(整理)组合截面
(整理)框架结构规范

框架结构设计注意事项一、规范的有关规定 (3)1、构件长细比要求: (3)2、杆件翼缘宽厚比和腹板高厚比的要求 (4)3、结构挠度的限值 (4)4、柱脚内力放大值: (5)5、节点的内力放大系数: (5)6、强柱弱梁的规定: (5)7、内力放大系数: (5)(1)框架柱地震剪力放大系数: (5)(2)偏心支撑框架中与消能梁段相连接构件的内力设计值调整: (6)(3)转换构件的内力放大值: (6)(4)角柱和两方向支撑共有构件的内力放大值: (6)(5)中心支撑构件的内力放大值: (7)(6)消能装置中心支撑构件的内力放大值: (7)二、楼承板的计算 (7)1、组合式楼板: (7)2、非组合楼板: (7)3、防火要求: (8)三、组合梁的设计: (9)四、支撑的计算方法: (9)1、中心支撑 (9)2、偏心支撑 (9)3、钢板剪力墙 (9)五、型钢混凝土结构的设计方法: (9)六、钢管混凝土结构的设计方法: (9)七、钢框架-混凝土核心筒结构的设计方法: (10)八、异形柱的研究现状及展望: (10)1、研究现状: (10)2、展望 (14)九、工业化装配式钢结构研究现状及展望。
(15)1、一天建成远大馆 (15)2、七天建成15层宾馆 (20)3、展望 (22)一、规范的有关规定1、构件长细比要求:《钢规》P56-5.3.8:柱的长细比限值为150,支撑的受压长细比限值为200,受拉长细比限值为400(一般建筑结构);《抗规》P104-8.3.1:框架柱的长细比《抗规》P107-8.4.1:中心支撑的长细比:按照压杆设计时,不应大于120(Q235),99(Q345),93.2(Q390),一、二、三级中心支撑应采用压杆设计,四级采用拉杆设计时,其长细比不应大于180;《抗规》P109-8.5.2:偏心支撑杆件长细比不应大于120(Q235),99(Q345),93.2(Q390)《高钢规》P36-6.2.4:轴心受压柱的长细比不宜大于120;《高钢规》P39-6.3.6:按7度及以上抗震设防的结构,柱的长细比不宜大于60(Q235),49.5(Q345),46.6(Q390)。
(2021年整理)轴心受力构件习题及答案

轴心受力构件习题及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(轴心受力构件习题及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为轴心受力构件习题及答案的全部内容。
轴心受力构件习题及答案一、选择题1。
一根截面面积为A,净截面面积为A n的构件,在拉力N作用下的强度计算公式为______。
2。
轴心受拉构件按强度极限状态是______.净截面的平均应力达到钢材的抗拉强度毛截面的平均应力达到钢材的抗拉强度净截面的平均应力达到钢材的屈服强度毛截面的平均应力达到钢材的屈服强度3。
实腹式轴心受拉构件计算的内容有______。
强度强度和整体稳定性强度、局部稳定和整体稳定强度、刚度(长细比)4. 轴心受力构件的强度计算,一般采用轴力除以净截面面积,这种计算方法对下列哪种连接方式是偏于保守的?摩擦型高强度螺栓连接承压型高强度螺栓连接普通螺栓连接铆钉连接5. 工字型组合截面轴压杆局部稳定验算时,翼缘与腹板宽厚比限值是根据______导出的。
6。
图示单轴对称的理想轴心压杆,弹性失稳形式可能为______。
X轴弯曲及扭转失稳Y轴弯曲及扭转失稳扭转失稳绕Y轴弯曲失稳7。
用Q235号钢和16锰钢分别建造一轴心受压柱,其长细比相同,在弹性范围内屈曲时,前者的临界力______后者的临界力。
大于小于等于或接近无法比较8。
轴心受压格构式构件在验算其绕虚轴的整体稳定时采用换算长细比,是因为______。
格构构件的整体稳定承载力高于同截面的实腹构件考虑强度降低的影响考虑剪切变形的影响考虑单支失稳对构件承载力的影响9. 为防止钢构件中的板件失稳采取加劲措施,这一做法是为了______。
《材料力学》课程讲解课件第八章组合变形

强度条件(简单应力状态)——
max
对有棱角的截面,最大的正应力发生在棱角点处,且处于单向应力状态。
max
N A
M zmax Wz
M ymax Wy
x
对于无棱角的截面如何进行强度计算——
1、确定中性轴的位置;
y
F z
M z F ey M y F ez
ez F ey z
y
zk yk z
y
x
1、荷载的分解
F
Fy F cos
Fz F sin
z
2、任意横截面任意点的“σ”
x
F
y
