糖生物学_植物糖基转移酶研究进展

糖生物学_植物糖基转移酶研究进展
糖生物学_植物糖基转移酶研究进展

期末考核

课程:Glycobiology

植物糖基转移酶研究进展

:***

学号:***

班级:***

时间:****

植物糖基转移酶研究进展

摘要:糖基转移酶一类是能够催化糖基从激活的供体转移到特定的受体分子上的一类酶,在生物体中普遍存在并形成了超基因家族。糖基转移酶广泛参与植物生命活动的各种生物学过程。本文综述了近年来的研究报道,综述了糖基转移酶的分类、分离鉴定方法及在生物学功能方面的研究进展,期望为相关研究工作提供参考。

关键词:植物糖基转移酶,分类,分离鉴定,生物学功能

糖基转移酶(Glycosyltransferases,GT,EC 2.4.x.y)是一类催化糖基转移的酶,通过产生糖苷键将供体糖分子或相关基团转移至特异的受体上。糖基转移酶几乎存在于所有的生物体中,其所催化的糖基化反应是最重要的生物学反应之一,直接参与二糖、单糖苷、聚糖苷等的生物合成。糖基供体分子包括双糖、多糖、1-磷酸糖、尿苷二磷酸葡萄糖醛酸,植物中最常见的供体为UDP-Glc。受体可以是糖类、脂类、蛋白质、抗生素和核酸。糖基转移酶催化供体-受体形成α、β两种糖苷键,产物为多糖、糖蛋白、糖脂以及糖苷化合物等。全基因组测序发现真核生物中约1%的基因编码糖基转酶。

1糖基转移酶的分类

目前,对糖基转移酶的分类主要根据Campbell等提出的GT Family 分类系统(数据收录在CAZy数据库中)。糖基转移酶作为高度分歧的多源基因家族,根据蛋白氨基酸序列的一致性、催化特性以及保守序列对其进行分类。因此,一特定的糖基转移酶既可以通过生物化学的方法鉴定其底物,也可以通过生物信息学方法研究其与已知酶基因或酶蛋白氨基酸序列的同源性对其进行分类。目前,依据这种分类方法,糖基转移酶被分为94个家族。根据其的折叠方式可将绝大多数酶分为两个超家族,GT-A超家族和GT-B超家族(图1)。根据催化反应机制、产物的立体化学异构性,在这两个超家族中糖基转移酶又分为反向型和保留型两大类(图2)。

GT-A型折叠的空间结构有两个紧密相连的β/α/β类Rossmann折叠区域。GT-A家族成员需要一个D-X-D基序用来结合二价金金属离子(多为Mn2+),这有助于UDP-糖供体的PPi在酶活性位点上的固定,对于催化反应是不可或缺的。GT-A难以识别UDP-糖供体以外的供体,所以受体的多样性较低。GT-B型折叠的空间含有两个正对的β/α/β类Rossmann折叠区域,连接方式灵活。GT-B成员无需二价金属离子维持活性,这是GT-B与GT-A家族成员的一个显著区别。此外,通过结构分析和PSI-BLAST发现了由跨膜GT组成GT-C超家族,其折叠方式全为反向型,活性位点位于长环部,一般含有8-13个跨膜螺旋。

图1:依据折叠方式的糖基转移酶分类系统

Fig. 1 Hierarchical classification of glycosyltransferases from folds to clans

(注:R’:糖?脂?蛋白?次生代产物?植物激素等)

图2:“转化型”和“保留型”糖苷转移酶的反应机制

Fig. 2 Reaction mechanisms of converting and reserving GTs

GT-C超家族中第一个三维结构被确定的是古细菌Pyrococcus furiosus的STT3。GT-C超家族也可以在隐马氏模型中找到,使用这个方法还在真核生物中发现了第四个家族GT-D。

“转化型”糖基转移酶的催化反应机制是一个类S N-2机制的亲核取代反应:以活化的糖供体基团C-1作为亲电子基团,亲核攻击捕获带有亲核受体原子的糖苷配基,经过一个氧络正碳离子-离子样的过渡态,产生一个反向的异头构型,完成取代反应。目前,“保留型”糖基转移酶的催化机制尚不清楚,推测可能是中间体为短暂存在的含氧碳正离子的双取代反应机制。综合糖基转移酶的空间构型和反应类型,可以将糖基转移酶大致分为4个目,目下面又分为不同的家族(图1)。

目前,已分类编号的94个家族中有40个分属于植物糖基转移酶,但是不同家族之间的进化关系并尚不明确。GT1包含有4388个基因序列,这些序列源于古细菌、细菌、真核生

物和病毒(https://www.360docs.net/doc/2117020014.html,/fam/acc_GT.html),催化反应机制为“转化型”,与植物激素、次生代产物糖苷化相关的糖基转移酶也位于该家族。GT1家族中绝大多数糖基转移酶的C末端含有一个44个氨基酸的保守序列称为PSPG盒(图3),认为该序列是糖基供体的结合域,所以将GT1单独归为尿苷二磷酸糖基转移酶(Uridine diphosphate glycosyltransferase,UGT)超家族,成员主要以UDP-GLc和UDP-葡糖醛酸为糖基供体。

图3:植物糖基转移酶PSPG盒保守序列

Fig. 3 Plant glycosyltransferase conservative sequence of PSPG box

2糖基转移酶的分离鉴定及生化特征

目前可以使用多种不同的方法鉴定糖基转移酶基因,包括生物信息学、生物化学以及遗传学方法等。生物信息学方法研究植物糖基转移酶的思路如下:从cDNA或EST数据库中获取推测是糖基转移酶基因的序列,与目的基因所在的基因组进行同源性比较,得到所有可能的糖基转移酶基因,使用载体克隆该基因并在Escherichia coli等细胞中进行表达,对表达产物进行分离纯化,体外实验验证酶活性和底物。通过该方法找到了拟南芥中99个可能的糖基转移酶基因,这些酶所修饰的次级代产物包括吲哚乙酸、细胞分裂素、水酸等。此外,生物信息学方法还可用于基因功能预测和结构分析、亚细胞定位、蛋白结构域分析、保守序列预测以及三维结构预测等。

一般采用阴离子交换、疏水色谱、凝胶过滤以及染料配体层析等技术对植物糖基转移酶分离纯化。利用仿生原料(eg:活性黄3、活性绿19)作为亲合层析固定相可以提高糖基转移酶的纯化效率。活性黄3等模拟底物与糖基转移酶结合形成束缚酶形式,采用UDP-Glc 作为洗脱液可以得到高纯度糖基转移酶。

通过对植物组织酶提取液或者重组酶进行鉴定,发现大部分植物糖基转移酶为可溶性酸性蛋白,pI=4.2-6.1,分子量大约为40-60kDa;糖基受体K m=0.4-3600μmol/L,最适pH=5.9-9.0。Escherichia coli 重组糖基转移酶分子量为50-84kDa,其糖基供体类似于植物糖基转移酶,受体除植物次生代产物外,还有植物激素、外源杀虫剂等。

3植物糖基转移酶的生物学功能

植物糖基转移酶催化的反应底物众多,包括植物激素、次生代产物和生物同/异源物质(如含氰苷、除草剂等)。糖苷化可以改变糖苷配基(aglycones)的许多性质,如生物活性、溶

解性、在细胞及植物组织和器官的转运性,其在植物生长发育、代调节、解除外源毒素毒性及次生代产物合成、贮存等方面具有重要作用。

3.1 植物糖基转移酶与抗病能力

拟南芥(Arabidopsis thaliana)作为模式生物,其糖基转移酶的研究是最为广泛和深入的,拟南芥的糖基转移酶在自身抗性方面发挥重要作用。von Saint Pauld等从拟南芥糖基转移酶中筛选出UGT76B1,缺失UGT76B1的突变体较野生型对营养型丁香假单胞菌的抗性增强,同时提高了水酸的含量其标记基因PR1的表达也上升。但该酶的过表达突变体水酸含量下降、茉莉酸含量增加。说明UGT76B1在水酸与茉莉酸信号通路对接中发挥着重要作用。Park等用DNA芯片筛在拟南芥中选出UGT74E2,缺失这种糖基转移酶的拟南芥突变体对丁香假单孢番茄致病菌的抗病能力增强,同时获得也提高了系统获得性抗性。Lim等借助T-DNA插入载体在拟南芥中构建了糖基转移酶基因突变体,突变体对土豆假单孢菌抗性的降低,实验证明这些糖基转移酶可以使植物中的脱落酸发生糖基化修饰,从而增强植物自身的抗性。这些都说明糖基转移酶在植物病原相互作用中的重要性。

