22-24米烟囱基础计算书

合集下载

烟囱计算.xls

烟囱计算.xls

烟囱内径(m)d 5.2烟囱外径(m)D 5.22壁厚(m)δ0.01截面的惯性矩(m4)J0.555360076单位高度质量(kg/m)m1284.864271烟囱高度(m)H25弹性模量(Pa)E 2.06E+11第一振型自振周期(s)T10.118560695f1(Hz)8.43第二振型自振周期(s)T20.018876982f2(Hz)52.97第三振型自振周期(s)T30.006755973f3(Hz)148.02临界风速(m/s)Vcn220.1404098实际风速(m/s)V 3.7塔设备的强度计算1.风载荷:风压值(Pa)q=ev2/2q8.385125风压按50年一遇(Pa)q0550计算段设计风压(Pa)q i q i=f i q0f i 查表可得q1550q2687.5q3775.5任意段i承受的水平分力(N)Pi Pi=K1K2i q i H i D ei每10m分一段P129944.53H110P233913.6875H210P337404.5364H352.风弯矩Mw0-0风弯矩(N·m)Mw0-01500030.0321500.030032KN ·m3.地震力计算水平地震力(N)地震影响系数α 1.138657292T17.151566852T219.98231915T3筒身总重(Kg)M032121.60679烟囱设备强度计算水平地震力(N)F F=9.8Cαm p F 179219.9588第一振型的地震力F k F k 43.5194817地震弯矩(N·M)M E 0-0M E 0-0=4.9Cαm 0H (H/D<15)457193.7725T 12871497.729T 28023302.478T 3当第一振型时设备中、下部截面(0,3/4)M E a-a 裙座底部截面(0)M E 0-0571492.2156顶部截面(3/4,1)M E a-a 114298.4431当第二振型时设备中、下部截面(0,3/4)M E a-a 裙座底部截面(0)M E 0-03589372.161顶部截面(3/4,1)M E a-a 717874.4323当第三振型时设备中、下部截面(0,3/4)M E a-a 裙座底部截面(0)M E0-010029128.1顶部截面(3/4,1)M E a-a2005825.624.筒体的强度计算及校核真空中筒其中引起的轴向应力σ1σ1=PD i /(4S)σ1715001500030.032489305.951上面两组中取较大值1500030.032质量载荷在筒体中引起的轴向应力(Pa)σ21926948.558最大弯矩在筒体中引起的轴向应力(Pa)σ37066813.174组合拉应力σ拉5211364.616=5.21Mpa 组合压应力σ压9065261.731=9.07Mpa材料的许用应力[σ]t 215Mpa校核σ拉正确σ压正确5.裙座的强度计算及校核1500030.032⎪⎩⎪⎨⎧+++--D W a a E D aa W M 25M .0M M M 321σσσσ+-=拉321σσσσ++=压⎩⎪⎨⎧+++---D W 00ED 00W M 25M .0M M M 0000maxM -946499.7235上面两组中取较大值1500030.032裙座基底截面断面系数W sb0.04082裙座基底截面面积A s0.163362818裙座圈计算σs压38674377.06=38.67Mpa材料的许用应力[σ]t 215Mpa校核σs压正确6.地脚螺栓的计算裙座基础环上的应力 (Pa)σb 85145基础环外径(m)D b0 5.82基础环内径(m)D bi 5.22裙座圈外径(m)D s0 5.52基础面积(m 2)A b 5.1998基础环断面系数(m 3)W b 6.9564每个螺栓所受的拉力(N)T 18447M30螺栓力学性能(N)T 0174000校核σs压正确[]S1s 000s00maxs A 8m .9W M σσ〈+=--压⎪⎩⎪⎨⎧+++---D W 00ED 00W M 25M .0M M M 000maxM -。