(1)内力: M z (x) Fy x F cos x
M y (x) Fz x F sin x
(2)应力:
Mz k
M z yk Iz
My k
M y zk Iy
(应力的 “+”、“-” 由变形判断)
F
1, 首先将斜弯曲分解
为两个平面弯曲的叠加 Fy F cos
z
L2
L2
Fz F sin
z
2, 确定两个平面弯曲的最大弯矩
y
Mz
Fy L 4
M
y
Fz L 4
3, 计算最大正应力并校核强度
max
My Wy
Mz Wz
217.8MPa
查表: Wy 692.2cm3
4, 讨论 0
y
Wz 70.758cm3
的直径为d3,用第四强度理论设计的直径为d4,则d3 ___=__ d4。
(填“>”、“<”或“=”)
因受拉弯组合变形的杆件,危险点上只有正应力,而无切应力,
r3 1 3 2 4 2
r4
第26讲第五章 材料力学(九)

第五节截面图形的几何性质一、静矩与形心对图所示截面静矩的量纲为长度的三次方。
对于由几个简单图形组成的组合截面形心坐标显然,若z轴过形心,y c=0,则有S z=0,反之亦然:若y轴过形心,z c=0,则有S y=0,反之亦然。
【真题解析】5—30(2007年真题)图所示矩形截面,m-m线以上部分和以下部分对形心轴z的两个静矩( )。
(A)绝对值相等,正负号相同(B)绝对值相等,正负号不同(c)绝对值不等,正负号相同(D)绝对值不等,正负号不同解:根据静矩定义,图示矩形截面的静矩等于m-m线以上部分和以下部分静矩之和,即,又由于z轴是形心轴,Sz=0,故答案:(B)二、惯性矩、惯性半径、极惯性矩、惯性积对图所示截面,对z轴和y轴的惯性矩为惯性矩总是正值,其量纲为长度的四次方,也可写成i z、i y称为截面对z、y轴的惯性半径,其量纲为长度的一次方。
截面对0点的极惯性矩为因=y2+z2,故有I p=I z+I y,显然I p也恒为正值,其量纲为长度的四次方。
截面对y、z轴的惯性积为I yz可以为正值,也可以为负值,也可以是零,其量纲为长度的四次方。
若y、z两坐标轴中有一个为截面的对称轴,则其惯性积I yz恒等于零。
例6图(a)、(b)所示的两截面,其惯性矩关系应为哪一种?A.(I y)1>(I y)2,(I z)1=(I z)2B. (I y)1=(I y)2, (I z)1>(I z)2C.(I y)1=(I y)2,(I z)1<(I z)2D. (I y)1<(I y)2,(I z)1=(I z)2解:两截面面积相同,但图 (a)截面分布离z轴较远,故I z较大。
对y轴惯性矩相同。
答案:B2016—63真题面积相同的两个如图所示,对各自水平形心轴 z 的惯性矩之间的关系为()。
提示:图( a )与图( b )面积相同,面积分布的位置到 z 轴的距离也相同,故惯性矩I za=I zb而图( c )虽然面积与( a )、( b )相同,但是其面积分布的位置到 z 轴的距离小,所以惯性矩I zc也小。
组合结构构造要求

1组合结构构造要求1.1栓钉的设置栓钉是组合结构中常见的抗剪连接件,用于抵抗钢材与混凝土交界面的剪力。
根据规范及图集规定一般下列位置需设置栓钉。
抗剪栓钉的直径规格宜选用19mm和22mm,其长度不宜小于4倍栓钉直径,水平和竖向间距不宜小于6倍栓钉直径且不宜大于200mm。
栓钉中心至型钢翼缘边缘不应小于50mm,栓钉顶面的混凝土保护层厚度不宜小于15mm。
1.1.1型钢混凝土梁栓钉设置要求对于配置实腹式型钢的托墙转换梁、托柱转换梁、悬臂梁和大跨度框架梁等主要承受竖向重力荷载的梁,型钢上翼缘应设置栓钉。
(组规5.5.14)剪力墙洞口连梁中配置的型钢或钢板,其高度不宜小于0.7倍连梁高度,型钢或钢板应伸入洞口边,其伸入墙体长度不应小于2倍型钢或钢板高度;型钢腹板及钢板两侧应设置栓钉。
(组规9.2.11)当框架柱一侧为型钢混凝土梁,另一侧为钢筋混凝土梁时,型钢混凝土梁中的型钢,宜延伸至钢筋混凝土梁1/4跨度处,且在伸长段型钢上、下翼缘设置栓钉。
栓钉直径不宜小于19mm,间距不宜大于200mm,且在梁端至伸长段外2倍梁高范围内,箍筋应加密。
(组规14.4.1)型钢混凝土悬臂梁自由端的纵向受力钢筋应设置专门的锚固件,型钢梁的上翼缘宜设置栓钉;型钢混凝土转换梁在型钢上翼缘宜设置栓钉。
栓钉的最大间距不宜大于200mm,栓钉的最小间距沿梁轴线方向不应小于6倍的栓钉杆直径,垂直梁方向的间距不应小于4倍的栓钉杆直径,且栓钉中心至型钢板件边缘的距离不应小于50mm。
栓钉顶面的混凝土保护层厚度不应小于15mm。