3.2 植物糖基转移酶与次生代产物合成

糖基化修饰作用会影响植物代产物的滞留区域,可能会使一些小分子化合物在某一固定位置(如液泡里)积累,也可能使一些疏水化合物因糖基化改变停留位置而停留在亲水环境中。甜叶菊(Stevia rebaudiana)叶片中含有大量的甜菊糖苷,其甜度约为蔗糖的300倍。甜菊苷在质体中开始合成,然后在甜菊双糖苷的C-4羧基位置糖基化形成甜菊苷,然后运送到液泡。因为甜菊苷只在这一步糖基化之后才开始积累,所以认为这一步对于甜菊苷转运至液泡是至关重要的。借助功能基因组学手段从甜叶菊中克隆除了UGT74G1、UGT76G1和UGT85C2三个糖基转移酶基因,而且证明他们三个都选择性的在甜菊醇的不同位点进行了糖基化修饰。由此可见,植物的糖基转移酶在次生代产物的合成中起着至关重要的作用。3.3 植物糖基转移酶与源激素

植物的源激素在植物的生长、发育、分化、成熟以及信号应答过程中的作用十分重要。激素在植物体的存在方式往往是结合态与游离态并存,且二者可以可逆转化。糖基转移酶在二者的转化中发挥调节功能。Xu等在赤豆(Vigna angularis)中克隆出一个糖基转移酶基因,该酶的体外重组蛋白实验表明:它能特异性的催化反式脱落酸的糖基化。在拟南芥中,Lim 等鉴定到一个糖基转移酶基因UGT71B6,该基因其产物催化天然存在的顺式脱落酸。Priest 等对UGT71B6在拟南芥中对脱落酸含量动态平衡的影响作了深入步研究,发现该基因过表达会使脱落酸葡糖酯大量积累,而脱落酸氧化代产物红花菜豆酸和二氢红花菜豆酸的含量下

降,但自由脱落酸的含量较野生型无明显变化。

3.4 植物糖基转移酶参与信号转导

O’Donnell等研究番茄的防御反应时,发现糖基转移酶基因Twil的表达能够对叶部机械损伤病原微生物的侵染做出迅速反应。进一步研究表明,此基因的表达受水酸和病原菌的Avr9基因产物的诱导。这说明糖基转移酶可能在植物防御反应的信号转导中发挥关键作用。

3.5 植物糖基转移酶的其他生物学功能

研究表明,植物糖基转移酶还可以对生物来源的毒素进行解毒,对非生物来源毒素进行脱毒反应,以及参与调控植物对非生物胁迫的应答反应等。

虽然上述相关研究表明了糖基转移酶基因参与植物的众多生理学过程,但部分功能的具体作用机制尚不十分明确,具体的分子机制还需要人们深入进行探究。

4小结

虽然植物糖基转移酶的研究已经取得了很大的进展,特别是对于拟南芥等模式生物,为人类改造期望的糖基转移酶打下了坚实的基础。未来植物糖基转移酶在作物品种改良、代工程方面具有可观的有应用前景。随着其生物学功能逐渐被鉴定,将为阐释维持细胞稳态的分子机制和植物生长发育规律提供新的研究思路。利用基因工程技术和生化检测手段,揭示其在植物生理生化代网络中的作用,也将成为是植物糖基转移酶研究重要容。随着科研手段的不断更新,植物糖基转移酶及其相关研究领域必将取得重大进展。

主要参考文献

[1] Coutinho P M, Deleury E, Davies G J, et al. An evolving hierarchical family classification for

glycosyltransferases[J]. JMol Biol,2003,328(2):307-317.

[2] Ono E, Homma Y, Horikawa M, et al. Functional differentiation of the glycosyltransferases

that contribute to the chemical diversity of bioactive flavonol glycosides in grapevines (Vitis vinifera)[J]. The Plant Cell, 2010, 22: 2856-2871.

[3]郭溆,罗红梅,宋经元,超,士林. 糖基转移酶在植物次生代途径中的研究进展[J].世界科学技

术(中医药现代化),2012,06:2126-2130.

[4]于洋,飞飞,小龙. 糖基转移酶的性质、作用机制及其在抗生素中的应用[J].中国抗生素杂

志,2013,02:90-97.

[5]姬向楠,何非,段长青,王军. 植物UDP-糖基转移酶生化特性和功能研究进展[J].食品科

学,2013,09:316-323.

[6] Hall D, Kim K H, Luca V D. Molecular cloning and biochemical characterization of three

Concord grape (Vitis labrusca) flavonol 7-O-glucosyltransferases[J]. Planta, 2011, 234:

1201-1214.

[7] Wang J, Ma X M, Kojima M, et al. N-Glucosyltransferase UGT76C2 is involved in cytokinin

homeostasis and cytokinin response in Arabidopsis thaliana[J]. Plant Cell Physiology, 2011, 52(12): 2200-2213.

[8] Hall D, Yuan X X, Murata J, et al. Molecular cloning and biochemical characterization of the

UDP-glucose: flavonoid 3-O-glucosyltransferase from Concord grape (Vitis

abrusca)[J].Phytochemistry, 2012, 74: 90-99.

[9] 孟庆山,恒,胡建恩,杜昱光.植物糖基转移酶在植物抗病过程中的研究进展[J].生物技术通

讯,2013,02:290-293.

[10] Coutinho P M, Deleury E, Davies G J, et al. An evolving hierarchical family classification

for glycosyltransferases[J]. Journal of Molecular Biology, 2003, 328(2): 307-317.

[11] Vogt T, Jones P. Glycosyltransferases in plant natural product synthesis: characterization of a

supergene family[J]. Trends in Plant Sci, 2000, 5(9): 380-386.

[12] Hu Y, Walker S. Remarkable structural similarities between diverse glycosyltransferases[J].

Chemistry & Biology, 2002, 9: 1287-1296.

[13] Lairson L L, Henrissat B, Davies G J, et al. Glycosyltransferases: structures, functions, and

mechanism[J]. Annu Rev Biochem, 2008, 77: 521-557.

[14] Kim H F, Kim B G, Ko J H, et al. Molecular cloning, expression, and characterization of a

flavonoid glycosyltransferase from Arabidopsis thaliana[J]. Plant Science, 2006, 170(4):

897-903.

[15] Xu Z J , Nakajima M, Suzuki Y, et al. Cloning and characterization of the abscisic

acid-specific glucosyltransferase gene from adzuki bean seedlings[J]. Plant Physiology, 2002, 129(3):1285-1295.

[16] von Saint Paul V, Zhang W, Kanawati B, et al. The Arabidopsis glucosyltransferase GT76B1

conjugates isoleucic acid andmodulates plant defense and senescence[J]. Plant

Cell,2011,23(11):4124-4145.

[17] Park H J, Kwon C S, Woo J Y, et al. Suppression of UDP glycosyltransferase-coding

rabidopsis thaliana UGT74E2 gene expression leads to increased resistance to Psuedomonas syringaepv. tomato DC3000infection[J]. Plant Pathol J, 2011,27(2):170-182.

[18] Naoumkina MA, Modolo LV, Huhman DV, et al. Genomic and coexpression analyses predict

multiple genes involved in triterpene saponin biosynthesis in Medicago truncatula. The Plant Cell Online,2010, 22(3):850~866.

[19] Modolo L V, Li L, Pan H, et al. Crystal structures of glycosyltransferase UGT78G1 eveal the

molecular basis for glycosylation and deglycosylation of (iso)flavonoids[J]. Journal of

Molecule Biology, 2009, 392: 1292-1302.

[20] 恒, 王文霞, 小明, 等. 植物糖生物学研究进展[J].植物学报, 2010,45(5):521-529.

Research Progress of Plant Glycosyltransferase Abstract:Glycosyltransferases are able to catalyze the glycosyl transfer to a specific receptor molecule on a class of enzymes from the activated donor. The organisms are widespread in a large number of glycosyltransferase enzymes, and the formation of the super -gene family. Glycosyltransferases have been widespread concerning for the importance of plant life. This article reviews the research in recent years, summarizes the classification of glycosyl transferase, isolation, identification and research rogress of biological function.