自立式钢烟囱基础顶面内力计算

自立式钢烟囱基础顶面内力计算

广东省轻纺建筑设计院自立式钢烟囱基础顶面内力计算与基础设计钢烟囱基础顶面内力计算 一、钢烟囱基本信息烟囱直径:d =2500mm ; 烟囱高度:H =20000mm烟囱运行重量:15T (折合150kN ) 二、烟囱基础地震作用计算1)罐体基本自振周期 根据《烟囱设计规范》(GB50051-2013)钢烟囱基本自振周期按如下公式计算,dH T 2211024.026.0-⨯+= (1) 式中,1T 为结构基本自振周期;H 为结构高度;d 为烟囱直径。

已知H =20m ,d =2.5m ,代入公式(1)求得T 1=0.644s 。

2)地震动设计参数抗震设防烈度为8度,设计地面基本加速度0.20g ,场地类别为Ⅲ类,地震分组为二组。

根据《构筑物抗震设计规范》(GB50191-2012)表5.1.5-1及5.1.5-2得,对于多遇地震场地水平地震影响系数最大值αmax =0.16,场地特征周期T g =0.55s 。

根据《烟囱设计规范》,取钢烟囱的阻尼比为0.01。

根据5.1.6条第2款:当构筑物阻尼比不等于0.05时,地震影响系数曲线的阻尼调整系数和形状参数需参考下述公式计算。

ζζγ63.005.09.0+-+= (2)式中,γ为曲线下降段的衰减指数;ζ为阻尼比。

代入数据求得γ=1.0111。

ζζη6.108.005.012+-+= (3)式中,2η为阻尼调整系数,当小于0.55时取为0.55。

代入数据求得2η=1.4167。

根据5.1.6条1款图5.1.6地震影响系数曲线:T g <T 1<5T g ,故计算地震影响系数,19325.016.04167.1644.055.00111.1max 2g =⨯⨯⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=αηαγT T (4) 且max 12.0αα>。

3)水平地震作用计算烟囱基本自振周期的等效总重力荷载G eq =150kN 。

根据5.2.1条第1款,结构总水平地震作用标准值kN 9875.28eq EK ==G F α,则水平地震作用倾覆弯矩标准值kN.m 875.289EK =M 。

烟囱计算

烟囱计算

烟囱高度的确定具有一定速度的热烟气从烟囱出口排除后由于具有一定的初始动量,且温度高于周围气温而产生一定浮力,所以可以上升至很高的高度。

这相对增加了烟囱的几何高度,因此烟囱的有效高度为: ΔH H H S +=式中:H —烟囱的有效高度,m ;S H —烟囱的几何高度,m ;ΔH —烟囱抬升高度,m 。

根据《锅炉大气污染物排放标准》(GB13271—2014)规定,每个新建锅炉房只能设一根烟囱,烟囱高度应根据锅炉房装机总容量确定,按下表规定执行。

由于给定的锅炉型号为:SHS20-25,蒸发量为20t/h 。

故选定烟囱几何高度H s =45m.烟气释放热计算取环境大气温度20℃,大气压力=98kPa =0.35=0.3511.051=122.51kw 式中:烟气热释放率, kw ;−大气压力,取邻近气象站年平均值; −实际排烟量,/s−烟囱出口处的烟气温度,433.15k ; −环境大气温度,取=273.15+20=293.15k烟囱直径的计算烟囱平均内径可由下式计算πυ4Q D v= 式中:v Q —实际烟气流量,/s m 3;υ—烟气在烟囱内的流速,m/s ,取20m/s 。

0.84m 203.1411.0514D =⨯⨯= 取烟囱直径为DN850mm ; 校核流速19.48m/s 0.853.1411.0514πD 4Q v 22v =⨯⨯==。

烟囱抬升高度的计算 -+⨯=∆u )0.01Q D (1.52H H s v式中:s ν—烟囱出口流速,取20m/s ;D —烟囱出口内径,m ;-u —烟囱出口处平均风速,取10m/s .5.35m 10122.51)0.010.8520(1.52ΔH =⨯+⨯⨯⨯= 故最终烟囱的有效高度H 为:H=+=45+5.35=50.35m取51m 。

