与木葡聚糖合成的糖基转移酶基因研究进展
葡萄糖醛酸酶

α-葡萄糖醛酸酶的研究进展摘要:α-葡萄糖醛酸酶是木聚糖类半纤维素完全降解过程中必不可少的重要酶,它在构建彻底降解半纤维素的基因工程菌和半纤维素酶制品的应用开发方面的生物技术潜力正在越来越受到人们的关注。
本文从木聚糖的结构着重介绍α-葡萄糖醛酸酶的作用机理、酶活分析、酶纯化和基因克隆的研究进展。
关键词:木聚糖;α-葡萄糖醛酸酶;作用机制;基因重组技术木聚糖类半纤维素是仅次于纤维素的第二个重要的异源多糖,它以其数量大,组分易提取成为最具潜力的可再生资源[1]。
因此,各国政府都不断投入对木聚糖类半纤维素酶的研究。
尤其是石油危机引起的价格战更促使了人们对半纤维素发酵生产燃料乙醇的研究。
我国科学工作者在半纤维素酶方面已经进行了深入研究,并在食品加工、饲料、纸浆溶解及纸浆漂白上取得了可喜成绩。
但主要是集中在内切木聚糖酶的研究上[1]。
我国是一个农业大国,每年有大量的秸杆成为环保负担,而秸杆中约94%的半纤维素是阿拉伯糖葡萄糖醛酸木聚糖[1]。
如果将其生物降解为木糖和少量其它单糖,可以用作基本碳源生产各种发酵产品,如有机酸、氨基酸、单细胞蛋白、糖醇、工业酶类、溶剂或燃料。
但是,彻底降解木聚糖需要由多种水解酶组成的酶系统的协同作用。
这个木聚糖降解酶系是由内切木聚糖酶、β-木糖苷酶、α-阿拉伯呋喃糖苷酶、α-葡萄糖醛酸酶和乙酰木聚糖酯酶组成的。
α-葡萄糖醛酸酶在开发木聚糖类半纤维素中起着非常重要的作用,它的生物技术潜力正越来越受到人们的关注。
目前,有关α-葡萄糖醛酸酶的研究在国内还未见报道,本文将从木聚糖类半纤维素的结构、酶作用机制介绍有关α-葡萄糖醛酸酶及其基因的研究进展。
1 木聚糖的结构木聚糖是存在于植物细胞壁中最丰富的半纤维素,它是一个以β-1.4-糖苷键相连的木聚糖主链上带着一些不同的取代基像乙酰基、阿拉伯糖基、4-O-甲基葡萄糖醛酸和阿魏酸残基等而构成的[2]。
为了保证植物细胞壁的刚性,木聚糖则与细胞壁聚合物果胶质和木质素相连接,其中阿魏酸与果胶质和木质素中的酚酸残基形成共价键,并通过阿拉伯糖基连到木聚糖主链上。
木葡聚糖及其在植物抗逆过程中的功能研究进展

植物学报 Chinese Bulletin of Botany 2020, 55 (6): 777–787, doi: 10.11983/CBB20020 ——————————————————收稿日期: 2020-02-10; 接受日期: 2020-05-08基金项目: 国家重点研发计划(No.2018YFD1000300)、现代种业重大科技专项(No.2018B02020-2005)和广东省现代农业产业技术体系创新团队建设专项(No.2019KJ109) † 共同第一作者* 通讯作者。
E-mail:**************.cn木葡聚糖及其在植物抗逆过程中的功能研究进展肖银燕†, 袁伟娜†, 刘静, 孟建, 盛奇明, 谭烨欢, 徐春香*华南农业大学园艺学院, 广州 510642摘要 木葡聚糖(XyG)是一种存在于所有陆生植物细胞壁中的基质多糖, 是双子叶植物初生细胞壁中含量(20%–25%,w/w)最丰富的半纤维素成分。
作为细胞壁的组分, XyG 不仅与植物的生长发育密切相关, 还在植物抵抗各种生物和非生物逆境过程中发挥重要作用。
XyG 代谢相关基因主要通过改变植物细胞壁的组成以及对细胞壁进行重排进而改变细胞壁的弹性/硬度等特性, 影响植物的抗逆性。
XyG 及其寡糖也可能作为信号分子, 或与其它信号分子协同作用应对逆境胁迫。
该文概述了XyG 的结构与类型及参与XyG 生物合成与降解的相关基因, 重点阐述XyG 相关基因应答生物和非生物胁迫的作用机制。
关键词 半纤维素, 木葡聚糖代谢, 生物胁迫, 非生物胁迫, 抗性肖银燕, 袁伟娜, 刘静, 孟建, 盛奇明, 谭烨欢, 徐春香 (2020). 木葡聚糖及其在植物抗逆过程中的功能研究进展. 植物学报 55, 777–787.植物细胞壁是围绕在植物原生质体外的一种细胞结构, 由初生细胞壁和次生细胞壁组成。
初生细胞壁位于外层, 是由纤维素、半纤维素和果胶等多糖及结构蛋白组成的一种复杂网络结构。
木聚糖酶生产及酶学性质的研究

木聚糖酶生产及酶学性质的研究一、本文概述木聚糖酶是一类能够水解木聚糖及其相关多糖的酶类,广泛存在于自然界中,尤其是在植物、微生物和动物体内。