Keywords: Plant Glycosyltransferase, classification ,isolation and identification,biological function

糖基转移酶的研究概述

糖基转移酶的研究概述 邓传怀 (河北大学生命科学学院2012生物技术中国保定071000) 摘要糖基转移酶在生物体内催化活化的糖连接到不同的受体分子,如蛋白、核酸、寡糖、脂上,糖基化的产物具有很多生物学功能并具有高度的底物专一性。本文综述了糖基转移酶的种类、功能、特性及其在组合生物合成中的应用与研究前景。 关键词糖基转移酶结构功能应用 Outline about research of glycosyltransferases Deng Chuanhuai ( College of Life Sciences , Biotechnology 2012, Hebei University , Baoding ) Abstract Glycosyltransferase catalyzing the biosynthesis of the sugar attached to different activated receptor molecules, such as proteins, nucleic acids, oligosaccharides, the lipid glycosylation product has many biological functions with a high degree of substrate specificity[1]. In glycosylation project, carried out by enzymatic protein glycosylation and important means of natural glycosylated glycoproteins to study the structure and function of glycoproteins[2].This article provides anoverview of the categories, functions, characteristics of Gtfs, their app lications in combinatorial biosynthesis, and the p rospects for research. Key Words Glycosyltransferase Structure and Function Application 糖基转移酶是广泛存在于内质网和高尔基体内的一大类酶类[3],参与体内重要的活性物质如糖蛋白和糖脂中糖链的合成。其作用是把相应的活性供体(通常是二磷酸核苷NDP-糖)

(完整word版)普通生物学试题库

2016/2017 学年第一学期课程考试试题()卷 类别继续教育学院拟题人 适用专业 (答案写在答题纸上,写在试题纸上无效) 一、填空题……………………………………………(每小题2分,共20分) 1、细胞呼吸全过程可分为糖酵解、丙酮酸氧化脱羧、和电子传递链。 2、细胞核包括核被膜、核质、和核仁等部分。 3、线虫的体细胞数目,因此是研究细胞发育的良好的实验材料。 4、细胞周期包括和分裂间期两个时期。 5、DNA和RNA的结构单体是。 6、血液分为血细胞和两部分。 7、存在于生物体内而在自然界不存在的元素是。 8、细胞生活的内环境主要是指。 9、动物自身不能合成维生素,必须从食物中摄取,或由其体内提供。 10、生物的自养方式可分为两种,即光能自养和。 11、抗原分子的某些化学基团其分子构相与抗体或淋巴细胞表面受体互补结合,从而能引发免疫反应,这些基团叫做。 12、基因的化学实质是DNA,在某些病毒中是。 13、常见的发酵过程有酒精发酵和。 14、新的表现型可以不通过 ____,只通过基因重组就可产生。 15、维管植物中用种子繁殖的有_________、被子植物。 16、真核细胞中,不饱和脂肪酸都是通过途径合成的。 17、是已知的最小的能在细胞外培养生长的原核生物。 18、发达是种子植物生活史的特点。 19、植物的生长发育主要是植物体内的细胞分裂、、和分化的结果。 20、质膜具有透性,其主要功能是控制物质进出细胞。 21、分生组织的显著特征是细胞具有能力。 22、免疫作为一种防护机制的特点是识别自身和外物、记忆、。23、世代交替是指植物生活史中,有性世代和的规律地交互进行的现象。 24、神经组织是由细胞和神经胶质细胞组成的。 25、依照五界系统,生物可分为原核生物、植物、动物、原生生物和等五界。 26、神经未受剌激时的膜电位称。 27、同物种的种群之间存在着隔离。 28、同一物种的种群之间存在着隔离。 29、光敏色素以红外吸收形式和两种形式存在。 30、根据神经冲动通过突触方式的不同,突触可分为电突触和。 31、鱼类可分为软骨鱼纲和纲。 32、肾上腺髓质分泌的激素有和去甲肾上腺素。 33、染色体数目变异包括整倍性和变异。 34、内分泌腺分泌的激素经到达所作用的靶细胞或靶器官。 35、维管植物可分为蕨类植物和两类。 36、由肋间肌舒缩引起的呼吸动作为呼吸。 37、突触的兴奋性和抑制性取决于神经递质的性质和突触后膜上的性质。 38、依据方式可将真核多细胞生物划分为植物界—动物---界和真菌界。 39、世代交替是指植物生活史中,和配子体有规律地交互进行的现象。 40、吗啡、海洛因等药物的副作用是可抑制内啡肽的产生,这是一种反馈,从而产生药物依赖性。 二、选择题………………………………………………(每小题2分,共20分) 1. 的形成能导致物种的爆发式产生。 A. 多倍体; B. 渐变群; C. 瓶颈效应 2. 病毒感染细胞后,相邻细胞会产生。 A. 干扰素; B. 类毒素; C . 外毒素 3. 藻类不具有下列特征。 A. 光合自养; B. 根、茎、叶分化; C. 多细胞生殖器官 4. 真菌的营养方式为。 A. 腐生; B. 腐生和寄生; C. 腐生、寄生和化能自养 5.地衣是____。 A. 植物; B. 原生生物; C. 藻菌复合体 6.在生物体内,放能反应主要与。

糖生物学_植物糖基转移酶研究进展

期末考核 课程:Glycobiology 植物糖基转移酶研究进展 :*** 学号:*** 班级:*** 时间:****

植物糖基转移酶研究进展 摘要:糖基转移酶一类是能够催化糖基从激活的供体转移到特定的受体分子上的一类酶,在生物体中普遍存在并形成了超基因家族。糖基转移酶广泛参与植物生命活动的各种生物学过程。本文综述了近年来的研究报道,综述了糖基转移酶的分类、分离鉴定方法及在生物学功能方面的研究进展,期望为相关研究工作提供参考。 关键词:植物糖基转移酶,分类,分离鉴定,生物学功能 糖基转移酶(Glycosyltransferases,GT,EC 2.4.x.y)是一类催化糖基转移的酶,通过产生糖苷键将供体糖分子或相关基团转移至特异的受体上。糖基转移酶几乎存在于所有的生物体中,其所催化的糖基化反应是最重要的生物学反应之一,直接参与二糖、单糖苷、聚糖苷等的生物合成。糖基供体分子包括双糖、多糖、1-磷酸糖、尿苷二磷酸葡萄糖醛酸,植物中最常见的供体为UDP-Glc。受体可以是糖类、脂类、蛋白质、抗生素和核酸。糖基转移酶催化供体-受体形成α、β两种糖苷键,产物为多糖、糖蛋白、糖脂以及糖苷化合物等。全基因组测序发现真核生物中约1%的基因编码糖基转酶。 1糖基转移酶的分类 目前,对糖基转移酶的分类主要根据Campbell等提出的GT Family 分类系统(数据收录在CAZy数据库中)。糖基转移酶作为高度分歧的多源基因家族,根据蛋白氨基酸序列的一致性、催化特性以及保守序列对其进行分类。因此,一特定的糖基转移酶既可以通过生物化学的方法鉴定其底物,也可以通过生物信息学方法研究其与已知酶基因或酶蛋白氨基酸序列的同源性对其进行分类。目前,依据这种分类方法,糖基转移酶被分为94个家族。根据其的折叠方式可将绝大多数酶分为两个超家族,GT-A超家族和GT-B超家族(图1)。根据催化反应机制、产物的立体化学异构性,在这两个超家族中糖基转移酶又分为反向型和保留型两大类(图2)。 GT-A型折叠的空间结构有两个紧密相连的β/α/β类Rossmann折叠区域。GT-A家族成员需要一个D-X-D基序用来结合二价金金属离子(多为Mn2+),这有助于UDP-糖供体的PPi在酶活性位点上的固定,对于催化反应是不可或缺的。GT-A难以识别UDP-糖供体以外的供体,所以受体的多样性较低。GT-B型折叠的空间含有两个正对的β/α/β类Rossmann折叠区域,连接方式灵活。GT-B成员无需二价金属离子维持活性,这是GT-B与GT-A家族成员的一个显著区别。此外,通过结构分析和PSI-BLAST发现了由跨膜GT组成GT-C超家族,其折叠方式全为反向型,活性位点位于长环部,一般含有8-13个跨膜螺旋。

