构有⾼度的特异性,并且酶的底物专⼀性相互重叠。

糖基转移酶的表达是基本⽔平组成型表达,还有发育阶段依赖及组织专⼀性,有105家族。

6、核苷糖转运⼦:在真核细胞中,能够将在细胞质中合成的核苷糖转运到亚细胞器(如内质⽹/⾼尔基体)的腔内,并从亚细胞器中送出核苷⼆磷酸转化⽣成的核苷⼀磷酸的蛋⽩载体,位于膜上。

7、N-糖链:糖链连接到蛋⽩质的天冬酰胺上,核⼼结构是Asn-GlcNAc2Man3,糖链较长,结构较复杂。

8、O-糖链:糖链连接到蛋⽩质的丝氨酸或苏氨酸上,糖链短,结构简单。

9、糖苷酶:是⼀类催化糖苷键⽔解的酶。

在酸性条件下,能催化由半缩醛羟基与醇羟基反应形成的糖苷键的断裂,有内切糖苷酶和外切糖苷酶。

根据结构差异分为135个家族(GH1-GH135)。

10、凝集素:⼀类⾮免疫来源的糖结合蛋⽩,没有酶活性,蛋⽩上有糖识别域,特异识别糖链末端特定的糖结构,能引起细胞凝集。

11、植物疫苗:病原体侵染植物,细胞表⾯半纤维素类多糖降解为寡糖,寡糖作为信号分⼦诱导植物基因表达,使植物表现出多种防卫功能,这些寡糖类物质具有类似疫苗的功能,植物疫苗有壳寡糖和⼏丁寡糖、葡寡糖、寡聚半乳糖醛酸。

蛋白质翻译后修饰

蛋白质翻译后修饰

细胞应激反应
在应激条件下,如氧化应激和DNA损伤, 蛋白质翻译后修饰可以调控应激反应相关蛋 白的活性和功能,从而影响细胞的生存和凋
亡。
THANK YOU
泛素化作用
泛素化可以影响靶蛋白的稳定性、定位、活性以及与其他蛋白质的相互作用,从 而调控细胞内的多种生物学过程,如细胞周期、信号转导和自噬等。
泛素化可以标记受损或不需要的蛋白质,引导其被蛋白酶体降解,从而维持细胞 内蛋白质的平衡。
泛素化调控
泛素化过程受到严格的调控,涉及多种酶的协同作用。这些酶包括E1(泛素活化酶)、 E2(泛素结合酶)和E3(泛素连接酶)。
E3酶在泛素化过程中起着关键作用,它能够识别并结合特定的靶蛋白,将泛素分子准 确地连接到靶蛋白上。
此外,去泛素化酶能够逆转泛素化过程,去除已经结合在靶蛋白上的泛素分子,从而对 泛素化进行动态调控。
05
其他翻译后修饰
乙酰化
总结词
乙酰化是一种常见的蛋白质翻译后修饰,通过将乙酰基团连接到蛋白质的特定氨基酸残基上,可以调节蛋白质的 活性和功能。
翻译后修饰可以影响蛋白质的稳定性 ,通过增加或减少蛋白质的降解速率 ,从而影响细胞内蛋白质的水平和功 能。
蛋白质降解
某些翻译后修饰,如泛素化,可以标 记蛋白质进行降解,通过蛋白酶体途 径降解蛋白质,维持细胞内蛋白质的 动态平衡。
蛋白质功能调控
酶活性调节
亚细胞定位
许多蛋白质在翻译后被修饰以改变其酶活性, 例如,磷酸化可以激活或抑制酶的活性,从 而调控代谢过程和信号转导。
03
疾病与磷酸化
许多人类疾病与蛋白质磷酸化的异常有关。例如,一些癌症和神经退行
性疾病的发生与特定蛋白质的异常磷酸化有关。因此,对蛋白质磷酸化