由于其在生物质转化、食品加工、饲料工业以及医药等领域的重要应用价值,木聚糖酶的研究与生产日益受到关注。
本文旨在全面综述木聚糖酶的生产方法、纯化技术以及酶学性质的研究进展,以期为木聚糖酶的进一步研究和应用提供理论支持和实践指导。
本文将对木聚糖酶的生产方法进行详细阐述。
这包括从天然来源中提取木聚糖酶,以及通过微生物发酵、基因工程等生物技术手段生产木聚糖酶。
在此基础上,还将探讨不同生产方法的优缺点,以及影响木聚糖酶产量的关键因素。
本文将关注木聚糖酶的纯化技术。
纯化是获得高质量、高活性木聚糖酶的关键步骤,本文将介绍常见的纯化方法,如硫酸铵沉淀、离子交换层析、凝胶过滤层析等,并分析各方法的优缺点及适用范围。
本文将重点研究木聚糖酶的酶学性质。
这包括木聚糖酶的分子量、最适pH值、最适温度、动力学参数等基本性质,以及酶的稳定性、抑制剂和激活剂等影响因素。
通过对这些酶学性质的研究,可以更深入地了解木聚糖酶的作用机制和催化性能,为其在各个领域的应用提供理论依据。
本文旨在通过系统研究木聚糖酶的生产及酶学性质,为木聚糖酶的进一步研究和应用提供全面、深入的理论支持和实践指导。
二、木聚糖酶的生产方法木聚糖酶作为一种重要的工业酶,其生产方法主要包括微生物发酵法、化学合成法和基因工程法。
其中,微生物发酵法因其产量高、成本低、条件温和且易于工业化生产等优点,成为目前木聚糖酶生产的主要方法。
微生物发酵法生产木聚糖酶主要利用能够产生木聚糖酶的微生物,如真菌、细菌和放线菌等,通过优化培养基成分、发酵条件和菌种选育等手段,提高木聚糖酶的产量和活性。
目前,黑曲霉、米曲霉和里氏木霉等真菌是木聚糖酶的主要生产菌种。
在发酵过程中,碳源、氮源、无机盐和生长因子等营养成分对木聚糖酶的产量和活性具有重要影响。
常用的碳源包括木聚糖、葡萄糖、果糖等,氮源则包括蛋白胨、酵母粉、豆饼粉等。
粘性多糖及多糖酶的研究进展

粘性多糖及多糖酶的研究进展饲料中粘性多糖主要以阿拉伯木聚糖和β-葡聚糖为主,它们是麦类谷物及糠麸中的主要多糖,会阻碍畜禽的消化吸收,降低饲料利用率,同时给卫生和疾病控制带来困难。
因此,如何充分开发和利用我国资源丰富的麦类谷物及糠,是科研工作者目前需要解决的实际问题。
1 阿拉伯木聚糖和-β葡聚糖的结构阿拉伯木聚糖主要由戊糖(阿拉伯糖和木糖)组成,因此又常称为戊聚糖,由β-(1→4)-右旋-呋喃木糖基主链与一个或多个α-左旋阿拉伯喃前糖基取代而成(Annison 等,1992)。
β-葡聚糖是一类由右旋一葡萄糖以卜构型连接的同聚物,由糖基分子线性连结或葡聚糖直链。
支链连结而成,谷物细胞壁的β-葡聚糖结构简单,是由葡萄糖通过β-(l→3),(1→4)糖音链线性连接而成的聚合物(Fincher and Stone,1996; Pitson 等,1993)。
2 谷物中多糖含量谷物中戊聚糖和β-葡聚糖含量主要受基因型及环境的影响(Austrup,1979;Bourne and Wheeler,1984)。
一般雨量充沛的高湿环境下生长的谷物,多糖含量低于干燥条件下生的谷物。
常规大麦与裸大麦多糖含量也有差异,裸大麦中蜡质淀粉型与非蜡质淀粉型含量不同。
另外,收获时期,加工处也影响谷物多糖含量。
R.J.Henky(1987)分析了17种生长在3个不同区域的大麦,β-葡聚糖含量变化范围为3.4%~5.7%,戊聚糖含量为4.4%~7.8%;小麦中以戊聚糖为主,含量大致为6.6%,而β-葡聚糖为0。
6%(R.J.HenRy,1987)。
大麦、小麦等原料中,粘性多糖主要集中在糊粉层和胚乳中,加工后则主要在其副产品中,因此次粉及鼓皮中粘性多糖含量明显高于整粒谷物。
石永峰(1994)报道,全大麦、面粉、次粉、麸皮中β-葡聚糖分别含量为5.8%、 3.1%、10.0%和8.4%。
3 β一葡聚糖和阿拉伯木聚糖的抗营养特性粘性多糖的抗营养特性主要是由其高粘稠性和持水性引起的(T.Antoniou,1980),这种特性能显著改变消化物的物理特性和肠道的生理活性(G.Annison,1996),从而影响畜禽的生产性能。
葡聚糖的研究进展

葡聚糖的研究进展
曹敏;陈军;王元春;姜毅;韦艳君;雷光鸿;梁智
【期刊名称】《广西轻工业》
【年(卷),期】2011(027)004
【摘要】葡聚糖具有明显的增强免疫、抗肿瘤、降血糖、降血脂、抗氧化等活性,是葡聚糖具有多种功效的原因之一.主要综述了葡聚糖的理化性质、提取方法、分离纯化方法、测定方法、生物活性的研究进展.