植物糖生物学研究进展

植物学报 Chinese Bulletin of Botany 2010, 45 (5): 521–529, https://www.360docs.net/doc/2117020014.html, doi: 10.3969/j.issn.1674-3466.2010.05.001 —————————————————— 收稿日期: 2010-01-18; 接受日期: 2010-03-23 基金项目: 863计划(No.2006AA10A213, No.2007AA091601)和中国科学院知识创新工程重要方向项目(No. KSCX2-YW-G-041) * 通讯作者。E-mail: zxm@https://www.360docs.net/doc/2117020014.html,; dyguang@https://www.360docs.net/doc/2117020014.html, 植物糖生物学研究进展 尹恒, 王文霞, 赵小明*, 杜昱光* 中国科学院大连化学物理研究所辽宁省碳水化合物重点实验室, 大连 116023 摘要 自1988年糖生物学概念提出以来, 国内外科学家在动物、微生物领域取得了大量的研究成果, 但植物糖生物学的研究进展较慢, 目前少见系统的专著或综述。该文围绕植物正常生长时糖信号、逆境时糖信号、糖蛋白及其糖链、重要糖基转移酶及植物凝集素等植物糖生物学的主要问题, 全面阐述植物糖生物学的各个研究分支, 并介绍各领域的最新研究进展。提出了植物糖生物学的概念, 并将其定义为研究植物与糖类互作机制及植物体内糖(糖链与糖分子)结构及生物学功能的科学。 关键词 糖蛋白, 糖基转移酶, 凝集素, 植物糖生物学, 糖信号 尹恒, 王文霞, 赵小明, 杜昱光 (2010). 植物糖生物学研究进展. 植物学报 45, 521–529. 糖类是生物体的重要组成成分, 在自然界中分布广泛, 含量丰富。但直到20世纪上半叶, 糖类仍被视为是缺乏生物特异性的一类惰性化合物, 只是作为代谢能量来源或充当结构保护材料(如植物细胞壁和昆虫的外壳), 在生物体内功能较少。由于糖类物质结构复杂、糖链分析技术缺乏, 科学家们对其研究关注不多, 使得糖类的研究远远落后于另2种生物大分子 ——核酸和蛋白质。 20世纪70年代以来, 随着糖链解析技术水平的提高以及分子生物学的发展, 尤其是人、拟南芥(Arabidopsis thaliana )等模式生物基因组测序的完成, 围绕糖类物质的研究工作日渐增多。越来越多的证据表明, 糖类物质全面参与了生物的生殖发育、生长、应激等过程, 是很多生理和病理过程中分子识别的决定因素。最初, 这些围绕糖的研究工作被认为是糖化学的一个分支, 但很快其中大量的生物学工作远远超出了糖化学的范畴, 因此科学家们提出了糖生物化学的概念, 而随着研究内容的进一步深入, 糖生物化学也不能完全涵盖糖在生物领域的最新研究进展。1988年, 生化领域的著名杂志《生物化学年评》发表了英国牛津大学Rademacher 等人题为“糖生物学(Glycobiology)”的一篇综述文章(Rademacher et al., 1988), 标志着糖生物学这一学科的正式诞生。此后, 围绕着糖链结构及糖的生物学功能, 科学家们在糖链与疾病的关系、天然产物中糖的分离提纯以及功能糖的制备与应用等方面进行了大量的工作, 取得了一定进展。2001年, Science 杂志汇编了Hurtley 等人的7篇综述和6篇简介, 以《灰姑娘的马车来了》为题编辑了一期“糖和糖生物学”专辑, 对糖生物学最新的研究成果及前景进行了综述和展望, 从而将糖生物学的研究推向了一个新的高度(Hurtley et al., 2001)。2006年, Nature 杂志也推出了糖化学与糖生物学的专辑, 全面介绍了糖生物学领域的研究进展。我国糖生物学的开展与国际接轨较快, 1995年金城等人将糖生物学概念引入中国(金城和张树政, 1995), 此后, 我国科学家在糖生物合成和糖链功能解析等领域取得了一定进展。 广义糖生物学的含义是: 研究自然界中广泛分布的糖(糖链或聚糖)的结构、生物合成和生物学意义。但有关糖类结构和生物合成的研究也是已有学科糖化学和糖生物化学的主要研究内容之一, 所以糖生物学研究和讨论的对象更多地聚焦在一些重要的功能糖、生物体内糖缀合物的生物学功能上。实际上, 糖生物学的研究焦点是糖类和其它分子的关系, 有一种观点认为, 蛋白质和糖类的相互作用是糖生物学的基础(王克夷, 2009)。目前糖生物学的工作多围绕动物、 ·特邀综述·

糖生物学论文 糖基转移酶与糖基转移酶抑制剂

糖基转移酶与糖基转移酶抑制剂 摘要:糖基转移酶在生物体内催化活化的糖连接到不同的受体分子,如蛋白、核酸、寡糖、脂和小分子上,糖基化的产物具有很多生物学功能。其是糖蛋白、糖脂中糖链生物合成的关键酶之一。与此同时,对糖基化抑制剂的研究也是必要的。两者在治疗一些因为糖基转移酶非正常表达引起的疾病有很大作用。 关键词:糖基转移酶;糖基化;糖基化抑制剂 前言:糖基转移酶是广泛存在于内质网和高尔基体内的一大类酶,参与体内重要生物活性物质如糖蛋白和糖脂中糖链的合成,其作用是把相应的活性供体(通常是二磷酸核苷NDP-糖)的单糖部分转移至糖、蛋白质、脂类和核酸等,完成后者的糖基化加工,实现其生物学功能。因此糖基转移酶的表达和活性的变化与许多疾病联系在一起,并可作为某些疾病的诊断标志,如α-1,3-半乳糖基转移酶活性在体内的再现会引发自身免疫反应,导致类风湿,并在器官异体移植中引起排斥反应;N-乙酰氨基葡萄糖基转移酶、岩藻糖基转移酶等在成熟细胞中活性的明显升高被视为肿瘤发生的重要标志,并且被认为是肿瘤迁移恶化的重要原因。因此设计合成糖基转移酶抑制剂,对于寻找抗肿瘤、抗免疫系统等新药研究有重要意义。 1 糖基转移酶的存在 糖蛋白是通过蛋白质的糖基化组装实现的,而糖基化过程则通过多种糖基转移酶完成——在肽链合成的同时或合成后,在糖基转移酶的催化下,糖链被连接到肽链的特定糖基化位点上。糖基转移酶具有高度的底物专一性,即同时对糖基的供体和受体具有专一性。对糖基转移酶进行研究,是糖基化研究的第1步。目前已对多种糖基转移酶的结构以及编码它们的基因研究清楚,并认为糖链的合成没有特定的模板,而是通过糖基转移酶将糖基由其供体转移到受体上。糖链可以认为是基因的次级产物,一个基因编码一个糖基转移酶,一个糖基转移酶专一地催化一个糖苷键的合成;这样一条糖链的合成就需要一个多酶系统,也就对应了一个基因组。下文简要介绍几类重要的糖基转移酶。 1.1 N-乙酰氨基葡萄糖转移酶(N-acetylglucosa-minyl-transferase,Gnt) 糖蛋白中糖链通过还原端的N-乙酰氨基葡萄糖以β-1,4糖苷键与蛋白质肽链上Asn-XXX-Ser/Thr序列(XXX为除脯氨酸以外的氨基酸)中Asn残基上的氨基(-NH2)相连,被称为N-糖链。真核细胞中N-糖链的合成途径高度保守,其第1步合成由GnT完成。1999年, Strasser等依据动物GnT保守区序列设计简并引物,从烟草文库中分离到编码GnT的基因GnTI,这也是植物中第1个被鉴定的GnT基因。随后利用同样的方法从拟南芥、马铃薯中分离和鉴定出一系列GnT基因, 这些基因与动物GnT基因均有较高的序列相似性。后续研究发现