式中:—烟囱抬升高度,m ; —烟囱几何高度,m 。

烟囱高度校核假设吸收塔的吸收效率为80%,可得排放烟气中二氧化硫的浓度为:3SO 579.2mg/m 289680%)(1C 2=⨯-=二氧化硫排放的排放速率:3.91g/s g/s 106.75579.2Q C v 3v SO so 22=⨯⨯=⨯=-用下式校核 :z y2so max e H u π2v ρ2σσ= 式中:σy/σz —为一个常数,一般取0.5-1此处取0.8; 最大地面浓度332max 0.5mg/m <0.0704mg/m 0.8e 5143.1410003.912ρ=⨯⨯⨯⨯⨯⨯=查得国家环境空气质量二级标准时平均2SO 的浓度为30.5mg/m ,所以设计符合要求。

拉索式钢烟囱计算书

拉索式钢烟囱计算书

拉索式钢烟囱计算书一、设计资料1、钢烟囱高度H=20m,直径D=426mm,厚度t=8mm。

2、基本风压:W0=0.55kN/m23、地面粗糙度类别:B类地面粗糙度指数:0.164、抗震设防烈度:6度设计基本地震加速度:0.05g 设计特征周期0.35s设计地震分组为第一组。

5、钢烟囱阻尼比:0.016、拉索:d=0.014m二、设计依据1、《烟囱设计规范》GB50051-20022、《钢结构设计规范》GB50017-20023、《建筑结构荷载规范》GB50009-20014、《建筑抗震设计规范》GB50011-20105、《高耸结构设计规范》GB50135-2006三、烟囱型式烟囱高度和直径之比:H/D=20/0.426=47>35设一层拉索,拉索数量为3根,平面夹角成120º,拉索与烟囱夹角为30 º。

四、筒身自重计算及拉索自重1、筒壁每延米自重:G1=2x3.14x(0.426/2+0.410/2)x0.008x78.5=1.65 kN/m筒壁总重:G=1.65x20=33 kN2、拉索每延米自重:T1=7N/m拉索长度:S=13/cos30 º=15m3根拉索总重:T=3x7x15=315N=0.315 kN五、风荷载产生的弯矩和拉索拉力计算1、拉索式钢烟囱自振周期,按《建筑结构荷载规范》GB50009-2001附录E之E.1.1取:T1=(0.007~0.013)H≈0.013x20=0.26s2、顺风向风压W0=0.55kN/m2,风荷载系数计算。

(1)风压高度变化系数:查《建筑结构荷载规范》表7.2.1,地面粗糙度类别B,(2)风荷载体型系数μs《建筑结构荷载规范》表7.3.1项次36(b)H/D=20/0.426=47>25μz W0d2=1.25x0.55x0.4262=0.125>0.015,Δ≈0,μs=0.6拉索:按《建筑结构荷载规范》表7.3.1项次38拉索α=60 º风荷载水平分量的体型系数W SX =0.85风荷载垂直分量的体型系数W SY =0.40(3) 高度Z 处的风振系数βz 。

拉索式钢烟囱计算书

拉索式钢烟囱计算书

拉索式钢烟囱计算书一、设计资料1、钢烟囱高度H=20m,直径D=426mm,厚度t=8mm。

2、基本风压:W0=0.55kN/m23、地面粗糙度类别:B类地面粗糙度指数:0.164、抗震设防烈度:6度设计基本地震加速度:0.05g 设计特征周期0.35s设计地震分组为第一组。

5、钢烟囱阻尼比:0.016、拉索:d=0.014m二、设计依据1、《烟囱设计规范》GB50051-20022、《钢结构设计规范》GB50017-20023、《建筑结构荷载规范》GB50009-20014、《建筑抗震设计规范》GB50011-20105、《高耸结构设计规范》GB50135-2006三、烟囱型式烟囱高度和直径之比:H/D=20/0.426=47>35设一层拉索,拉索数量为3根,平面夹角成120º,拉索与烟囱夹角为30 º。