【总页数】4页(P17-20)
【作者】曹敏;陈军;王元春;姜毅;韦艳君;雷光鸿;梁智
【作者单位】广西轻工业科学技术研究院,广西,南宁,530031;广西轻工业科学技术研究院,广西,南宁,530031;广西轻工业科学技术研究院,广西,南宁,530031;广西轻工业科学技术研究院,广西,南宁,530031;广西轻工业科学技术研究院,广西,南
宁,530031;广西轻工业科学技术研究院,广西,南宁,530031;广西轻工业科学技术研究院,广西,南宁,530031
【正文语种】中文
【中图分类】TQ455
【相关文献】
1.糖原组学研究进展——β-葡聚糖的结构和功能的研究进展 [J], 李万坤;闫鸿斌;才学鹏;郭福存
2.酶法合成糖原状α-葡聚糖的研究进展 [J], 刘佳林;柏玉香;李晓晓;孙纯锐;邱洪伟;
干福良;金征宇
3.木葡聚糖内糖基转移酶/水解酶(XTH)研究进展 [J], 王大鹏;吕鑫亿;闫金国;黄姗
4.燕麦β-葡聚糖的分子结构特点及其生物学功能研究进展 [J], 田思萌;孔祥菊
5.谷物β-葡聚糖测定方法研究进展 [J], 李丹青;张凯龙;闫金婷;胡新中;董锐;闫喜梅因版权原因,仅展示原文概要,查看原文内容请购买。
拟南芥木聚糖合成关键酶基因的调控研究

拟南芥木聚糖合成关键酶基因的调控研究王玉琪;贺俊波;吴蔼民【摘要】【目的】从目前已知的参与拟南芥Arabidopsis thaliana次生壁加厚生长的转录因子着手,分析这些次生壁相关的转录因子是否能够调控木糖合成关键酶基因FRA8、IRX9、IRX10、IRX14、F8H、IRX9-L、IRX10-L和IRX14-L的表达,并且观察KNAT7基因显性抑制植株的表型.【方法】通过Gateway技术构建效应器和报告器,进行瞬时转录激活试验,同样构建pCAMBIA1304-p35S∷KNAT7-SRDX重组质粒,用农杆菌Agrobacterium tumefaciens花序浸染法将此质粒转化到野生型拟南芥植株中.【结果和结论】瞬时转录激活试验表明,转录因子KNAT7、MYB46、ERF72、SND1、NST2能够激活多个拟南芥木聚糖合成关键酶基因的表达,其中KNAT7能促进基因FRA8、IRX9和IRX14-L的表达.KNAT7基因显性抑制能显著影响拟南芥的生长.试验结果表明KNAT7基因可能在木聚糖的合成中起着重要的调控作用.%Objective] To analyze whether some transcription factors in Arabidopsis thaliana, known for the secondary cell wall thicken , could regulate the expression of the key genes of xylosyltransferase , such as FRA8, IRX9, IRX10, IRX14, F8H, IRX9-L, IRX10-L and IRX14-L, and observe the phenotype of KNAT7 dominant repression plant .[Method] Effectors and reporters were constructed by GatewayTech-nology and the transient transcriptional activation assay was conducted .Construct pCAMBIA1304-p35S∷KNAT7-SRDX recombinant plasmid by Gateway Technology and transform this plasmid into wildA.thali-ana via Agrobacterium tumefaciens-floral dip method .[Result and conclusion] The transient transcription-al activation assay revealed thattranscription factors KNAT 7, MYB46, ERF72, SND1, NST2 could acti-vate the expression of a number of the key genes of xylosyltransferase .KNAT7 could activate the expres-sion of FRA8, IRX9 and IRX14-L.Furthermore, dominant repression of KNAT7 significantly affected the growth of Arabidopsis thaliana.These results indicate that KNAT7 probably plays an important role in the regulation of xylan biosynthesis .【期刊名称】《华南农业大学学报》【年(卷),期】2014(000)004【总页数】6页(P97-102)【关键词】木聚糖;木聚糖合成关键酶基因;调控;KNAT7【作者】王玉琪;贺俊波;吴蔼民【作者单位】华南农业大学生命科学学院,广东广州510642;华南农业大学生命科学学院,广东广州510642;华南农业大学新能源与新材料研究所,广东广州510642【正文语种】中文【中图分类】S852.65木质纤维素指任何纤维素和木质素等作为基本要素积累形成的材料,是地球上最丰富的生物质和可再生资源,近年来被开发成重要的可更新的生物质能源材料[1].现阶段,液体生物质燃料原料开发主要来源于糖、淀粉和油脂类.而从长期的角度出发,生物质能源原料应该主要来源于木质纤维素和藻类油脂等[2-3].