a-糖苷酶作用机制

a-糖苷酶作用机制

a-糖苷酶作用机制1.引言1.1 概述糖苷酶是一种重要的酶类,在生物体内起着关键的催化作用。

它们能够催化糖苷化合物的水解反应,将糖基从底物中剥离出来,从而发挥多种生理功能。

这些功能包括细胞信号传导、能量供应以及分解食物中的多糖类化合物等。

糖苷酶广泛存在于各种生物体中,如细菌、真菌、植物和动物等。

它们在不同生物体中的结构和功能具有一定差异,但都遵循一定的作用机制。

糖苷酶主要通过两种基本机制来催化底物的水解反应。

首先是酰基转移机制,其中糖苷酶通过将一个酰基由底物转移到水分子上,从而形成糖和一个羟基的临时中间体。

然后,这个临时中间体会发生水解反应,生成糖和自由的底物。

另一个常见的机制是酸碱催化机制。

通过在催化过程中提供一个酸性或碱性的催化剂,糖苷酶能够降低底物的活化能,从而促进水解反应的进行。

糖苷酶作用机制的深入研究对于理解生物体内多种生物过程具有重要意义。

通过揭示糖苷酶催化的具体机制,我们可以更好地理解免疫系统的功能,研究药物的代谢途径,并开发出更有效的药物。

近年来,糖苷酶作用机制的研究取得了显著进展,为进一步揭示生物体内底物水解反应的详细机制提供了重要的依据。

总之,糖苷酶作为一类重要的酶类,通过催化糖苷化合物的水解反应,在生物体内发挥着重要的功能。

我们对糖苷酶作用机制的深入研究不仅有助于加深对生物体内多种生物过程的理解,还为新药物的探索与开发提供了重要的指导。

1.2文章结构文章结构:本文主要介绍和探讨了糖苷酶的作用机制。

文章按照以下结构进行叙述:引言部分将对糖苷酶的概念和定义进行介绍,同时概述本文的研究目的。

接下来的正文部分将重点介绍糖苷酶的基本作用机制。

首先,将详细阐述糖苷酶的定义和分类,使读者对糖苷酶有更全面的了解。

然后,将重点介绍糖苷酶的基本作用机制。

这包括糖苷酶与底物的结合、底物的降解过程以及触发和催化底物反应的关键步骤等。

通过对糖苷酶作用机制的详细阐述,读者将能够更好地理解糖苷酶的功能和作用。

糖生物学论文 糖基转移酶与糖基转移酶抑制剂

糖生物学论文 糖基转移酶与糖基转移酶抑制剂

糖基转移酶与糖基转移酶抑制剂摘要:糖基转移酶在生物体内催化活化的糖连接到不同的受体分子,如蛋白、核酸、寡糖、脂和小分子上,糖基化的产物具有很多生物学功能。

其是糖蛋白、糖脂中糖链生物合成的关键酶之一。

与此同时,对糖基化抑制剂的研究也是必要的。

两者在治疗一些因为糖基转移酶非正常表达引起的疾病有很大作用。

关键词:糖基转移酶;糖基化;糖基化抑制剂前言:糖基转移酶是广泛存在于内质网和高尔基体内的一大类酶,参与体内重要生物活性物质如糖蛋白和糖脂中糖链的合成,其作用是把相应的活性供体(通常是二磷酸核苷NDP-糖)的单糖部分转移至糖、蛋白质、脂类和核酸等,完成后者的糖基化加工,实现其生物学功能。

因此糖基转移酶的表达和活性的变化与许多疾病联系在一起,并可作为某些疾病的诊断标志,如α-1,3-半乳糖基转移酶活性在体内的再现会引发自身免疫反应,导致类风湿,并在器官异体移植中引起排斥反应;N-乙酰氨基葡萄糖基转移酶、岩藻糖基转移酶等在成熟细胞中活性的明显升高被视为肿瘤发生的重要标志,并且被认为是肿瘤迁移恶化的重要原因。

因此设计合成糖基转移酶抑制剂,对于寻找抗肿瘤、抗免疫系统等新药研究有重要意义。

1 糖基转移酶的存在糖蛋白是通过蛋白质的糖基化组装实现的,而糖基化过程则通过多种糖基转移酶完成——在肽链合成的同时或合成后,在糖基转移酶的催化下,糖链被连接到肽链的特定糖基化位点上。