1糖生物学

1糖生物学 科学家把研究生物体内多糖的科学叫做“糖生物学”,也有人沿袭“基因组学”和“蛋白质组学”的概念把这们学科叫做“糖原组学”。糖生物学这一个名词的提出是在1988年。牛津大学德威克教授在当年的《生化年评》中撰写了以“糖生物学”为题的综述,这标志了糖生物学这一新的分支学科的诞生。 研究对象 糖生物学(glycobiology)是研究聚糖及其衍生物的结构,化学,生物合成及生物功能的科学 蛋白质、核酸和多糖是构成生命的三类大分子,蛋白质和核酸的研究已经成为生命科学中的热点问题。糖类的研究一度被人遗忘,只有少数科学家在苦苦探索着糖类的奥秘,糖类研究成了生命科学中的灰姑娘。然而,随着蛋白质和核酸(主要是基因的研究)中更多的奥秘被人类知晓,糖类的重要性也浮出水面,成为了医学研究的“甜蜜之点”,糖类研究这个“灰姑娘”等来了属于她自己的马车。科学家认为,糖类的研究将像一个人见人爱的“甜苹果”一样,获得更多科学家的青睐,将成为生命科学研究中的新热点。 2糖生物学的崛起 科学家把研究生物体内多糖的科学叫做“糖生物学”,也有人沿袭“基因组学”和“蛋白质组学”的概念把这们学科叫做“糖原组学”。糖生物学这一个名词的提出是在1988年。牛津大学德威克教授在当年的《生化年评》中撰写了以“糖生物学”为题的综述,这标志了糖生物学这一新的分支学科的诞生。[1]同一年牛津大学研制成功了N-糖链的结构分析仪,而且将它商品化。 将糖生物学推向生命科学前沿的重大事件发生于1990年。有3家实验室几乎同时发现血管内皮细胞-白血球粘附分子1(ELAM-1),后来改名为E-选凝素 (E-selectin)。这一位于内皮细胞表面的分子能识别白血球表面的四糖 Sia-LeX。当组织受到损伤时,白血球和内皮细胞穿过血管壁,进入受损组织,以便杀灭入侵的异物。然而,过多白血球的进入则可能导致炎症的产生。这一发现首次阐明了炎症过程有糖类和相关的糖结合蛋白参与。更令人吃惊的是,进入血液循环系统的癌细胞可能借助了类似于上述的机制穿过血管,进而导致癌症的转移。紧接着又出现了以这一基础研究的成果为依据的开发和生产抗炎和抗肿瘤药物的热潮。[1] 3攻克疾病的“甜苹果”

常见的细胞凋亡诱导剂和抑制剂

表1 常见的细胞凋亡诱导剂和抑制剂 诱导剂与抑制剂靶细胞诱导剂 激素地塞米松T细胞 细胞因子IL—2 胸腺细胞 TGF—β肝细胞、上皮细胞、慢性B淋巴瘤细胞 IL—10 髓样白血病细胞 IFN—Υ前B细胞、T细胞抗体抗IgM抗体B细胞 抗IgD抗体B细胞 抗HLA—II抗体静止B细胞 超抗原SPE CD4+T细胞 胞内信号分子调节 剂 放线菌酮T细胞 PKC激活剂胸腺细胞 其他DNA拓扑异构酶抑制 剂 白血病细胞放射线淋巴样细胞 抑制剂 细胞因子IL—2 T H1细胞 IL—4 T H2细胞 IL—10 B、T细胞 IFN—ΥT细胞 IL—4 B细胞 黏附分子LFA—1、ICAM—1 B细胞 VLA—4、VCAM—1 B细胞 胞内信号分子调节 剂 PKC激活剂T、B细胞 细胞凋亡(apoptosis)是一种由基因控制的细胞自主死亡方式。1972年,英国教授Kerr首先提出凋亡的概念。近十余年来,细胞凋亡现象引起了广泛重视,有关的研究工作取得重要进展,并成为医学生物学各学科共同关注的极为活跃的研究领域。 细胞凋亡与组织器官的发育、肌体正常生理活动的维持、某些疾病的发生以及细胞恶变等过程均有密切的关系。

1.形态学变化: 细胞凋亡的形态变化大致可分为三个阶段: 1)胞体缩小,与周围细胞失去联系,细胞器变致密,核体积缩小,核仁消失,染色质浓集于核膜内表面下,形成新月形致密小斑块。 2)染色体断裂,核膜与细胞膜均内陷,包裹胞内成分(胞浆、细胞器、碎裂的染色质及核膜)形成“泡”样结构,此为“凋亡小体”。最后,整个细胞均裂解成这种“小体”。 3)凋亡小体被邻近的巨噬细胞、上皮细胞等识别、吞噬、消化。 上述三个阶段维持时间很短,通常在几分钟、十几分钟内即可完成。 2.细胞凋亡的生化改变: 1)胞内Ca2+浓度增高 所有细胞凋亡过程中均出现胞内Ca2+浓度增高,这可能是Ca2+内流所致。 2)内源性核酸内切酶激活 细胞发生凋亡时,由于内源性核酸内切酶被激活,DNA被从核小体连接处水解,形成180—200bp 或其整倍数的片段。 3)生物大分子的合成 凋亡过程的发生一般依赖于新的RNA和蛋白质的合成,如在激素、射线作用下,或由于去除生长因子等所引起的细胞凋亡中,情况均为如此。 常用的检测方法: 1.形态学方法 借助普通光学显微镜、荧光显微镜或透射电镜可对组织切片、切片涂片或细胞悬液进行形态学观察,凋亡细胞在组织中散在分布,表现为核致密浓染、核碎裂等。该方法简便、经济,可定性、定位。但在组织成分及细胞死亡类型复杂的情况下,难以判断结果,也无法定量。 2.电泳法 对凋亡细胞的基因组DNA进行琼脂凝胶电泳,由于存在180—200bp或其整倍数的片段,故电泳结果可见“梯状”(ladder)DNA条带。该法简便,可定性及定量,但无法显示组织细胞形态结构,也不能反映凋亡细胞与周围组织的关系。

普通生物学科目研究生考试大纲

普通生物学科目研究生考试大纲 本门课程总分150分,考试时间180分钟 一、考试内容-中国在职研究生招生网官网 本课程包括三部分内容:普通生物学、植物生物学、动物生物学,第一部分为主体,分值在90分左右(主要考查对生物学一般概念、原理的掌握程度,生态学部分不在本课程考查范围之内),后两部分分值各占30分左右(主要考查考生对动植物结构、功能和主要分类群典型特征的掌握程度)。 第一部分普通生物学 (一)绪论:生物界与生物学 1. 生物的特征 2. 生物界是一个多层次的组构系统 3. 把生物界划分为5个界 4. 生物和它的环境形成相互联结的网络 5. 在生物界巨大的多样性中存在着高度的统一性 6. 研究生物学的方法 7. 生物学与现代社会生活的关系 (二)细胞 1.生命的化学基础 1)原子和分子 2)组成细胞的生物大分子 3)糖类 4)脂质 5)蛋白质 6)核酸 2. 细胞结构与细胞通讯 1)细胞的结构 2)真核细胞的结构 3)生物膜——流动镶嵌模型 4)细胞通讯 3. 细胞代谢 1)能与细胞 2)酶

3)物质的跨膜转运 4)细胞呼吸 5)光合作用 5. 细胞的分裂和分化 1)细胞周期与有丝分裂 2)减数分裂将染色体数由2n减为n 3)个体发育中的细胞 (三)动物的形态与功能(重点参阅动物生物学部分) 1. 高等动物的结构与功能 1)动物是由多层次的结构所组成的 2)动物的结构与功能对生存环境的适应 3)动物的外部环境与内部环境 2. 营养与消化 1)营养 2)动物处理食物的过程 3)人的消化系统及其功能 4)脊椎动物消化系统的结构与功能对食物的适应 3. 血液与循环 1)人和动物体内含有大量的水 2)血液的结构与功能 3)哺乳动物的心脏血管系统 4. 气体交换与呼吸 1)人的呼吸系统的结构与功能 2)人体对高山的适应 3)危害身体健康的呼吸系统疾病 5. 内环境的控制 1)体温调节 2)渗透调节与排泄 6. 免疫系统与免疫功能 1)人体对抗感染的非特异性防卫 2)特异性反应(免疫应答) 3)免疫系统的功能异常 7. 内分泌系统与体液调节 1)体液调节的性质

普通生物学复习题(植物学部分)