四、筒身自重计算及拉索自重1、筒壁每延米自重:G1=2x3.14x(0.426/2+0.410/2)x0.008x78.5=1.65 kN/m筒壁总重:G=1.65x20=33 kN2、拉索每延米自重:T1=7N/m拉索长度:S=13/cos30 º=15m3根拉索总重:T=3x7x15=315N=0.315 kN五、风荷载产生的弯矩和拉索拉力计算1、拉索式钢烟囱自振周期,按《建筑结构荷载规范》GB50009-2001附录E之E.1.1取:T1=(0.007~0.013)H≈0.013x20=0.26s2、顺风向风压W0=0.55kN/m2,风荷载系数计算。

(1)风压高度变化系数:查《建筑结构荷载规范》表7.2.1,地面粗糙度类别B,(2)风荷载体型系数μs《建筑结构荷载规范》表7.3.1项次36(b)H/D=20/0.426=47>25μz W0d2=1.25x0.55x0.4262=0.125>0.015,Δ≈0,μs=0.6拉索:按《建筑结构荷载规范》表7.3.1项次38拉索α=60 º风荷载水平分量的体型系数W SX =0.85风荷载垂直分量的体型系数W SY =0.40(3) 高度Z 处的风振系数βz 。

烟囱设计计算

烟囱设计计算
烟囱设计计算目 录Fra bibliotek1 2 3
烟囱高度计算原理 计算参考规范 几种计算方法比较
目 录
1
烟囱高度计算原理
烟气抬 升高度
烟囱有 效高度
烟囱几 何高度
地面污 染物浓 度
烟气 温度
出口 烟速 环境 温度
环境 风速
烟气抬 升高度
烟气 流量
城市 农村
烟囱 内径
几何 高度
GB 13223-2003 火电厂大气污染物排放标准
高斯浓度扩散模式
(高斯浓度扩散公式)
(高斯浓度扩散公式)
(地面轴线浓度公式)
(地面最大浓度公式)
目 录
2
计算示例
目 录
3
计算结果比较
地面最大污染物浓度随烟囱高度的变化
0.60
单位mg/m^3
0.50
0.40
0.30
地面轴线浓度公式 最大浓度公式0.5 最大浓度公式0.75 SCREEN3
烟囱高度计算原理计算参考规范几种计算方法比较烟囱高度计算原理烟气抬升高度烟囱几何高度烟囱有效高度地面污烟气抬升高度烟气温度环境温度烟气流量烟囱内径几何高度城市农村环境风速出口gb132232003火电厂大气污染物排放标准高斯浓度扩散模式高斯浓度扩散公式高斯浓度扩散公式地面轴线浓度公式地面最大浓度公式计算结果比较00001002003004005006000050001000015000200002500030000烟囱高度单位
地面污染物浓度
地面污染物浓度
地面轴线浓度公式
0.02 0.01 0.00 0.00 0.50 1.00 1.50 2.00 -0.01 监测点与烟囱之间距离 单位:x/km SCREEN3

(完整word版)烟囱荷载计算书

(一)设计资料1.烟囱型式:单筒式钢筋混凝土烟囱2.钢内筒高210m,内直径8.0m钢筋混凝土外筒高205m,出口直径11m3.极端最低温度:-5度,极端最高温度:40度4.地震烈度:7度。

场地土类别:I类5.烟囱高度210m,安全等级为一级,风荷载采用百年一遇,换算后风荷载的为1.034Kpa6.烟囱零米标高相当于绝对标高12.00m,基础埋深-6.20m,持力层为中风化花岗岩,地基承载力特征值fa k≥800Kpa(二)设计原则1.钢筋混凝土外筒基础采用环板基础,混凝土等级为C402.内筒型式:自立式钢内筒,重量不传至外筒,计算外筒时不考虑内筒刚度,计算外筒时作为外加惯性荷载计入其重量。