糖基转移酶具有高度的底物专一性,即同时对糖基的供体和受体具有专一性。

对糖基转移酶进行研究,是糖基化研究的第1步。

目前已对多种糖基转移酶的结构以及编码它们的基因研究清楚,并认为糖链的合成没有特定的模板,而是通过糖基转移酶将糖基由其供体转移到受体上。

糖链可以认为是基因的次级产物,一个基因编码一个糖基转移酶,一个糖基转移酶专一地催化一个糖苷键的合成;这样一条糖链的合成就需要一个多酶系统,也就对应了一个基因组。

下文简要介绍几类重要的糖基转移酶。

1.1 N-乙酰氨基葡萄糖转移酶(N-acetylglucosa-minyl-transferase,Gnt)糖蛋白中糖链通过还原端的N-乙酰氨基葡萄糖以β-1,4糖苷键与蛋白质肽链上Asn-XXX-Ser/Thr序列(XXX为除脯氨酸以外的氨基酸)中Asn残基上的氨基(-NH2)相连,被称为N-糖链。

糖生物学基础

糖生物学基础

糖生物学基础举出5个糖复合物例子,说明其合成途径及重要生物功能。

现以N-连接糖蛋白中免疫球蛋白G、卵清蛋白;0-连接糖蛋白中黏蛋白、运铁蛋白;蛋白聚糖中肝素共5种糖复合物为例。

一.N-连接糖蛋白定义:糖蛋白的糖链与蛋白部分的Asn-X-Ser序列的Asn氮以共价键连接称N-连接糖蛋白。

连接点的结构:GlcNAcβ-N-Asn糖基化位点:N-连接聚糖中Asn-X-Ser/Thr三个氨基酸残基序列子(其中X 是除脯氨酸外的任一氨基酸)称为糖基化位点。

结构:(三型)结构特点:A.每种类型都具有一个五糖核心B.它们具有不同的分支,这些寡糖链分支常常被称为天线C.血液循环中和膜上的糖蛋白常常是N-糖苷连接N-连接寡糖的合成:N-连接寡糖是在内质网上以长萜醇(dolichol)作为糖链载体,先合成含14糖基的寡糖链,然后转移至肽链的糖基化位点上,进一步在内质网和高尔基体进行加工而成。

每一步加工都由特异的糖基转移酶或糖苷酶催化完成,糖基必须活化为UDP或UDP的衍生物。

免疫球蛋白G属N-连接糖蛋白。

生物功能如下:I g分子具有结合抗原和刺激抗体生成的双重功能。

首先,它能与抗原结合,产生多种生物效应,包括:①与病原微生物或它分泌的毒素结合,产生抗感染免疫;②活化体液的一类正常组分,即补体分子,起到杀伤病原体或靶细胞的作用;③加强吞噬细胞等免疫细胞的吞噬或杀伤效应;④与组织中的肥大细胞或嗜碱性粒细胞结合,产生过敏反应;⑤封闭移植的脏器,增强对它的保护,减缓排斥;⑥封闭肿瘤细胞,降低免疫保护。

免疫球蛋白还能穿过胎盘输送给胎儿。

此外,由于Ig分子由糖蛋白组成,所以除了上述抗体活性,还有抗原性,可活化自身免疫细胞,使之产生针对抗体的抗体──抗独特型抗体(Id抗体),从而形成自身调节的功能。