一、名词解释 1、传递细胞小脉附近出现的特化的有利于吸收和短途运输作用的薄壁组织细胞,成为叶肉和输导组织之间物质运输的桥梁。 2、叶迹叶迹leaf trace (又称“叶脉”)高等植物茎的节上长有叶片时,从茎分出进入叶片的维管束称为叶迹 3、叶痕通常指鳞木类叶座中上部心型或菱形微凸成低锥形的部分。包括维管束痕和侧痕,是叶子脱落时离层留下的痕迹。 4、心材木本植物茎木质部的中央部分,这部分木质部已失去输导水分的能力,心材的颜色比边材深。 5、凯氏带初生壁上的一种含木栓质的带状加厚结构。一般在根的内皮层细胞的径向和横向壁上具有这种结构。 6、外始式根的初生木质部在发育过程中,是由外向心逐渐分化成熟的,外方先成熟的部分为原生木质部,内方后成熟的为后生木质部,这种分化方式称为外始式。 7、内起源植物的侧根通常起源于母根的中柱鞘,发生于根的内部组织,这种起源方式称为内起源。 8、边材次生木质部的边缘部分,颜色较浅,含生活细胞并有贮藏功能,导管、管胞具输导功能。 9、胚幼小的植物体,它是种子最主要的部分,有胚芽胚轴子叶胚根组成。种子萌发后胚发育成幼苗。 10、上胚轴与下胚轴在胚和幼苗中,子叶着生处以上的茎轴部分是上胚轴。 11、侵填体导管或管胞附近的薄壁细胞,自纹孔处进入导管或管胞腔内,并有单宁,树脂等物质沉积,最后把整个细胞腔堵塞,是导管或管胞失去输导水分的能力。由于侵填体的形成使木材坚硬耐腐。 12、气孔器气孔及其周围的副卫细胞一起组成一个气孔器,或称为气孔复合体。 13、维管束维管束是由原形成层分化而来,以输导组织为主的复合组织,是由木质部和韧皮部或形成层组成的束状结构。 14、组织组织是一些在个体发育中来源相同,形态结构相似,共同担负着一定生理功能的细胞群组成的结构和功能单位。 15、假年轮由于外界气候条件变化或其他原因,暂时阻止了形成层的活动,后来又恢复活动,因此在同一个生长季节中又产生了第二个生长层,这就叫假年轮。 16、合轴分枝由许多腋芽发育而成的侧枝联合组成,称为合轴分枝。 17、离层植物落叶前在叶柄基部形成的一层结构。在这层结构中,细胞中层的果胶质分解,使相邻细胞的细胞壁分离,因而使叶自茎上脱落。 18、同功器官凡来源不同,但功能、形态相同或相似,这样的变态器官称同功器官。例如茎刺与叶刺,块根与块茎。 19、泡状细胞一种明显增大和薄壁的表皮细胞。在禾本科和其他许多单子叶植物表皮中常排列成纵行,细胞中具有一个大液泡,不具叶绿体。 20、平周分裂细胞分裂与根茎的周围最近切线处相平行,即与根茎表面平行的分裂,也称径向分裂。分裂的结果,增加细胞的内外层次,使器官加厚,他们的子细胞壁是切向壁。 21、聚合果一朵花中具有许多聚生在花托上的离生雌蕊,每一个雌蕊形成一个小果,小果聚生在花托上。如草莓 22、聚花果果实由整个花序发育而来,也称复果。如菠萝无花果等。 23、角果角果是十字花科植物特有的开裂干果,有二心皮的子房发育而来。 24、真果由子房发育来的果实叫真果。

糖苷酶及其抑制剂的研究

糖苷酶及其抑制剂的研 究 Document number:PBGCG-0857-BTDO-0089-PTT1998

糖苷酶及其抑制剂的研究 摘要:糖苷酶是生命体正常运转的关键性酶,糖苷酶抑制剂 可抑制糖苷酶的活性,阻断碳水化合物的分解,因此对一些 糖代谢紊乱性疾病如糖尿病、肥胖病等有临床应用价值。本 文研究了糖苷酶中的β-半乳糖苷酶、β-葡萄糖苷酶以及蔗 糖酶的抑制剂。重点研究了β-半乳糖苷酶的分子结构和活性 基团,并从结构出发筛选其抑制剂,发现此酶的抑制剂种类 较少且抑制活性较低。本实验采用混合交叉筛选法筛选了多 种金属离子和氨基酸对β-半乳糖苷酶的抑制作用,同时也筛 选了天然产物和合成化合物。 关键词:糖苷酶β-半乳糖苷酶β-葡萄糖苷酶蔗糖酶抑制剂的筛选混合交叉法 1、前言 糖苷酶和糖基转移酶不仅参与了体内碳水化合物的消化,而且是糖脂、糖蛋白生物合成中寡糖链的修剪酶,它对糖蛋白中寡糖链的形成极为重要;糖链的组成与结构是糖蛋白特异生物功能的识别

部位,因此糖苷酶活性对糖蛋白生物合成有关键作用,而后者又涉 及到免疫反应、神经细胞的分化、肿瘤的转移以及病毒和细菌的感染. 因此, 糖苷酶不仅是生命体正常运转的关键性酶,同时又是许多疾病的相关酶. 与病毒感染、癌症及一系列新陈代谢紊乱性疾病如 糖尿病、肥胖病有关。由于糖苷酶重要的生物学意义,糖苷酶抑制 剂的研究也引起了人们的极大兴趣。 糖苷酶抑制剂即是可抑制糖苷酶的活性,阻断碳水化合物的分解,抑制淀粉、麦芽糖、蔗糖转变成单糖;影响糖脂、糖蛋白生物合成中寡糖链的修剪;所以糖苷酶抑制剂不但对一些糖代谢紊乱性 疾病如糖尿病、肥胖病等有临床应用价值[1] ,而且可作为抗AIDS病毒[2]、抗鼠白血病毒[3]的潜在治疗试剂。 本论文重点研究了糖苷酶中的β-半乳糖苷酶 β-半乳糖苷酶(β-galactosidase)又称β-D-半乳糖苷水解酶,(β-D-galactosid- -e galacto-hydrolase ,EC.3.2.1.23),商品名为乳糖酶(Lactase),它广泛存在于豆类及其他各种动植物体内和微生物中。它能够催化β-半乳糖苷化合物中的β-半乳糖苷键发生水解,还具有转半乳糖苷的作用。由于它具有糖苷键结构特 异性,可作为乳糖降解和双糖合成催化剂[4,5],并有水解生物体内储存的多糖和半乳糖残基.引起血型转化等生理功能[6,7]而受到人们广 泛关注,成为生物化学和酶催化化学的重要研究课题。

糖生物学研究进展

糖生物学研究进展 张文辉 (单位:航天医学工程研究所 学号:w24013 E-mail:pangzizhang503@https://www.360docs.net/doc/2117020014.html,)摘要:本文主要介绍了糖化学和生物学相结合产生的新学科-糖生物学的概况,主要研究内容、特点及在医学领域中研究动向。 关键词:糖生物学,研究内容,动向。 糖生物学是糖的化学和生物学研究相结合而产生的一门新兴学科,主要研究糖缀合物糖链的结构生物合成和生物学功能,其研究领域包括糖化学、糖链生物合成、糖链在复杂生物系统中的功能和糖链操作技术.糖生物学一经提出,便得到了科学界的广泛认同,并在西方发达国家受到高度重视,在即将到来的后基因组学时代,糖生物学研究更是揭示生命本质所不可缺少的重要方面.已知糖链在细胞内可修饰调控蛋白质、脂类的结构与功能,在细胞外环境参与免疫应答、感染和癌症等过程中的细胞识别但对其作用机制还不完全清楚.近10年来,随着分析技术的进步和分子生物学的发展,糖的研究也取得的了巨大进展,糖生物学研究正成为生命科学研究中又一新的前沿和热点. 糖生物学研究内容: 糖生物学以生物大分子的组成部分糖链为研究对象,研究它作为信息分子在多细胞生物高层次生命活动中的功能,主要包括糖链的结构和功能两个方面的内容。糖链的结构具有惊人的多样性、复杂性和微观不均一性,其一级结构的内容不仅包括各糖基的排列顺序,还包括各糖基的环化形式、各糖基本身异头体的构 型、各糖基间的连接方式以及分支结构的位点和分支糖链的结构。6种单糖形成带分支的六糖有1012异构体。糖链结构的复杂性给糖链的研究带来了很大的困难,同时也使它能携带巨大的生物信息。实际上,糖链的种间特异性、组织特异性以及发育特异性都很强,并且都来源于糖基转移酶不同时间和不同空间的表达。因此,糖基转移酶的研究已成为了当前糖生物学的研究重点。糖复合物中糖链的功能多种多样,如从空间上调节糖复合物的整体结构,保护多肽链不被蛋白酶水解,防止与抗体识别等。近年来的研究表明:糖链作为信息分子涉及多细胞生命的全部空间和时间过程,如精卵识别、组织器官形态形成、老化、癌变等,在血液和淋巴循环中,起着动态的更为灵敏的信号识别和调控作用,涉及到多种严重疾病的发生过程,如炎症和自身免疫病等。关于糖链的生物学作用,有如下一般规则:1)很难预知某一特定的糖链的功能和对生物体的重要性;2)同一寡糖序列在生物体的不同部位和不同的个体发育阶段有不同的功能;3)较为专一的生物作用通常是通过不寻常的序列或常见序列的不寻常表达或修饰来介导的,而这些特殊的糖链也常是毒素和病原体的识别目标。归根结底,糖链的共同特点是介导专一的“识别”和“调控”生物学的过程,因此对糖链的生物学作用也只能逐个地分别研究。当前,糖生物学研究得最多的仍然是糖蛋白。在糖蛋白中,糖链对蛋白质的功能起修饰作用,它通过影响蛋白质的整体构象从而影响由构象决定的所有功能,如蛋白质的正确折叠、细胞内定位、抗原性、细胞-细胞黏附和结合病原体等。在糖脂中人们已经证明了血型的决定物质是糖链,在神经组织及脑中更是存在大量的糖脂,但它们的生理意义至今仍了解得不多。蛋白聚糖主要有维持或抑制细胞生长以及在正常发育和病理条件下结合、贮存及向靶细胞释放生长因子和参与信号转导等作用。细胞表面糖复合物上的糖链是信息功能的承担者,承担着细胞-细胞和细胞-胞外基质的相互作用。[1]