虽然目前木质纤维素可以通过水解和酶解等一系列手段使纤维素降解成葡萄糖,并最终降解转化为乙醇,但其工艺较为复杂,成本较高[2-4].而通过了解木质纤维素形成的分子机理,特别是次生壁的形成机理,从而定向改变木质纤维素材料的生物结构和遗传品质,尤其是降低半纤维素和木质素的成分,改变其结构,可以简化工艺流程,降低多糖降解为单/寡糖的糖化成本,满足提高生物质能源产量的要求.这已成为全球能源植物基础研究的热点[2-6].木质纤维素的积累主要通过次生加厚生长完成,它主要由纤维素、半纤维素和木质素3部分组成[7].其中,半纤维素在初生壁中以木葡聚糖(Xyloglucan)存在,但在阔叶树的次生壁中木葡聚糖极少,主要以木聚糖(Xylan)形式存在[8].木聚糖主要由β-(1,4)-D-Xyl(木糖基)为主链、葡萄糖醛酸和/或甲基化的葡萄糖醛酸为侧链组成.另外,其还原末端由β-D-Xyl(木糖基)p-(1→3)-α-L-Rha(鼠李糖基)p-(1→2)-α-D-Gal(半乳糖基)p A-(1→ 4)-D-Xyl p构成[9-10].基于木聚糖的结构,估计需要多个酶来参与木聚糖的主链的延长、还原末端的合成和侧链的修饰.在拟南芥 Arabidopsis thaliana中,已报道基因FRA8(Fragile fiber 8)、F8H(Fragile fiber 8 homolog)、IRX9(Irregular xylem 9)、IRX9-L(Irregular xylem 9-like)、IRX14、IRX14-L、IRX10 和 IRX10-L 可能参与木聚糖主链的延长[10-15].其中,FRA8、IRX9、IRX14 和IRX10是主效基因,而 F8H、IRX9-L、IRX14-L和IRX10-L是次效基因.最近的研究结果也证明了IRX9基因和IRX14基因共同作用能将寡糖聚合更长[16].另外,基因GUX1(Glucuronic acid substitution of xylan 1)、GUX2和GUX3负责将葡萄糖醛酸(GlcA)加到木聚糖的侧链上[17].目前,已报道有众多转录因子参与次生细胞壁的加厚生长.研究表明SND1(Secondary wall-associated NAC domain protein 1,also called NST3)、NST1(NAC secondary wall thickening promoting factor 1)、NST2、VND6(Vascular-related NAC-domain 6)、VND7是调控植物次生细胞壁形成的关键转录因子[18-23].SND1基因和NST1基因促进纤维细胞次生壁的形成[20-22],而 VND6、VND7 基因参与导管次生壁的形成[24].研究表明NST1和NST2基因在调控花药内层细胞的次生壁加厚上存在功能冗余[20].转录因子SND1、NST1、NST2、VND6 和 VND7 能够调控 SND2、SND3、KNAT7(Knotted-like homeobox of Arabidopsis Thaliana 7)、MYB20(MYB domain protein 20)、MYB42、MYB43、MYB46、MYB52、MYB54、KMYB69、MYB85、MYB103等次生壁相关的转录因子基因的表达[21-22,24]. 其中基因 SND3、KNAT7、MYB46 和MYB103 是转录因子 SND1、NST1、NST2、VND6 和VND7的直接靶标,显性抑制基因 SND2、SND3、MYB52、MYB54、MYB85和MYB103显著降低纤维细胞次生壁的厚度[24].此外,研究表明IFL1基因参与调控拟南芥束间纤维的分化[25].木质素的生物合成关键酶基因的调控目前研究较为清楚.木质素生物合成有关的12个酶中,10个酶的基因的启动子区域中,在5'非翻译区100 bp以内的序列上,至少有1个相对保守的AC元件,一些MYB类的转录因子可以与AC元件结合[26-27].然而,目前为止鲜见专门研究调控木聚糖合成的转录因子的报道.我们从 SND1、NST1、NST2、VND7、KNAT7、ERF72(Ethylene response factor 72)、IFL1、MYB20、MYB46、MYB52、MYB69、MYB85 和 MYB103 等次生壁相关的转录因子着手,分析这些转录因子是否调控基因 FRA8、IRX9、IRX10、IRX14、F8H、IRX9-L、IRX10-L和IRX14-L的表达.这一研究有助于弄清木聚糖的合成网络,并且将为进一步把木质纤维素开发成生物燃料打下基础.1 材料与方法1.1 材料用于制备原生质体的拟南芥植株为野生型,购自美国拟南芥种质资源中心(The Arabidopsis Biological Resource Center,ABRC),在22 ℃,光周期为光照13h黑暗11 h,50 ~75 μE ·m–2· s–1的弱光条件下培养.1.2 方法1.2.1 效应器和报告器的构建通过PCR反应克隆转录因子基因 SND1、NST1、NST2、VND7、KNAT7、ERF72、IFL1、MYB20、MYB46、MYB52、MYB69、MYB85和MYB103的全长DNA或cDNA,基因FRA8、IRX9、IRX10、IRX14、F8H、IRX9-L、IRX10-L和 IRX14-L 的启动子序列,再通过BP重组反应将这些序列接到入门载体pDONR207上,测序验证序列后通过LR重组反应将转录因子的序列连接到终载体pUGW2上,将调控序列连接到终载体pUGW35上.1.2.2 拟南芥原生质体的制备根据文献[28]介绍的方法制备拟南芥原生质体.将弱光条件下种植的拟南芥的叶片剪成约1 mm宽的细丝,放入含有纤维素酶和离析酶的酶液中消化.