各类免疫球蛋白的特性五类Ig在理化及生物学特性上各有不同。

IgG。

IgG是生物体液内主要的Ig,约占血液中Ig总量的70~75%。

由于IgG能通过胎盘,所以新生儿从母体获得的IgG 在抵抗感染方面起重要作用。

蛋白质修饰(糖基化,乙酰

蛋白质修饰(糖基化,乙酰

• 2.5糖基化与疾病 一些疾病也被发现与糖基化 异常有关。如第一 个被鉴定为糖基化异常引 起的疾病I-细胞病就是因为N-糖链不能进一步 进行甘露糖-6-磷酸修饰而导致蛋白分解代谢失 常所引发的一类贮积病。在囊性纤维病中,也 被证实存在异常糖基化:岩藻糖增多而唾液酸 下降。这也成了该病的一种标志。 正因为某 些疾病中存在着异常的糖基化现象,一些针对 糖基化的抑制剂也已开始运用于到疾病的治疗 试验中。如α-葡萄糖苷酶抑制剂阿卡玻糖,米 格列醇等被用于糖尿病治疗临床试验。 N-丁基 脱氧野尻霉素和6-0-丁基脱氧野尻霉素 也都已 被运用于治疗艾滋病的临床试验中
糖基磷脂酰肌醇脂锚定蛋白(GPI)
• 糖基磷脂酰肌醇锚定连接: GPI 锚定蛋白的 C末端是通过乙醇胺磷酸盐桥接于核心聚糖 上,该结构高度保守, 另有一个磷脂结构将 GPI 锚连接在细胞膜上。不同GPI锚结构中 的多糖成分是不同的。GPI锚的一般结构主 要是由乙醇胺,糖核心和肌醇连接而成, 肌醇最终通过磷酸基团与细胞膜中的磷脂 结构相连,乙醇胺则与蛋白质的羧基端相 连。生物体中,许存在此类糖基化,包括 一些水解酶、黏附多蛋白质蛋白、免疫蛋 白、补体调节蛋白等。
3.调控转录
• 生物通过调控DNA结合蛋白、转录因子或者 与转录相关的其他蛋白乙酰化状态来控制 基因的表达。
4.参与蛋白质降解
• 蛋白质组学研究证明,在许多情况下,蛋白质 乙酰化影响蛋白质的活性、稳定性和蛋白质与 蛋白质之间或者蛋白质与DNA之间的相互作用, 从而影响细胞的生理状况。核糖核酸核酶 RNaseR是存在于细菌中的非常特殊的酶,对细 菌的生存至关重要。RNaseR的表达受多种逆境 诱导的分子机制是由蛋白质乙酰化引起的,乙 酰化修饰能促进tmRNA和SmpB复合物的结合, 改变RNaseR结构,从而导致其被蛋白酶降解。 在逆境条件下,RNaseR不被修饰,不能被蛋白 质降解,所以保持稳定。

糖酶知识

糖酶知识
不同来源的α-淀粉酶具有不同的热稳定性和最适 温度。
如果以每分钟升高1.5℃的速度加热α-淀粉 酶粗制剂的溶液,那么在温度达到80℃时,几种 α-淀粉酶的百分残余活力如下:
霉菌1%,谷类25%,而细菌92%。
耐热α-淀粉酶
地衣形芽孢杆菌α-淀
粉酶的最适温度为
92℃,而淀粉液化芽袍 杆菌α-淀粉酶的最适 温度为 70 ℃。
常用的终止酶反应的方法:
①反应时间一到,立即取出适当反应液,置于沸水浴中, 加热使酶失活;
②加入适宜的酶变性剂,如三氯醋酸(TCA)等,使酶 变性失活;
③加入酸或碱溶液,使反应液的pH值迅速远离催化反 应的最适pH值而使反应终止;
④将取出的反应液立即置于低温冰箱、冰粒堆或冰盐溶 液中,使反应液的温度迅速降低至10℃以下而终止反应。
通常是从大豆提取蛋白质后由废水中提取或从蒜苗 制取淀粉的废水中得到的。麸皮、大麦、麦芽也是生 产β-淀粉酶的原料。微生物也是重要的原料。
-淀粉酶性质
(1)pH 对-淀粉酶活力影响
植物:最适pH5.0~6.0 范围5.0~8.0 微生物:最适pH6.0~7.0 范围4.0~9.0
(2)温度对β-淀粉酶活力的影响
指示酶(Indicator enzyme)
e.g. 葡萄糖氧化酶活力
葡萄糖氧化酶
葡萄糖
葡萄糖内脂+H2O2
过氧化物酶(纯品)和木酚
过氧化物酶
H2O2 + 木酚
性质
(1)分子量:约5万 (2) 金属酶:属于金属酶,每个酶分子中含有一
个Ca2+,其与酶分子结合非常牢固。 激活剂和稳定剂
(3) pH对-淀粉酶的影响
一般在pH5.5~8时稳定,pH4以下容易失活, 酶的最适pH值为pH5~6。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
功能:催化糖苷键的合成( O-, N-, S-, or C-glycoside ) 供体:活化的糖磷酸 受体:亲核基团(蛋白、脂、核酸、糖、小分子),通常为-OH
Leloir donors:
糖供体底物
Non-Leloir donors:
Leloir: 阿根廷生物化学 家,研究核苷酸 代谢,1970, 诺贝尔化学奖
催化机理
Inverting: SN2 nucleophilic attack at the C1 atom