内筒防腐按进口泡沫玻璃考虑,厚度为38mm,重量为13kg/㎡3.钢筋混凝土筒身采用C40混凝土。

外筒为内筒施工预留施工孔(9mx9m),外筒烟道孔按6.48mx16.68m考虑,底标高为12.73m4.计算软件为:钢筋混凝土烟囱计算软件Multi-flue Chimney V3.05.钢筋混凝土外筒内部设6层平台,平台处设置止晃点。

顶层平台为混凝土平台,按承重平台考虑,其余为钢平台,按检修平台考虑。

平台标高分别为:35.0m,70.0m,105.0m,140.0m,175.0m,203.6m(三)荷载计算1.钢内筒荷载计算(1)钢内筒筒壁自重荷载(壁厚按20mm计算)q1=rxA=rx∏x(r1·r1-r2·r2)=78x3.14x(4.058·4.058-4.038·4.038)=39.66KN/m(2) 钢内筒玻璃砖自重荷载:q2=rxA=rx∏xD=13x3.14x8.076=3.30 KN/m(3) 每个钢内筒沿竖向线性荷载:q= q1+ q2=39.66+3.30=42.96 KN/m2.平台荷载计算顶部平台恒载标准值;6 kN/㎡顶部平台活载标准值;7 kN/㎡其他平台恒载标准值;1.5kN/㎡其他平台活载标准值;3 kN/㎡35m平台:半径R=8.04m,A=3.14x8.04x8.04-3.14x4.35x4.35=143.56恒载标准值;1.5x143.56=215.34 KN活载标准值;3x143.56=430.68KN70m平台:半径R=6.60m,A=3.14x6.60x6.60-3.14x4.35x4.35=77.36恒载标准值;1.5x77.36=116.04 KN活载标准值;3x77.36=232.09KN105m平台:半径R=5.62m,A=3.14x5.62x5.62-3.14x4.35x4.35=39.76恒载标准值;1.5x39.76=59.64 KN活载标准值;3x39.76=119.28KN140m平台:半径R=4.95m,A=3.14x4.95x4.95-3.14x4.25x4.25=20.22恒载标准值;1.5x20.22=30.33 KN活载标准值;3x20.22=60.66KN175m平台:半径R=4.95m,A=3.14x5.15x5.15-3.14x4.45x4.45=21.10恒载标准值;6x21.10=31.65 KN活载标准值;3x21.10=63.30KN203.6m平台:半径R=4.95m,A=3.14x5.2x5.2-3.14x4.5x4.5=21.32恒载标准值;6x21.32=127.92 KN活载标准值;7x21.32=149.24KN计算各层外加垂直荷载时,平台活荷载折减系数取0.65计算各层外加惯性荷载时,不考虑顶层平台活荷载,考虑顶层平台积灰荷载1kN/㎡,其余平台荷载折减系数0.5,同时计入钢筒重量。