然后用75μm的尼龙膜过滤酶液,收集滤液并洗涤.1.2.3 转染原生质体用PEG4000-Ca2+溶液介导效应器、报告器和内参质粒转染拟南芥原生质体.每个样品用1×105个原生质体.1.2.4 测定萤火虫荧光素酶和海参荧光素酶的活性用Dual-Luciferase reporter assay system试剂盒(Promega公司)在GloMaxTM 20/20发光检测仪(Promega公司)上分别测定样品中萤火虫荧光素酶和海参荧光素酶的活性.1.2.5 显性抑制技术将KNAT7基因的无终止密码子的全长DNA连接到载体pCAMBIA1304上,构建pCAMBIA1304-p35S∷KNAT7-SRDX表达载体.通过农杆菌 Agrobacterium tumefaciens花序浸染法将pCAMBIA1304-p35S∷KNAT7-SRDX表达载体转化到拟南芥中.通过潮霉素筛选获得转基因植株.同时种植转基因植株和野生型植株,并在相同条件下培养.1.2.6 数据分析利用Excel软件对数据进行统计分析.用t检验法分析处理组与对照组是否有显著差异.2 结果与分析2.1 转录因子和启动子的克隆先前的研究发现,木聚糖合成酶关键基因主要在茎的维管组织(Vascular tissue)表达[14-15],而已有研究表明转录因子 SND1、NST1、NST2、VND7、KNAT7、ERF72、IFL1、MYB20、 MYB46、MYB52、MYB69、MYB85和MYB103参与拟南芥次生壁导管的加厚生长[24].为了研究木聚糖合成酶关键基因的调控网络,我们首先克隆这些已报道的转录因子基因来分析它们是否对木聚糖合成酶关键基因有调控作用.按照已发表的基因序列,利用聚合酶链式反应(Polymerase chain reaction,PCR)克隆这些转录因子基因(图1a、1b),连接到载体中并测序验证.同时克隆木聚糖合成关键酶基因的启动子序列(图1c),并连接到载体中测序验证.图1 部分转录因子和启动子的PCR扩增产物电泳图Fig.1 The electrophoretogram of partial promoters’and transcription factors’PCR products2.2 转录因子对基因FRA8、IRX9、IRX10和IRX14的调控作用将这些转录因子基因的全长序列连接到花椰菜花叶病毒(CaMV)35S的下游,构建成效应器,再将木聚糖合成酶的主效基因 FRA8、IRX9、IRX10和IRX14的启动子分别连接到报告基因萤火虫荧光素酶基因(Fire luciferase,FLUC)的上游,构建报告器(图2).克隆的 FRA8、IRX9、IRX10 和 IRX14 基因的启动子序列的范围依次是-2305~+196、-2011~+34、-663~+162和-2702~+153.将效应器、报告器和携带有位于CaMV35S下游的海参荧光素酶基因(Renilla Luciferase,RLUC)的内参质粒共同转染拟南芥原生质体,培养一段时间后测定FLUC蛋白和RLUC蛋白的活性.FLUC蛋白、RLUC蛋白的活性的比值代表FLUC报告基因的相对表达量,以只转染了报告器和内参质粒的拟南芥原生质体中的FLUC报告基因的相对表达量作为对照组(CK).图2 效应器、报告器和内参质粒的结构Fig.2 The structure of effecter,reporter and internal reference plasmid将克隆的所有次生生长相关的转录因子基因,分别转入上述的反式激活体系中,筛选FLUC报告基因的相对活性较高的处理组合,筛选出来的处理组合各设置3个重复.试验结果表明转录因子KNAT7、ERF72、MYB46、MYB103能促进 FRA8基因的表达,转录因子 SND1、KNAT7、MYB46、MYB85能促进IRX9基因的表达,转录因子 SND1、NST2、VND7、MYB85能促进IRX10基因的表达,转录因子NST2、MYB46能促进IRX14基因的表达(图3).图3 转录因子对基因FRA8、IRX9、IRX10和IRX14的启动子驱动的报告基因的激活作用Fig.3 The activation of the transcription factors to the reporter gene driven by the promoters of FRA8,IRX9,IRX10 and IRX142.3 转录因子对基因 F8H、IRX9-L、IRX10-L和IRX14-L的调控作用将木聚糖合成关键酶中的次效基因F8H、IRX9-L、IRX10-L和IRX14-L的启动子序列连接到FLUC报告基因的上游,构建报告器.克隆的 F8H、IRX9-L、IRX10-L 和IRX14-L的启动子序列的范围依次是-2243~+259、-1212~ +220、-2277~+237和-513~+28.将效应器、报告器和内参质粒共同转染拟南芥原生质体,培养一段时间后测定FLUC蛋白和RLUC蛋白的活性.FLUC蛋白、RLUC蛋白活性的比值代表FLUC报告基因的相对表达量,以只转染了报告器和内参质粒的拟南芥原生质体中的FLUC报告基因的相对表达量为对照组.将克隆的所有次生生长相关的转录因子,分别转入上述的反式激活体系中,筛选FLUC蛋白相对活性较高的处理组合,筛选出来的处理组合各设置3个重复.未筛选出能促进IRX10-L基因表达的转录因子.瞬时转录激活分析试验表明转录因子SND1、NST2、MYB20、MYB46能促进F8H基因的表达,转录因子ERF72能促进IRX9-L基因的表达,转录因子VND7、KNAT7、ERF72、MYB46、MYB103 能促进IRX14-L基因的表达(图4).2.4 植物体内显性抑制KNAT7的表达由于KNAT7转录因子能够显著地激活基因FRA8、IRX9和IRX14-L的表达,因此用显性抑制方法来进一步探究KNAT7基因在植物体内的功能.