(组规14.4.2)1.1.2型钢混凝土柱栓钉设置要求各种结构体系中的型钢混凝土柱,宜在下列部位设置抗剪栓钉:1)埋入式柱脚型钢翼缘埋入部分及其上一层柱全高;2)非埋入式柱脚上部第一层的型钢翼缘和腹板部位;3)结构类型转换所设置的过渡层及其相邻层全高范围的翼缘部位;4)结构体系中设置的腰桁架层和伸臂桁架加强层及其相邻楼层柱全高范围的翼缘部位;5)梁柱节点区上、下各2倍型钢截面高度范围的型钢柱翼缘部位;6)受力复杂的节点、承受较大外加竖向荷载或附加弯矩的节点区,在节点上、下各1/3柱高范围的型钢柱翼缘部位;7)框支层及其上、下层的型钢柱全高范围的翼缘部位;8)各类体系中底层和顶层型钢柱全高范围的翼缘部位(组规14.7.1)在各种结构体系中,当结构下部楼层采用型钢混凝土柱,上部楼层采用钢筋混凝土柱时,在此两种结构类型间应设置结构过渡层,过渡层应符合下列规定:1)设计中确定某层柱由型钢混凝土柱改为钢筋混凝土柱时,下部型钢混凝土柱中的型钢应向上延伸一层或二层作为过渡层,过渡层柱的型钢截面可适当减小,纵向钢筋和箍筋配置应按钢筋混凝土柱计算,不考虑型钢作用;箍筋应沿柱全高加密;2)结构过渡层内的型钢翼缘应设置栓钉,栓钉的直径不应小于19mm,栓钉的水平及竖向间距不宜大于200mm,栓钉至型钢钢板边缘距离不宜小于50mm。
(整理)杆的扭转定理和公式

圆截面杆的扭转外力与内力 || 圆杆扭转切应力与强度条件 || 圆杆扭转变形与刚度条件 || 圆杆的非弹性扭转1.外力与内力杆件扭转的受力特点是在垂直于其轴线的平面内作用有力偶(图2·2-1a),其变形特点是在任意两个截面绕轴线发生相对转动。
轴类构件常有扭转变形发生。
作用在传动轴上的外力偶矩m通常是根据轴所传递的功率N和转速n(r/min)来计算。
当N的单位为千瓦(kW)时当N的单位为马力(HP)时扭转时的内力为扭矩T,用截面法求得。
画出的内力图称为扭矩图(或T图),如图2·2-1b所示图2·2-1 圆杆的扭转2.圆杆扭转切应力与强度条件当应力不超过材料的剪切比例极限r p时,某横截面上任意C点(图2·2-2)的切应力公式为式中T——C 点所在横截面上的扭矩p——C点至圆心的距离L p——横截面对圆心的极惯性矩,见表2-2-1 等直杆扭转时的截面几何性质。
图2·2-2 切应力分布圆杆横截面上的切应力r沿半径呈线性分布,其方向垂直于半径(图2·3-2)。
模截面上的最大切应力在圆周各点上,其计算公式为等截面杆的最大切应力发生在T max截面(危险截面)的圆周各点(危险点)上。
其强度条件为式中,[τ]为许用扭转切应力,与许用拉应力[σ]的关系为:[τ]=(0.5~0.6)[σ] (塑性材料)或[τ]=(0.5~0.6)[σ](脆性材料)3.圆杆扭转变形与刚度条件在比弹性范围内,圆杆在扭矩T作用下,相中为L的两截面间相对扭转角为或式中G——材料的切变模量单位扭转角公式为或式中GL p——抗扭刚度圆杆上与杆轴距离为p外(图2·2-2)的切应变r为圆杆表面处的最大切应变为式中,r——圆杆的半径等截面圆杆的最大单位扭转角,发生在T max一段内,其刚度条件为式中,[θ]为圆杆的许用单位扭转角(°)/m4.圆杆的非弹性扭转讨论圆杆扭转时切应力超过材料的比例极限并进入塑性状态的情况。
组合楼板计算实例
组合楼板计算用于组合楼板的压型钢板净厚度(不包括涂层)不应小于0.75mm ,也不得超过1.6mm 。
波槽平均宽度(对闭口式压型钢板为上口槽宽)不应小于50mm ;当在槽内设置栓钉时,压型钢板的总高度不应大于80mm 。
根据上述构造要求,选用型号为60020075---XY 的压型钢板,厚度1.2mm 。
组合板总厚度不应小于90mm ,压型钢板顶面以上的混凝土厚度不应小于50mm 。
此外,对于简支组合板的跨高比不宜大于25,连续组合板的跨高比不宜大于35。
根据以上构造要求,压型钢板上混凝土厚度取c h =60mm 。
mm b 1121= mm b 582=mmb 49.763=23()31.2h b b c mm b+==∑压型钢板的形心高度 即单槽口对于上边(用s 代表)及下边(用x 代表)的截面模量为:压型钢板的惯性模量s I :4233212357691)32(mm bb b b b b th I s =∑-∑+= 21233232()3s x x th b b b b b I W c b b +-==+∑221.275(1125876.49(1125876.49)76.49)35876.49⨯⨯⨯+⨯⨯++-==+114523mm21233132()3x x x th b b b b b I W h c b