柴油发电机烟囱计算书

柴油发电机烟囱计算1. 基本数据:单台柴油发电机功率1000KW单台柴油发电机背压10.1KPa单台柴油发电机排烟量 234.3m3/分钟柴油发电机数量1台烟囱总高度144米其中垂直高度132米水平高度12米90°弯头数量6个2. 烟气流速:W=25m/s 柴油发电机常用烟气流速3.烟气需要的烟囱截面积:F=Vy÷3600÷WVy烟气流量F烟囱截面积m2 W烟气流速m/s单台柴油发电机截面积0.1562 m2(计算值) ,实际φ450,截面积0.15896 m2故选用φ4504.烟气在烟囱内的降温:4.1烟气在烟囱内每米高度的降温△t=27A÷N1/2△t =0.68℃/mA:修正系数,取A值为0.8 N:单台发电机功率1000KW 3.2烟气在烟囱内的总降温T=△t×H H: 垂直烟囱高度132米T=89.76℃3.3烟气在烟囱出口的温度t1=t0-△tt1=519.32℃t0:烟气进口温度520℃3.4烟气平均温度t p= (t1+ t0)÷2t p=519.66℃3.5烟气平均密度ρp=ρ0273÷(273+t p) ρ0:标准标态烟气密度 1.34Kg/m3ρp=0.4615 Kg/m34烟囱自然抽力hz=(ρ1-ρp).(Z2-Z1)hz=109.758 Pa式中ρ1:室外空气密度1.293Kg/m3ρp:烟气平均密度 0.4615 Kg/m3Z2:烟囱顶标高Z1:烟囱底部标高5烟囱阻力5.1烟囱磨檫阻力△ h=λ×(L÷d)×(ρp×W2÷2)△ h=923Pa其中λ:磨檫阻力系数0.02 L:烟道总长144米 d:烟囱当量直径0.45 ρp:烟气平均密度 0.4615Kg/m3W: 烟气流速25m/s5.2 90°弯头阻力ξ=0.7△ h1=931.56 Pa5.3 阻力合计Σ△h=1854.56Pa5.4发电机背压10100 Pa(发电机厂家提供)+烟囱自然抽力109.758Pa=10209.758 Pa>阻力合计1854.56 Pa所以完全满足(计算依据:<<燃油燃气锅炉房设计手册>>机械工业出版社2004版)。

钢烟囱计算书计算书5【精选文档】

(如果不单独存档,不盖入库章)计 算 书xxxx 项目 xxxx 装置 66米钢烟囱文件编号:xxxx钢烟囱设计软件QY —Chimney*********工程建设有限公司2017年10月目录1、设计资料 (3)2、计算依据 (7)3、筒体自重计算 (8)4、筒体截面参数 (10)5、筒体温度计算 (11)6、动力特征计算 (14)7、风荷载计算 (16)8、考虑瞬时极端最大风速时的风荷载计算(只计算顺风向风压) (18)9、地震作用及内力计算 (20)10、附加弯矩计算 (24)11、荷载内力组合 (30)12、钢烟囱强度与稳定计算 (33)13、考虑瞬时极端最大风速下验算结果 (37)14、筒壁容许应力计算 (38)15、钢烟囱底座计算 (41)16、钢烟囱位移结果 (44)17、加强圈间距计算 (45)1、设计资料1.基本设计资料烟囱总高度H = 66。

000m烟气温度T gas = 80.00℃烟囱底部高出地面距离: 0mm夏季极端最高温度T sum = 40。

00℃冬季极端最低温度T win = —15。

00℃最低日平均温度T win = -5.00℃烟囱日照温差△T = 15.00℃基本风压ω0 = 0。

35kN/m2瞬时极端最大风速: 50.00(m/s)地面粗糙度: B类烟囱筒体几何缺陷折减系数δ = 0。

50 烟囱安全等级:二级抗震设防烈度: 7度(0.10g)设计地震分组: 第一组建筑场地土类别: Ⅱ类筒壁腐蚀厚度裕度: 2.00mm衬里起始高度: 0.00m设置破风圈: 是2.材料信息序号使用部位材料名称最高使用温度(℃)密度(kg/m3)导热系数λ(W /(m·K))1 隔热层JM—100 1100 850.00 ———-—2 筒壁钢材Q235(B)250 7850.00 58。

150给定三个温度点下隔热层的导热系数值给定温度(℃)350 450 550 导热系数(W /(m·K)) 0.200 0.200 0.2403.几何尺寸信息烟囱总分段数: 7烟囱筒身分段参数表编号标高(m)烟囱筒壁外直径(mm)分段高度(m)0 66.00 2000.00 -—--—1 60.00 2000。