这一方法已经被成功地用于研究与次生壁合成有关的多个转录因子[18-22].将无终止密码子的KNAT7基因的全长DNA序列连接到CaMV35S下游和显性EAR抑制序列的上游,在拟南芥内显性抑制融合表达.KNAT7基因显性抑制的拟南芥转基因植株与野生型植株相比显著变矮,发育不正常(图5).图4 转录因子对基因F8H、IRX9-L、和IRX14-L的启动子驱动的报告基因的激活作用Fig.4 The activation of the transcription factors to the reporter gene driven by the promoters of F8H,IRX9-L and IRX14-L图5 KNAT7基因显性抑制的植株的表型Fig.5 The phenotype of the KNAT7 gene dominant repression plant3 讨论与结论近年来随着木质纤维素作为生物质能源被开发利用,木质纤维素相关的合成及降解机理成为近期的一个研究热点.其中木质素合成酶基因的调控已有一定的研究,发现启动子区有AC元件,并且MYB类转录因子可以与AC元件结合[26-27].而对木聚糖合成关键酶基因的调控研究目前还鲜见报道.这一研究不仅可以为了解木聚糖合成的调控网络打下基础,还可以为将来通过调控转录因子从上游来控制木聚糖合成提供理论基础.我们通过初步筛选已经获得了多个可以调控木聚糖合成关键酶基因的转录因子,接下来我们准备对这些启动子进行缺失分析,研究这些转录因子与启动子的哪个区域结合.再进一步通过缺失、突变等分析鉴定这些转录因子结合的顺式作用元件.另外,虽然体外试验验证了多个转录因子对木聚糖合成关键酶基因的调控作用,而体内激活作用依旧需要进一步的验证.我们将通过T-DNA插入突变体以及过量表达这些基因,进一步分析在植物体内木聚糖合成关键酶基因的表达变化.MYB46、KNAT7基因在木聚糖的合成中起着重要的调控作用.已有研究结果表明过量表达MYB46基因能激活木聚糖的合成途径,并且能够激活FRA8基因的表达[29].我们的试验结果表明转录因子MYB46不仅能够激活FRA8基因的表达,还可以激活基因IRX9、IRX14、F8H和IR14-L的表达.参考文献:[1]HIMMELM,DING S,JOHNSON D,et al.Biomass recalcitrance:Engineering plants and enzymes for biofuels production [J].Science,2007,315(5813):804-807.[2]CARROLL A,SOMERVILLE C.Cellulosic Biofuels[J].Annu Rev Plant Biol,2009,60(4):165-182.[3]PAULY M,KEEGSRRA K.Plant cell wall polymers as precursors for biofuels[J].Curr Opin Plant Biol,2010,13(3):1-8.[4]SOUSA LD,CHUNDAWATS,BALANA V,etal.“Cradle-to-grave”assessment of existing lignocelluloses pretreatment technologies [J].Curr Opin Biotechnol,2009,20(3):339-347.[5]PAULY M,KEEGSRRA K.Cell wall carbohydrates and theirmodification as a resource for biofuels[J].Plant J,2008,54(4):559-568.[6]KO JH,KIM H T,HAN K.Biotechnological improvement of lignocellulosic feedstock for enhanced biofuel productivity and processing [J].Plant Biotechnol Rep,2011,5(1):1-7.[7]MELLEROWICZ E J,SUNDBBERG B.Wood cell walls:Biosynthesis,developmental dynamics and their implications forwood properties[J].Curr Opin Plant Biol,2008,11(3):293-300.[8]SCHELLER H,ULVSKOV P.Hemicelluloses[J].Annu Rev Plant Biol,2010,61(1):263-289.[9]ANDERSSON S,SAMUELSON O,ISHIHARA M,et al.Structure of the reducing end-groups in spruce xylan[J].Carbohydr Res,1983,111(2):283-288.[10]PENA M J,ZHONG Ruiqing,ZHOU G K,et al.Arabidopsis irregular xylem8 and irregular xylem9:Implications for the complexity of glucuronoxylan biosynthesis[J].Plant Cell,2007,19(2):549-563. [11]BROWN D M,ZEEF L,ELLIS J,et al.Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics[J].Plant Cell,2005,17(8):2281-2295. [12]BROWN D M,GOUBET F,VICKY W,et parison of five xylan synthesismutants reveals new insight into themechanisms of xylan synthesis[J].Plant J,2007,52(6):1154-1168.[13]PERSSON S,CAFFALLH K,FRESHOUR G,etal.The Arabidopsis irregular xylem8 mutant is deficient in glucuronoxylan and homogalacturonan,which are essential for secondary cell wall integrity [J].Plant Cell,2007,19(1):237-255.[14]WU Aimin,RIHOUEY C,SEVENOM,et al.The Arabidopsis IRX10 and IRX10-LIKE glycosyltransferases are critical for glucuronoxylan biosynthesis during secondary cellwall formation[J].Plant J,2009,57(4):718-731.[15]WU Aimin,HORNBLAD E,VOXEUR A,etal.Analysis of theArabidopsis IRX9/IRX9-L and IRX14/IRX14-L pairs of glycosyltransferase genes reveals critical contributions to biosynthesis of the hemicellulose glucuronoxylan[J].Plant Physiol,2010,153(2):542-554.[16]LEE Chanhui,ZHONG Ruiqin,YE Zhenghua.Arabidopsis familyGT43 members are xylan xylosyltransferases required for the elongation of the xylan backbone[J].Plant Cell Physiol,2012,53(1):135-143.[17]MORTIMER JC,MILESG P,BROWN D M,et al.Absence of branches from xylan in arabidopsis gux mutants reveals potential for simplification of lignocellulosic biomass[J].PNAS(USA),2010,107(40):17409-17414.[18]KUBO M,UDAGAWA M,NIISHIKUBO N,et al.Transcription switches for protoxylem and metaxylem vessel formation[J].Genes Dev,2005,19(16):1855-1860.[19]MITSUDA N,SEKIM,SHINOZAKIK,et al.The NAC transcription factors NST1 and NST2 of Arabidopsis regulates secondary wall thickening and are required for anther dehiscence[J].Plant Cell,2005,17(11):2993-3006.[20]MITSUDA N,IWASE A,YAMAMOTO H,et al.NAC transcription factors,NST1 and NST3,are key regulators of the formation of secondary walls in woody tissues of Arabidopsis[J].Plant Cell,2007,19(1):270-280. [21]ZHONG R,DEMURA T,YE ZH.SND1,a NAC domain transcription factor,is a key regulator of secondary wall synthesis in fibers of Arabidopsis[J].Plant Cell,2006,18(11):3158-3170.[22]ZHONG R,RICHARDSON E A,YE ZH.Two NAC domaintranscription factors,SND1 and NST1,function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis[J].Planta,2007,225(6):1603-1611.[23]KO JH,YANG SH,PARK A H,et al.ANAC012,a member of the plant-specific NAC transcription factor family,negatively regulates xylary fiber development in Arabidopsis thaliana[J].Plant J,2007,50(6):1035-1048.