b +-==-+∑221.275(1125876.49(1125876.49)76.49)311276.49⨯⨯⨯+⨯⨯++-==+81713mm 压型钢板的截面抵抗矩s W 取s x W 和x x W 的较小值,故:s W =x x W =81713mm压型钢板的截面面积210001.240033p l A t mm =⨯=⨯=施工阶段荷载 恒载钢筋混凝土自重:5×[(58+88)×75/2+70×200] ×25=2.43kN/m 2 压型钢板自重: 0.16kN/m 2 荷载总重=2.43+0.16=2.59kN/m 2 活载施工活载:1.5kN/m 22/208.55.14.159.22.1mm kN q =⨯+⨯= 2/04.1208.52.02.0mm kN q q x =⨯==m kN l q M x ⋅=⨯⨯==17.1304.181812maxm kN q /818.02.0)5.159.2(0=⨯+=强度验算正应力验算:226max max /205/2.14381711017.1mm N f mm N W M s =〈=⨯==σ剪应力验算kN l q V x 56.1304.12121max =⨯⨯==腹板最大剪应力:233max max /7.122.149.76221056.1323mm N t b V =⨯⨯⨯⨯⨯=∑=τ挠度验算:[]mm l w mm EI l q w s 7.1620,180min 7.113576911006.23843000818.053845540max =⎭⎬⎫⎩⎨⎧=〈=⨯⨯⨯⨯⨯==使用阶段1.2厚压型钢板自重:2/16.0mm kN25C 钢筋混凝土板: 2/43.2mm kN20厚水泥砂浆找平层:2/4.02002.0mm kN =⨯水磨石地面:2/7.0mm kN 楼面总荷载:2/69.3mm kN 屋面恒载1.2厚压型钢板自重:2/16.0mm kN 钢筋混凝土板: 2/43.2mm kN 天面25厚防水砂浆:2/5.0mm kN 天面隔热层:2/6.1mm kN 水磨石地面:2/7.0mm kN 屋面总荷载:2/39.5mm kN屋面恒荷载大于楼面恒荷载,且屋面活载等于楼面活载,所以按屋面荷载计算使用阶段 混凝土数据:25C ,2/9.11mm N f c =,2/27.1mm N f t =1m 板宽内均布荷载设计值:m kN q /24.9)27.04.139.535.1(11=⨯⨯+⨯⨯= 一个波宽内荷载设计值为:2/848.12.024.9mm kN q =⨯= 压型板上混凝土厚度mm mm h c 10070〈= 按单向板计算,正弯矩简支,负弯矩固支 弯矩m kN l q M ⋅=⨯⨯=⋅=08.23848.1818122 N f A N b h f p c c 82000205400166600200709.11=⨯=⋅〉=⨯⨯=⋅⋅故中和轴在压型钢板以上的混凝土截面内,mm h 23.1010=mm bf fA x c p 45.342009.110.1820001=⨯⨯=⋅⋅⋅=αmm x h y p 842/45.3423.1012/0=-=-=m kN M m kN y b x f p c ⋅=〉⋅=⨯⨯⨯⨯⨯=⋅⋅⋅⋅08.251.58420045.349.110.18.08.01α斜截面kN l q V 86.13324.92121=⨯⨯=⋅=kN V kN h b f t 86.139023.101100027.17.07.00=〉=⨯⨯⨯=⋅⋅支座负弯矩配筋计算 支座负弯矩:按固端板计算mkN ql M n ⋅=⨯⨯==54.5339.7121121222m kN M M ⋅=⨯==11.154.52.02.02mm a h h s 125201450=-=-='62210 1.11100.031.011.9200125s c M f bh αα⨯==='⨯⨯⨯985.02211=-+=ss αγ260431********.01011.1mm h f M A y s s =⨯⨯⨯='='γ选用200@12φ,一个波距内22431015/505mm A mm A ss ='〉== %24.0%2.0%,10045.0max %5.0%10023.101200101max =⎥⎥⎦⎤⎢⎢⎣⎡⨯=〉=⨯⨯==y t s f f bh A ρρ变形验算 /7.36E s c E E α==220005400mm A s =⨯=,2973755.075)8858(5701000mm A c =⨯⨯+⨯+⨯=算得53.6ch mm '= mm