烟囱的计算


) 及有 关烟道 有效截 面几何 尺寸进 行的
0 . 1 M Pa为计 算压力
4 . 凡 是 线 算图 计算的 烟道阻 力,都 应进行 烟气密 度、烟 气压
力 、 气 流 中 灰分浓 度的修 正
3 . 局 部 阻力
动 压头由 图查取 (根据 流速和 气流温 度) 阻 力系数 由图表 查取, 具体由 以下三 种情况 : 1) 通 道 截 面 变化引 起的局 部阻力 2) 转 弯 的 阻 力 3) 三 通 的 阻 力
§6.2 通风阻力计算的原理及基本 方法
第六章
式中:
——转 弯 的 原 始阻 力;
3) 平 衡 通 风 ---利 用风机 分别克 服锅炉 风、烟 道的流 动阻力 ,确保炉 及及烟 道处于 微负压 运行工 况,炉 膛出口 真空度 为20~30Pa。 送 风 机 : 从风道 吸入口 到进入 炉膛的 全部风 道阻力 ,空预 器、 燃烧设备 引 风 机 : 从炉膛 出口到 烟囱出 口的全 部烟道 阻力, 管束、 省 煤 器 、 空 预器、 除尘器 、烟囱 等
K ——通 道 的 绝 对粗 糙度(m m) ——动 压 头 ( 查 图 )
Pa Pa
第六章
§6.2 通风阻力计算的原理及基本 方法
3) 空 气 预 热 器烟气 侧
Pa 式 中 : ——为 每 米 长 度 的空 预器管 子的沿 程摩擦 阻力
2. 横 向 冲 刷 管束阻 力 1) 横 向 冲 刷 光滑管 顺列管 束 式 中 : ——每 一 排 管子 的阻力 系数, 与管束 布置特 性和Re有 关 2) 横 向 冲 刷 光滑管 错列管 束
经 过适当 变换, 可得任 意两截 面间的 总压降 为: 1 . 流 动 水 力 阻力 :
由 沿程摩擦阻力
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22-24米烟囱基础计算书
基本信息
- 烟囱高度:22-24米
- 基础类型:浅基础
基础计算
荷载计算
- 基础荷载:根据所选材料计算
- 烟囱上部风荷载:根据当地气象数据计算
基础尺寸
- 基础底面尺寸:根据荷载计算结果进行尺寸确定
设计方案
- 基础选用钢筋混凝土浅基础
- 基础底面采用方形
主要材料
- 混凝土:根据荷载计算结果确定强度等级
- 钢筋:根据荷载计算结果确定直径和数量
施工要点
1. 挖掘基坑:根据基础尺寸确定基坑尺寸,并保证坑底平整。

2. 钢筋绑扎:按照设计要求进行钢筋绑扎,确保钢筋的正确位
置和数量。

3. 砼浇筑:采用振捣排除气泡,确保砼的密实度和强度。

4. 养护:对新浇筑的基础进行养护,保证其强度的逐渐提高。

安全考虑
- 基础设计过程中要充分考虑抗震和稳定性问题,确保基础的
安全性。

- 在施工过程中,要加强现场安全管理,确保工人的生命安全。

结论
本文档详细描述了22-24米烟囱的基础计算过程,并给出了具
体的设计方案和施工要点。

同时,还强调了安全考虑在基础设计和
施工过程中的重要性。

请根据本文档进行相关工程实施和管理。

这是一份关于22-24米烟囱基础计算书的文档,详细描述了基础计算、设计方案、施工要点和安全考虑等内容。

根据荷载计算结果确定基础底面尺寸,并选用钢筋混凝土浅基础,基础底面采用方形。

在施工过程中,要注意挖掘基坑、钢筋绑扎、砼浇筑和养护等要点。

同时,重点强调了基础的安全性和现场安全管理的重要性。

请根据本文档进行相关工程实施和管理。

相关文档
最新文档