普通生物学简答题(植物)(教育教学)

普通生物学简答题(植物学部分) 1、表解种子的基本结构,并指出各部分的主要作用。 答题要点: 种子的基本结构 种皮保护功能 胚芽由生长点和幼叶组成。禾本科植物有胚芽鞘。 种子胚轴连接胚根胚芽和子叶。(上胚轴—子叶着生点至第一片真叶之间部分,胚下胚轴—子叶着生点至胚根之间的部分) 胚根由生长点和根冠组成。禾本科植物有胚根鞘。 子叶有单,双和多数,功能是贮藏(大豆),光合作用(棉),消化吸收转运胚乳物质(水稻,蓖麻) 胚乳有或无。功能是贮藏营养物质(糖类—淀粉,糖,半纤维素)油脂和蛋白质。 2、简述种子萌发必须的外界条件。 答题要点:成熟的种子,只要条件适宜,便会萌发形成为幼苗。但风干了的种子,一切生理活动都很微弱,胚的生长几乎完全停止,处于休眠状态。种子要萌发,胚就要由休眠状态转为活动状态,这就需要有适宜的萌发条件。种子的萌发条件分内部条件及外界条件两方面:⑴内部条件种子本身必须具备健全的发芽力。⑵外界条件主要表现在三方面①充足的水分;水是种子萌发的先决条件。水不仅可使干燥的种皮松软,有利于胚芽、胚根的突破,更重要的水是原生质的重要组成成分。充足的水分可使原生质恢复活性,正常地进行各种生命活动;其次种子内的各种贮藏物,只有通过酶的水解或氧化,才能由不溶解状态转变为可为胚吸收、利用的溶解状态,而这更需要水的参加。 ②足够的氧气。种子萌发时,其一切生命活动都需要能量,而能量来源于呼吸作用。种子在呼吸过程中,利用吸入氧气,将贮藏的营养物质逐步氧化、分解,最终形成为CO2和水,并释放出能量。能量便供给各项生理活动。所以,种子萌发时,由于呼吸作用的强度显著增加,因而需要大量氧气的供应。如果氧气不足,正常的呼吸作用就会受到影响,胚就不能生长,种子就不能萌发。③适宜的温度。种子萌发时,细胞内部进行着复杂的物质转化和能量转化,这些转化都是在酶的催化作用下进行的。而酶的催化活动则必须在一定的温度范围内进行。温度低时,反应慢或停止,随着温度的升高,反应速度加快。但因酶本身也是蛋白质,温度过高,会使其遭受破坏而失去催化性能。因此,种子萌发时对温度的要求表现出最低、最高及最适点(温度三基点)。多数植物种子萌发的最低点:0-5℃,最高点:35-40℃,最适点:25-30℃。可见,温度不仅是种子萌发时必须具备的重要条件,而且还是决定种子萌发速度的重要条件。 3、子叶出土幼苗与子叶留土幼苗主要区别在哪里?了解幼苗类型对农业生产有什么指导意义? 答题要点;子叶出土幼苗与子叶留土幼苗主要区别在上下胚轴的生长速度不同。下胚轴生长速度快,子叶出土幼苗类型;上胚轴生长速度快,子叶留土幼苗类型。了解幼苗类型对农业生产中播种很有意义。对于子叶出土幼苗的种子宜浅播;而对于子叶留土幼苗的种子可稍深播,但深度应适当。 4、影响种子生活力的因素有哪些?种子休眠的原因何在?如何打破种子的休眠? 答题要点:影响种子生活力的因素有植物本身的遗传性;种子的成熟程度、贮藏期的长短、贮藏条件的好坏等等。种子形成后虽已成熟,即使在适宜的环境条件下,也往往不能立即萌发,必须经过一段相对静止的阶段才能萌发,种子的这一性质称为休眠。种子休眠的原因主要是种皮障碍;胚未发育完全;种子未完成后熟;以及种子内含有抑制萌发的物质等。生产上可用机械方法擦破种皮或用浓硫酸处理软化种皮;低温处理;人工施用赤霉素等方法打破种子的休眠。 5、绘小麦颖果纵切的轮廓图,注明各个部分的名称。 答案要点(图略):果皮和种皮、胚乳、子叶、胚芽鞘、胚芽、胚轴、胚根、胚根鞘。 6、举4个以上例子说明高等植物细胞的形态结构与功能的统一性。 答题要点:如植物的叶片,其细胞的形态结构与功能的是统一的,表现在:叶片多为绿色的扁平体,其内分布有叶脉,这与叶片光合作用功能是密切相关的,扁平体状,利于叶片充分接受阳光,叶脉支持功能可使叶片充分伸展在空间。叶片结构可分为表皮、叶肉和叶脉。表皮细胞排列紧密,细胞外壁有角质层,利于表皮的保护作用。叶肉细胞富含叶绿体,主要功能是光合作用。叶脉中有木质部和韧皮部,利于叶脉执行输导和支持的功能。

《普通生物学》植物、动物学考点

名词解释: 1.双命名法:每种生物的学名由两个拉丁文或拉丁化的单词组成,第一个单词是属名,名词,第一个字母要大写;第二个单词为种加词,形容词。完整的学名,在种加词后附上命名人的姓氏或其缩写。 2.生长轮:生长轮是形成层周期活动的结果,同一年内所产生的早材和晚材就构成一个年轮。(在温带生长的树种,通常每年只形成一个生长轮,故生长轮又称为年轮。) 3.假果:除子房外,还有花托、花萼甚至整个花序都参与果实的形成,这类果实称为假果。 4.真果:单纯由子房发育而成的果实。 5.维管束:由原形成层分化而来,木质部和韧皮部共同组成的束状结构。 6.植物生长调节剂:是人工合成的(或从微生物中提取的天然的),具有和天然植物激素相似生长发育调节作用的有机化合物。 7.植物激素:在植物体内合成,能从产生部位运送到作用部位,在低浓度时能对生长发育具有显著生理作用的微量有机物。 8.春化作用:指植物经一定时间的低温处理才能诱导

或促进开花的现象 9.双受精现象:花粉管进人胚囊后,其顶端形成一个孔,从孔中释放出花粉管的内容物,包括一对精细胞和营养核。其中一个精子在卵细胞合点端缺乏细胞壁的部位通过质膜相互融合而进入卵细胞,继而精核与卵核融合,形成二倍体的合子或称为受精卵。与此同时,另一个精细胞亦通过质膜融合的方式进人中央细胞,精核与两个极核配合产生三倍体的初生胚乳核。 10.质外体:由所有细胞的细胞壁连接起来构成的整体,包括细胞壁、胞间隙和木质部的导管或管胞等非原生质体部分。 11.共质体:指通过胞间连丝将植物体的所有活细胞的原生质连系起来形成的整体。 12.植物细胞的水势(计算公式): 水势:指每偏摩尔体积水的化学势(差)。 公式:ψw =ψπ+ ψp+ ψm ψw 细胞水势、ψπ渗透势 ψp压力势、ψm衬质势 问答问题 问:五界系统是哪五界?