A A h A h A x s E c s E cc n9.59200036.79737523.101200036.76.53973750=⨯+⨯⨯+⨯=⋅+⋅⋅+'⋅='αα48232323mm 1038.152)4.4175155.036/7515(9.53755875581216.187020070200121⨯=⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯⨯⨯⨯+⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=c I [][]472282021044.2)9.5923.101(20005357691)6.539.59(973751038.136.71)()(1mm x h A I h x A II n s s c nc cE⨯=-⨯+⨯+-⨯+⨯⨯='-⋅++'-'⋅+=α12751003.51044.21006.2⨯=⨯⨯⨯=⋅==I E B B s 52.21003.5212112=⨯⨯==B B s 一米板宽荷载总标准值 m kN q /39.71)239.5(=⨯+= 准永久组合m kN q /39.61)25.039.5(=⨯⨯+=φ 荷载标准组合下挠度mm l mm Bl q w 33.830055.11003.538410339.753845121244=〈=⨯⨯⨯⨯⨯=⋅= 荷载准永久组合下挠度mm lmm Bl q w 33.830067.21052.238410339.653845121244=〈=⨯⨯⨯⨯⨯=⋅=φ自振频率验算标准恒荷载m kN q /39.5=mm l mm Bl q w 33.830013.11003.538410339.553845121244=〈=⨯⨯⨯⨯⨯=⋅= 支撑条件系数178.0=k 板自振频率Hz Hz wk f 157.161013.1178.0112〉=⨯⨯=⋅=-综上来看,该板符合要求。
钢结构基础课后习题答案
《钢结构基础》习题参考答案题:答:(1)按制作方法的不同分为型钢截面和组合截面两大类。
型钢截面又可分为热轧型钢和冷弯薄壁型钢两种。
组合截面按连接方法和使用材料的不同,可分为焊接组合截面(焊接截面)、铆接组合截面、钢和混凝土组合截面等。
(2)型钢和组合截面应优先选用型钢截面,它具有加工方便和成本较低的优点。
题:解:由附录1中附表1可得I20a 的截面积为3550mm 2,扣除孔洞后的净面积为3249275.213550A n =⨯⨯-=mm 2。
工字钢较厚板件的厚度为11.4mm ,故由附录4可得Q235钢材的强度设计值为215f =N/mm 2,构件的压应力为2155.138324910450A N 3n <≈⨯==σN/mm 2,即该柱的强度满足要求。
新版教材工字钢为竖放,故应计入工字钢的自重。
工字钢I20a 的重度为27.9kg/m ,故19712.19.8169.27N g =⨯⨯⨯=N ;构件的拉应力为215139.113249197110450A N N 3ng <≈+⨯=+=σN/mm 2,即该柱的强度满足要求。
题:解:1、初选截面假定截面钢板厚度小于16mm ,强度设计值取215f =,125f v =。
可变荷载控制组合:24kN .47251.410.22.1q =⨯+⨯=, 永久荷载控制组合:38.27kN 250.71.410.235.1q =⨯⨯+⨯=简支梁的支座反力(未计梁的自重)129.91kN ql/2R ==,跨中的最大弯矩为m 63kN .1785.547.2481ql 81M 22max ⋅≈⨯⨯==,梁所需净截面抵抗矩为36x max nx 791274mm 2151.051063.178f M W ≈⨯⨯==γ,梁的高度在净空方面无限值条件;依刚度要求,简支梁的容许扰度为l/250,参照表3-2可知其容许最小高度为229mm 24550024l h min ≈==, 按经验公式可得梁的经济高度为347mm 3007912747300W 7h 33x e ≈-=-=,由净截面抵抗矩、最小高度和经济高度,按附录1中附表1取工字钢 I36a ,相应的截面抵抗矩3nx 791274m m 875000W >=,截面高度229mm 360h >=且和经济高度接近。
1_5主梁截面几何特性
(五)计算主梁截面几何特性1.各阶段截面几何特性及受力特点后张法预应力砼梁在不同受力阶段参与受力的截面不同,因此截面特性应分别计算。