[24]ZHONG Ruiqin,LEE Chanhui,ZHOU Jianli,et al.A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis[J].Plant Cell,2008,20(10):2763-2782. [25]ZHONG Ruiqin,YE Zhenghua.IFL1,a gene regulating interfascicular fiber differentiation in Arabidopsis,encodes a homeodomain-leucine zipper protein[J].Plant Cell,1999,11(11):2139-2152.[26]RAES J,ROHDE A,CHRISTENSEN J H,et al.Genome-wide characterization of the lignification toolbox in Arabidopsis[J].Plant Physiol,2003,133(3):1051-1071.[27]TAMAGNONEA L,MERIDA A,PARR A,et al.The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco[J].Plant Cell,1998,10(2):135-154.[28]YOO Sangdong,CHO Younghee,SHEEN Jen.Arabidopsis mesophyll protoplasts:A versatile cell system for transient gene expression analysis[J].Nature Protocol,2007,2(7):1565-1572[29]ZHONG Ruiqin,ELIZABETH A R,YE Zhenghua.The MYB46 transcription factor is a direct target of SND1and regulates secondary wall biosynthesis in Arabidopsis[J].Plant Cell,2007,19(9):2776-2792.【责任编辑李晓卉】。
花衰老相关基因和蛋白

,在植物衰老过程中,这些核酸内切酶的活性均有增加,如荠菜、欧
芹、小麦等。因此,衰老过程中核酸内切酶活性的增加可能是DNA降 解的主要原因。
• 2.细胞壁修饰酶类
• 植物细胞的细胞壁主要成分是纤维素、半纤维素和果胶类物质,主要 起支撑和保护作用。目前研究的细胞壁修饰酶类主要涉及果实成熟软 化过程中细胞壁结构和组分的变化,如纤维素和半纤维素分解而导致 的细胞壁机械强度不断下降,及总体结构的破坏等。多聚半乳糖醛酸 酶(PG)、果胶甲酯酶(PME)及果胶酯酶(PE)是分解果胶类物质的主要 酶类,参与果实成熟软化过程中细胞壁的水解过程,从而导致细胞壁
XTH 的作用机制
• XTH主要采用异头构型的两步置换机制进行催化反应。在催化反应过 程中,XTH与木葡聚糖结合后,底物被特异性的剪切产生糖基-酶中 间体,之后糖基-酶中间体可将糖基转移给木葡聚糖的还原端(XET活 性)或者水分子(XEH活性)。通过两种酶的活性,XTHs可参与细 胞壁的扩展和降解,水解木葡聚糖供给能量,以及改变细胞板的流动 性,总之,与植物组织的伸长、木质部的形成、根的发育、果实的软 化、花瓣的衰老及细胞程序化死亡等过程都有着密切的关系。
壁中含量最多的半纤维素。木葡聚糖可以与纤维素微纤丝结合形成氢 键,彼此交互连接构成植物细胞壁的基本框架,而木葡聚糖内转糖苷
酶/水解酶(Xyloglucan endotransglycosylase/hydrolase, XTH)是
一种可以引起这种结构改变的细胞壁松弛因子,从而改变了细胞的形 状、大小,并且影响了细胞的再生分化甚至功能。
• 花卉中部分已克隆的与衰 老相关的重要基因,涉及 到蛋白质降解、乙烯代谢 及脂类代谢等多种生理功 能。这些基因的克隆极大 地促进了人们对植物衰老 过程的认识,也为今后在 分子水平上阐明植物衰老 的机制、进行衰老调控提 供了有利条件。
木葡聚糖内糖基转移酶

木葡聚糖内糖基转移酶是一类参与木葡聚糖合成的酶,它在植物细胞壁的合成中发挥重要作用。
以下是对木葡聚糖内糖基转移酶的简要探讨:1. 作用和功能:木葡聚糖内糖基转移酶参与了木葡聚糖合成途径中的一步,即将葡萄糖分子从底物中转移到正在合成的聚糖链上。
这个过程中,酶催化底物的脱水缩合反应,形成聚糖链的一个单糖单元。
2. 底物和底物特异性:木葡聚糖内糖基转移酶的底物一般为底物鳖苷(UDP-glucose)。
鳖苷是一种鳖糖(glucose)和核苷酸(nucleotide)的结合体。
而底物鳖苷可以由葡萄糖和甘露糖等单糖与UDP鳖醇基转移酶反应生成。
3. 酶的结构和分类:木葡聚糖内糖基转移酶属于糖转移酶家族(glycosyltransferase family)中的一员。
它们广泛存在于植物细胞壁的合成过程中,并具有多样的结构和功能。
根据其基因序列和反应特点的不同,这些酶可以进一步分为不同的亚家族。
4. 调控机制:木葡聚糖内糖基转移酶的表达和活性受到多种调控机制的影响。
例如,转录因子和生长因子可以通过调控基因表达来影响酶的合成。
另外,信号分子和内源性激素也可以通过调控酶的翻译、翻译后修饰或酶活性等途径来对其功能进行调节。
5. 生理功能:木葡聚糖是植物细胞壁中的主要成分之一,它对植物细胞壁的结构和功能起着重要的作用。
木葡聚糖内糖基转移酶参与了木葡聚糖的合成,并且其活性和调控对细胞壁的组装和形态发育具有重要影响。
因此,木葡聚糖内糖基转移酶对植物的生长、形态和生理功能具有关键影响。
总之,木葡聚糖内糖基转移酶在植物细胞壁合成过程中发挥着重要的作用。
它通过催化底物的转移反应,在木葡聚糖的合成中起到关键的催化作用。
了解和研究木葡聚糖内糖基转移酶的结构、功能和调控机制,有助于深入了解植物细胞壁的合成机制,并为植物形态和生理功能的调控提供理论基础。