糖化学与糖生物学对人类健康的关系

糖化学与糖生物学对人类健康的关系 100多年前德国著名科学家E. Fisher就开始研究糖类。1923年M.Heidelberger 和T. Oswld 提出细菌的抗原是由糖类物质组成而不是蛋白质。从上世纪 60年代起,人们发现糖类物质具有多方面和复杂的生物活性,如细胞间的通讯、识别相互作用,胚胎的发生、转移,信号的传递,细胞的运动与黏附,抗微生物的黏附与感染及调节机体的免疫功能等等。20世纪70年代开始了糖化学(Carbohydrate Chemistry)和生物化学交叉研究,因此诞生了糖生物学(Glycobiology)这门新学科。 糖生物学研究的领域是糖化学、糖链生物合成、糖链在生物体系中的功能、糖链操作技术等。在后基因时代DNA重组技术在糖生物学中得到应用,重组技术使参与寡糖和蛋白聚糖组装、加工和降解过程的酶分子鉴定以及对识别糖分子结构的植物、动物凝集素的鉴定成为可能。糖分子能促进新生蛋白质折叠和辨别淋巴细胞、粒细胞在循环中穿行的方向,聚糖组装错误引发遗传性疾病等都说明了研究糖复合物是生命科学的一个重要的分支。糖复合物(glycoconjuate)是糖类和蛋白质或脂类形成的共价结合物,近年来又发现了蛋白质—糖—脂质三者的共价结合物。Glycoconjugate也可译为糖缀合物(结合物)或复合糖(complex carbohydrate)。 糖类在生物体中不仅作为能源(如淀粉和糖原)或结构组分(如蛋白聚糖或纤维素),而且担负着极为重要的生物功能。一个含有4个特定糖基的四糖在理论上可有3万余种异构体。这是因为肽的连接都是氨基酸的α-氨基和α-羧基连接的肽键,一个氨基酸残基只能在氨基侧链各形成一个肽链,一般不会形成分支肽链,核苷酸也都是3ˊ,5ˊ-磷酸二酯键连接,也不可能存在分支的核酸。但是寡糖中二个糖基的互相连接可以有1→2、1→3、1→4、1→6等不同方式,一个糖残基和相邻残基有时可形成4个糖苷键,从而使糖链分支,而且糖基还有α,β异头碳构型,更造成了连接键的复杂性。可以说,具有相同残基数量的寡糖和肽或寡核苷酸相比,前者含有更多的信息。越来越多的事实证明,糖复合物中的寡糖是

糖苷酶及其抑制剂的研究

糖苷酶及其抑制剂的研究 摘要:糖苷酶是生命体正常运转的关键性酶,糖苷酶抑制剂可抑制糖苷酶的活性,阻断碳水化合物的分解,因此对一些糖代谢紊乱性疾病如糖尿病、肥胖病等有临床应用价值。本文研究了糖苷酶中的β-半乳糖苷酶、β-葡萄糖苷酶以及蔗糖酶的抑制剂。重点研究了β-半乳糖苷酶的分子结构和活性基团,并从结构出发筛选其抑制剂,发现此酶的抑制剂种类较少且抑制活性较低。本实验采用混合交叉筛选法筛选了多种金属离子和氨基酸对β-半乳糖苷酶的抑制作用,同时也筛选了天然产物和合成化合物。 关键词:糖苷酶β-半乳糖苷酶β-葡萄糖苷酶蔗糖酶抑制剂的筛选混合交叉法 1、前言 糖苷酶和糖基转移酶不仅参与了体内碳水化合物的消化,而且是糖脂、糖蛋白生物合成中寡糖链的修剪酶,它对糖蛋白中寡糖链的形成极为重要;糖链的组成与结构是糖蛋白特异生物功能的识别部位,

因此糖苷酶活性对糖蛋白生物合成有关键作用,而后者又涉及到免疫反应、神经细胞的分化、肿瘤的转移以及病毒和细菌的感染. 因此, 糖苷酶不仅是生命体正常运转的关键性酶,同时又是许多疾病的相关酶. 与病毒感染、癌症及一系列新陈代谢紊乱性疾病如糖尿病、肥胖病有关。由于糖苷酶重要的生物学意义,糖苷酶抑制剂的研究也引起了人们的极大兴趣。 糖苷酶抑制剂即是可抑制糖苷酶的活性,阻断碳水化合物的分解,抑制淀粉、麦芽糖、蔗糖转变成单糖;影响糖脂、糖蛋白生物合成中寡糖链的修剪;所以糖苷酶抑制剂不但对一些糖代谢紊乱性疾病如糖尿病、肥胖病等有临床应用价值[1] ,而且可作为抗AIDS病毒[2]、抗鼠白血病毒[3]的潜在治疗试剂。 本论文重点研究了糖苷酶中的β-半乳糖苷酶 β-半乳糖苷酶(β-galactosidase)又称β-D-半乳糖苷水解酶,(β-D-galactosid- -e galacto-hydrolase ,EC.3.2.1.23),商品名为乳糖酶(Lactase),它广泛存在于豆类及其他各种动植物体内和微生物中。它能够催化β-半乳糖苷化合物中的β-半乳糖苷键发生水解,还具有转半乳糖苷的作用。由于它具有糖苷键结构特异性,可作为乳糖降解和双糖合成催化剂[4,5],并有水解生物体内储存的多糖和半乳糖残基.引起血型转化等生理功能[6,7]而受到人们广泛关注,成为生物化学和酶催化化学的重要研究课题。 β-半乳糖苷酶的应用有着长远的历史,最初在食品工业中用来降解乳糖含量以满足乳糖不适症患者的需要,然而随着生物技术的发

糖与糖生物学

一,糖与糖生物学 1.名词解释: Biomacromolecule[ba??m?kr?'m?lekju:l]:生物大分子,一些相对分子质量(Mr)在5000以上的多聚体。 Metabolism [m??t?b??l?z?m]:新陈代谢,(生物体内发生的各种酶促反应的总和或总称)——上册定义;(生物体内进行的所有化学变化的总称,是生物体一切生命活动的基础。)——下册定义 Transcription [tr?n?skr?p??n]:转录,指DNA的一股链上的遗传信息传递给RNA的过程 Chiral molecule [?ka?r?l ?mɑl??kjul]:手性分子,分子本身不能和自己的镜像叠合,没有对称面、对称中心、四重交替对称轴三种对称元素。 Conformation [?kɑ:nf?:r?me??n]:构象,一个分子所采取的特定形态 Configuration [k?n?f?gj??re??n]:构型,分子中原子的固定空间排列 Hydrogen bond[?ha?dr?d??n bɑnd]:氢键,一种静电相互作用,由裸露氢核与另一个电负性大的原子间的静电吸引引发 Carbohydrate[?kɑ:rbo??ha?dre?t]:碳水化合物(糖类):多羟醛,多羟酮或其衍生物,或水解能产生这些化合物的多聚体 Glycobiology[ɡla?ko?b'??l?d??]:糖生物学,研究糖缀合物结构和功能的学科Monosaccharide[?m?n?'s?k?ra?d]:单糖,不能被水解成更小分子的糖类 Glycoconjugate[ɡl?ko?k?nd??'ɡe?t]:糖缀合物(糖复合物),糖类物质与蛋白质或脂质等生物分子借共价键形成的缀合物,如:糖蛋白,蛋白聚糖,糖脂,脂多糖 Strutural polysaccharide [?p?l?'s?k??ra?d]:多聚糖(多糖),水解时产生10多个以上单糖分子的糖类,包括同多糖和杂多糖 Cellulose[?seljulo?s]:纤维素,一种纤维状不溶于水的物质,其葡萄糖残基由B-1,4糖苷键连接,存在于植物细胞壁中。 Cyclodextrin[sa?klo?'dekstr?n]:环糊精,由环糊精转葡糖基转移酶作用于淀粉生成,属于非还原糖,无游离异头羟基 Peptidoglycan[pept?d??'gla?k?n]:肽聚糖,主链由GlcNAc与MurNAc借B-1,4连键交替连接而成,存在于某些细菌的细胞壁中 Glycosidase [gla?'ko?s?de?s]:糖苷酶,主要功能为水解葡萄糖苷键,释放出葡萄糖,是生物体糖代谢途径中不可或缺的一类酶。 二,简答题 请叙述糖类的化学本质及其生物学功能: 糖类化学本质:多羟醛,多羟酮或其衍生物,或水解能产生这些化合物的多聚体 生物学功能: 1.作为生物的结构成分:肽聚糖是细菌细胞壁结构多糖,昆虫外骨骼含壳多糖,纤维素参与构成植物细胞壁 2.作为生物体内主要的能源物质:糖类氧化是绝大多数非光合作用生物最主要的产能途径 3.生物体内转变为其它物质:糖类通过某些代谢中间物,为合成其他生物分子(氨基酸、核苷酸等)提供碳骨架 4.作为生物信息分子;细胞质膜中的糖蛋白和糖脂的寡糖链有信息分子作用。

相关文档
最新文档