本算例主梁从施工到运营经历了三个主要阶段:(1)阶段 1—主梁预制并张拉预应力 1-6 号钢束(小截面的净截面)预制主梁砼达设计强度 90%后,进行 1-6 号钢束张拉,此时管道尚未压浆,故其对应的受力截面是扣除全部预应力管道的小截面的净截面。
承受的荷载:预制构件自重。
(2)阶段 2—灌浆封锚,主梁吊装就位,现浇桥面板湿接头1)1-6 号钢束张拉完成后进行管道压浆封锚,预应力筋能参与截面受力;2)主梁吊装就位后现浇 900mm 湿接头,但此时这部分桥面板还不能参与受力;3)7 号束张拉时管道尚未压浆,要扣除其面积。
故此阶段对应的受力截面是 1-6 号钢束与混凝土组成的换算截面,注意须扣除 7 号束管道,同时不计现浇桥面板部分,称小截面的组合性截面。
承受的荷载(增加部分):现浇混凝土湿接头。
(3)阶段 3—二期恒载施工和运营阶段(大截面的换算截面)桥面板现浇湿接头结硬后,主梁即为全截面参与受力,故其截面应是计入全部预应力钢束面积的大截面的换算截面。
承受的荷载(增加部分):二期恒载、活载。
2.T 形截面翼缘有效宽度根据《公预规》第 4.3.2 条:预应力砼梁在计算预加力引起的砼应力时,预加力作为轴向力产生的应力可按实际翼缘全宽计算;预加力偏心引起的弯矩产生的应力可按翼缘有效宽度b 'f 计算。
根据《公预规》第 4.3.3 条:T 形截面受弯构件位于受压区的翼缘有效宽度,应按下列三者中最小值取用: ① b' f 1 = L =39000=13000 mm33② b' f 2 = 2500 mm (本例相邻主梁平均间距为 2500mm)③ b' = b + 2b +12h' ,由于 h h = 1 0 0 = 1 < 1, b 以 3h 代替,故 b ' = b + 6 h +12 h ' f 3 f 3hf b h 5 0 0 5 3 h h hf= 200+ 6⨯ 100+ 12⨯ 150= 2600mm故 T 梁翼板的有效宽度 b' f = b' f 2 = 2500 mm 。
常见桥梁类型及截面形式及使用范围
基本类别结构分类桥梁按照结构体系划分,有梁式桥、拱桥、刚架桥、悬索承重(悬索桥、斜拉桥)四种基本体系。
梁桥一般建在跨度很大,水域较浅处,由桥柱和桥板组成,物体重量从桥板传向桥柱。
拱桥一般建在跨度较小的水域之上,桥身成拱形,一般都有几个桥洞,起到泄洪的功能,桥中间的重量传向桥两端,而两端的则传向中间。
悬桥是如今最实用的一种桥,桥可以建在跨度大、水深的地方,由桥柱、铁索与桥面组成,早期的悬桥就已经可以经住风吹雨打,不会断掉,吊桥基本上可以在暴风来临时岿然不动。
长度分类1、按多孔跨径总长分:特大桥(L>1000m);大桥(100m≤L≤1000m);中桥(30m<L<100m);小桥(8m≤L≤30m)2、2、按单孔跨径分:特大桥(Lk>150m);大桥(40m≤Lk≤150m);中桥(20m≤Lk<40m);小桥(5m≤Lk<20m)。
其他分类按用途分为:公路桥、公铁两用桥、人行桥、舟桥、机耕桥、过水桥。
按跨径大小和多跨总长分:为小桥、中桥、大桥、特大桥。
按行车道位置分为:上承式桥、中承式桥、下承式桥按承重构件受力情况可分:为梁桥、板桥、拱桥、钢结构桥、吊桥、组合体系桥(斜拉桥、悬索桥)。
按使用年限可分为:永久性桥、半永久性桥、临时桥。
按材料类型分为:木桥、圬工桥、钢筋砼桥、预应力桥、钢桥。
[4]4巩固方法桥梁使道路、铁路或人行道跨越河流、湖泊、河谷、峡谷或其他道路。
桥梁大多是固定的,但有些桥梁可以升起或旋转。
无论是哪一类桥梁,工程师面对的设计及建筑问题是使桥梁结构牢固,不会因承受重量而下陷或破裂。
解决这个问题有好几种方法。
悬臂桥桥身分成长而坚固的数段,类似桁梁式桥,不过每段都在中间而非两端支承。
梁式桥: 包括简支板梁桥,悬臂梁桥,连续梁桥.其中简支板梁桥跨越能力最小,一般一跨在8-20m.连续梁桥国内最大跨径在200m以下,国外已达240m(目前世界上最大跨径梁桥最跨是330m,是位于中国重庆的石板坡长江大桥复线桥).拱桥: 在竖向荷载作用下,两端支承处产生竖向反力和水平推力,正是水平推力大大减小了跨中弯矩,使跨越能力增大.理论推算,混凝土拱极限跨度在500m左右,钢拱可达1200m.亦正是这个推力,修建拱桥时需要良好的地质条件.钢架桥:有T形钢架桥和连续钢构桥,T形钢架桥主要缺点是桥面伸缩缝较多,不利于高速行车.连续钢构主梁连续无缝,行车平顺.施工时无体系转换.跨径我国最大已达270m(虎门大桥辅航道桥)缆索承重桥(斜拉桥和悬索桥) 是建造跨度非常大的桥梁最好的设计.道路或铁路桥面靠钢缆吊在半空,缆索悬挂在桥塔之间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