Retaining: double displacement mechanism
糖基转移酶辅因子ห้องสมุดไป่ตู้
Many, but not all, glycosyltransferases utilize divalent metal ion cofactors such as Mn2+ and Mg2+. … mainly in glycosyltransferases that are diphosphonucleosidedependent.
Derivative synthesis
Rossmann-type domains (for nucleotide binding)
GT-A fold: SpsA from Bacillus subtilus
GT-B fold: beta-glucosyltransferase from bacteriophage T4
Transglycosylase from Staphylococcus aureus
第二节 糖基转移酶及其应用
主要内容
糖转移酶简介 糖基转移酶在合成中的应用
糖转移酶简介
• Glycosyltransferases 应用‘activated’ sugar phosphates 作 为糖供体,合成 glycosidic linkage ,糖受体通常为 nucleophilic group, usually an alcohol. 生成的糖苷可以为 O-, N-, S-, or C-glycoside
OAc
AcO
3 steps AcO
O AOcO OAc
2
O N3
AcO
6 steps
OAc
OAc
AcO
HO
O AOcO
O N3
OAc
AcO
6
规模小,过程复杂,立体选择性难
glycosylation
OH
HO
HO
O OH OH
OH
HOO
OO HO
O
9
OH
HO
NHAc
4 steps
OBn
BnO
BnO
O OAcOAc
N-acetylglucosamine phosphorotransferase
糖基转移酶在合成中的应用
➢ 寡糖的酶法合成 ➢ 具有生物活性含糖天然产物的酶法合成 ➢ 生物制药----糖蛋白药物生产策略 ➢ 生物制药----糖疫苗生产策略
Chemical Synthesis of a-Gal
OAc
OAc
BnOO
O AOcO
O N3
OAc
AcO
7
Reaction Catalyzed by 1,3Galactosyltransferase
HO OH
O
O
HO
OO
NH
HO O P O P O O N O +
O- O-
HO OH
O
HO
O HO HO
OH O OR NHAc
UDP-Gal HO OH Donor
metal ion is coordinated to an oxygen of each of the two phosphate groups, as well as to side-chain carboxylates derived from the protein..
糖基转移酶抑制剂
➢ 直接抑制糖基转移酶活性 底物类似物;过渡态类似物
Gal1,4GlcNAc-R, acceptor
Mn2+ 1,3-galactosyltransferase
HO OH
O
HO
HO HO O
OH O O OH HO
OH O OR NHAc
+
-Gal epitope
OO
HO P O P O O- O-
O NH
ON O
HO OH
UDP
碳水化合物的合成
Organic Synthesis Biosynthetic process
Leloir GTs
Oligosaccharyl transferase STT3 from Pyrococcus furiosius
Non-Leloir GTs
催化机理
• Glycosyltransferases catalyze the transfer of glycosyl groups to a nucleophilic acceptor with either retention or inversion of configuration at the anomeric centre. This allows the classification of glycosyltransferases as either retaining or inverting enzymes.
糖基转移酶 根据糖供体 中是否含有 核苷酸分为 两类。
糖基转移酶分类
➢根据氨基酸序列相似性进行分类: 分为94 家族 (distinct sequence-based families) (CAZy server, rs-mrs.fr/CAZY) 人类拥有约 270多种糖基转移酶序列,属于 33个家族。
➢根据蛋白结构相似性进行分类:
GT-A,GT-B,其他类型 ➢根据糖供体和糖苷键连接方式进行分类:
Alpha-1,4-葡萄糖转移酶;beta-1,4-半乳糖转移酶; 2,3-唾液酸转移酶
NDP-binding domain generally contains a conserved DXD amino acid motif
alpha-2,6-唾 液酸转移酶抑 制剂
Beta-1,4-半乳 糖转移酶抑制 剂
➢ 阻断糖供体的合成
N-Glycan 合成过程中,首先要合成:dolichol-pp-N-acetylglucosamine
UDP-GlcANc + dolichol-p ------ dolichol-pp-GlcNAc
相关文档
最新文档