联合截面施工阶段分析方法(针对用户定义截面)联合结构是指由钢材和混凝土两种不同材料的构件,或者即使是一种材料但强度和材龄(如混凝土)不同的构件联合所构成的结构。
从前的分析方法是对联合前的各构件分别建立不同的模型,联合时对各构件进行刚性连接。
这种方法在进行静力分析时误差比较少,但考虑徐变和收缩等进行时间依存性分析时,就会产生很大的误差。
为了提高考虑材料时间依存特性时,对于联合截面分析结果的准确性,MIDAS/Civil 提供了对联合截面进行施工阶段分析的方法。
进行联合截面施工阶段分析时,定义联合截面的方法有两种,Normal type 和User type 。
Normal type 是指利用截面数据库中提供的联合截面(Composite section)或组合截面(SRC section)等已知联合前后各截面特性值的截面来定义的方法。
User type 是指由用户来定义任意截面的特性值并将其在不同的施工阶段进行联合的方式。
关于Normal type 的分析方法请参照技术资料「工字型钢混联合梁桥的施工阶段分析」,这里主要介绍一下在使用用户定义的方式进行联合截面施工阶段分析时,需要注意的事项和查看结果的方法。
下图为定义联合截面施工阶段的对话框。
(荷载>施工阶段分析数据>施工阶段联合截面)图1. 定义联合截面施工阶段的对话框Note!! 以上画面只有在定义了施工阶段和截面后才可以显示。
User typeNormal type输入步骤建模步骤与一般的施工阶段分析建模步骤类似,只需在此基础上再定义联合截面的施工阶段即可。
其定义步骤如下。
1. 定义材料和截面2. 定义时间依存性材料特性(选项)3. 建立结构模型(几何形状、边界条件、荷载)4. 定义施工阶段5. 定义施工阶段联合截面这里结合例题重点介绍根据施工阶段定义联合截面的方法。
☐例题例题模型为一由主梁和桥面板构成的两跨连续梁桥,施工阶段如图2所示由4个阶段组成。
CS1: 建立第一跨主梁时间 : 12天荷载 : 第一跨主梁自重CS2: 建立第二跨主梁时间 : 12天荷载 : 第二跨主梁自重CS3: 建立第一跨桥面板时间 : 12天荷载 : 第一跨桥面板自重CS4: 建立第二跨桥面板并在7天后施加二期恒载时间 : 1000天荷载 : 第二跨桥面板自重(第一步骤)二期恒载(第三步骤)图2. 例题的施工阶段构成☐定义材料和截面材料主梁 : 混凝土 40桥面板 : 混凝土 30材料输入对话框如图3所示定义主梁和桥面板的材料。
图3. 定义一般材料截面截面形式为如图4所示的由主梁和桥面板所构成的联合截面。
图4. 截面形状截面输入对话框图5. 截面输入对话框如图5对话框所示,定义4个截面。
前两个截面(Span-1, Span-2)是在建立单元时需要指定的,故必须定义。
由于例题中的第一跨和第二跨是在不同的施工阶段施工的,所以尽管两个截面的特性值相同,但在这里分别进行了定义。
就是说即使是拥有相同截面特性的单元,若在不同的施工阶段施工,则需要定义相应数量的截面。
本例题分为4个施工阶段,但结构的变化分为两个阶段(1stspan, 2ndspan),所以这里定义两个截面。
此时给各单元赋与的截面特性值并不用于分析,只是在消隐处理时能够反映截面的形状。
因此在使用“数值”方式定义截面时,只需输入截面尺寸即可,不必输入具体的特性值。
图6. 定义联合前各截面的特性值3号主梁截面和4号桥面板截面可以不必输入,但为了在后面定义联合截面施工阶段时输入各组成截面特性值的方便,可在这里事先进行定义。
☐赋与时间依存性特性时间依存性特性采用的是CEB-FIP code,其内容如图7、8所示。
徐变和收缩图7. 定义徐变和收缩对话框 强度发展图8. 定义抗压强度发展的对话框☐建立结构模型●跨度 : 2@20m●单元数 : 20●节点数 : 21●边界条件 : 节点1 : DX,DY,DZ,RX,RZ节点11、21 : DY,DZ,RX,RZ第二跨第一跨图9. 结构模型定义施工阶段施工阶段如图2所示分为4个阶段。
CS1~CS3各施工阶段的持续时间皆为12天,最终阶段CS4的持续时间为1000天。
图10. 定义施工阶段对话框图11. 定义第一个施工阶段CS1图12. 定义第二个施工阶段CS2这里将第四个施工阶段的持续时间1000天分成了10个步骤。
另外二期恒载将在该阶段的第7天开始施加。
☐定义联合截面施工阶段在荷载>施工阶段分析数据>施工阶段联合截面对话框定义联合截面的施工阶段。
图14所示为该对话框,所输入的内容为第一跨的联合截面数据。
图14. 定义联合截面施工阶段对话框对话框内容的说明如下。
激活施工阶段选择单元被激活的施工阶段,即构件最初生成的施工阶段。
截面在已经输入的截面中,选择要进行联合截面施工阶段定义的截面。
选择截面后,与截面相对应的单元号会自动显示于单元列表中。
联合形式在截面选择栏中所选择的截面如果是截面数据库中的联合截面(Composite section)或者组合截面(SRC section),则会显示为Normal,否则就会显示为User。
单元列表与在截面中所选截面相对应的单元号会自动显示于单元列表中。
位置号指定联合截面的组成部分的个数。
例题的联合截面是由主梁和桥面板两部分构成的,故位置数为2。
如果对于一个预应力箱型截面要分成几个部分进行浇筑的话,可指定相应数量的位置号来进行分析。
施工顺序在这里定义各位置号相应单元的特性值(分析用)和各截面相对位置(形心)。
材料类型,材料在这里定义各位置的材料,有单元和材料两种定义方法。
选择单元,则所定义的材料与在截面选择栏中所选截面的材料相同。
选择材料,则右侧的材料选择栏会被激活,用户可在这里选择相应的材料。
例题中对于主梁部分如图14所示使用了选择单元的方法,若使用选择材料的方法则如图15所示。
图15. 定义施工顺序对话框联合阶段指定各位置的构件产生的施工阶段。
例题中位置1是在第一个施工阶段CS1产生的,故选择CS1或选择激活施工阶段。
激活施工阶段是指在图14上方的激活施工阶段栏中所选择的阶段。
位置2的形成阶段为CS3,故选择CS3。
材料输入各位置的材龄。
初期强度、徐变系数、收缩特性等与这里所输入的材龄有关,所以模型若要考虑材料的时间依存性,对该部分的输入需要特别注意。
一般输入开始承受荷载的材龄,即徐变开始时的材龄即可。
像钢材等不考虑时间依存特性的材料输入任何值都没有关系,我们一般输入0。
如图14、15所示,主梁的初期材龄为5天,桥面板的初期材龄为0天。
就是说对于在CS1所作用的恒荷载,主梁是以5天的材龄所具备的刚度来承担的,而对于在CS3中作用的桥面板的自重,则不考虑桥面板的刚度。
如果初期材龄输入为0天,程序内部会按0.001天计算时间依存性材料的强度。
在定义施工阶段时,也有输入材龄的选项(图16),其功能是相同的。
但若定义了联合截面的施工阶段,则程序会以定义联合截面施工阶段中所输入的数据为准来进行分析。
图16. 定义施工阶段对话框Cy, Cz在这里定义各组成部分的相对位置。
User type 和Normal type 的差异就在这里。
对于Normal type(使用联合截面(Composite Section )或组合(SRC Section)时),在定义截面时各位置的相对位置已被自动输入,因此没有在这里重新输入的必要。
对于User type ,需要输入各位置的形心到联合后截面左下角的距离。
(参照图17)图17. 定义各位置的形心位置刚度指定了各位置的形心位置后,现在输入各位置截面的特性值。
在这里输入的截面特性将用于进行结构分析和计算,而如前所述在定义截面时所输入的特性值则没有意义。
使用Normal type时,各位置的截面特性值会被自动输入,但使用User type时,则需如图18所示由用户直接输入。
由于一一输入各项特性值会十分不方便,故用户可以提前在截面对话框中定义各位置的截面,并在这里利用输入功能将其导入。
本例题也使用了将提前定义好的截面3、4的数据直接导入的方法。
图18. 定义各位置的特性值系数需要对刚度系数进行调整时,可使用此项功能,其默认值为1。
第二跨的联合截面的定义顺序与前面相同,请参考下图。
图19. 定义CS2联合截面的对话框图20. 联合截面施工阶段的最终输入状态☐分析结果变形形状图21. CS1 First step的变形形状图22. CS2 first step的变形形状图23. CS3 first step的变形形状图24. CS4 first step的变化形状图25. CS4 third step的变形形状内力图26. CS4 last step的弯矩图(荷载工况:CS 合计)查看各位置的内力各位置的内力可在结果> 分析结果表格> 施工阶段联合截面> 梁单元内力,通过表格查看。
截面位置2图27. 各位置的内力结果表格Note!! 将鼠标放在表格处点击右键,选择排序对话框,可按不同的原则重新排列结果顺序。
精品文档精品文档 查看各位置的应力各位置的应力可在 结果 > 分析结果表格 > 施工阶段联合截面 > 梁单元应力,通过表格查看。
图28. 各位置的应力结果表格。