单向可控硅与双向可控硅结构电基本知识图及检验方法

单向可控硅与双向可控硅结构电基本知识图及检验方法
单向可控硅与双向可控硅结构电基本知识图及检验方法

单向可控硅与双向可控硅结构电原理图及测试方法

可控硅的检测

1.单向可控硅的检测

万用表选用电阻R×1档,用红黑两表笔分别测任意两引脚间正反向电阻直至找出读数为数十欧姆的一对引脚,此时黑笔接的引脚为控制极G,红笔接的引脚为阴极K,另一空脚为阳极A。此时将黑表笔接已判断了的阳极A,红表笔仍接阴极K。此时万用表指针应不动。用短接线瞬间短接阳极A和控制极G,此时万用表指针应向右偏转,阻值读数为10欧姆左右。如阳极A接黑表笔,阴极K接红表笔时,万用表指针发生偏转,说明该单向可控硅已

击穿损坏。

2.双向可控硅的检测

用万用表电阻R×1档,用红黑两表笔分别测任意两引脚正反向电阻,结果其中两组读数为无穷大。若一组为数十欧姆时,该组红黑表笔所接的两引脚为第一阳极A1和控制极G,另一空脚即为第二阳极A2。确定A、G极后,再仔细测量A1、G极间正反向电阻,读数相对较小的那次测量的黑表笔所接的引脚为第一阳极A1,红表笔所接引脚为控制极G。将黑表笔接已确定了的第二阳极A2,红表笔接第一阳极A1,此时万用表指针应不发生偏转,阻值为无穷大。再用短接线将A2、G极瞬间短接,给G极加上正向触发电压,A2、A1间

阻值约为10欧姆左右。随后断开A2、G极短接线,万用表读数应保持10欧姆左右。互换红黑表笔接线,红表笔接第二阳极A2,黑表笔接第一阳极A1。同样万用表指针应不发生偏转,阻值为无穷大。用短接线将A2、G极间再次瞬间短接,给G极加上负向的触发电压,A1、A2间阻值也是10欧姆左右。随后断开A2、G极间短接线,万用表读数应不变,保持10欧姆左右。符合以上规律,说明被测双向可控硅管未损坏且三个引脚极性判断正确。

检测较大功率可控硅管是地,需要在万用表黑笔中串接一节1.5V干电池,以提高触发电压。双向可控硅(TRIAC)在控制交流电源控制领域的运用非常广泛,如我们的日光灯调光电路、交流电机转速控制电路等都主要是利用双向可控硅可以双向触发导通的特点来控制交流供电电源的导通相位角,从而达到控制供电电流的大小[1]。然而对其工作原理和结构的描述,以我们可以查悉的资料都只是很浅显地提及,大部分都是对它的外围电路的应用和工作方式、参数的选择等等做了比较多的描述,更进一步的--哪怕是内部方框电路--内容也很难找到。

由于可控硅所有的电子部件是集成在同一硅源之上,我们根本是不可能通过采用类似机械的拆卸手段来观察其内部结构。为了深入了解和运用可控硅,依据现有可查资料所给P 型和N型半导体的分布图,采用分离元器件--三极管、电阻和电容--来设计一款电路,使该电路在PN的连接、分布和履行的功能上完全与双向可控硅类似,从而通过该电路来达到深入解析可控硅和设计实际运用电路的目的。

1 双向可控硅工作原理与特点

从理论上来讲,双向可控硅可以说是有两个反向并列的单向可控硅组成,理解单向可控硅的工作原理是理解双向可控硅工作原理的基础[2-5]。

1.1单向可控硅

单向可控硅也叫晶闸管,其组成结构图如图1-a所示,可以分割成四个硅区P、N、P、N和A、K、G三个接线极。把图一按图1-b 所示切成两半,就很容易理解成如图1-c所示由一个PNP三极管和一个NPN三极管为主组成一个单向可控硅管。

在图1-c的基础上接通电源控制电路如图2所示,当阳极-阴极(A-K)接上正向电压V后,只要栅极G接通触发电源Vg,三极管Q2就会正向导通,开通瞬间Q1只是类似于接在Q1集电极的一个负载与电源正极接通,随后Q1也在Q2的拉电流下导通,此时由于C被充电,即便断开G极的触发电源Vg,Q1和Q2在相互作用下仍能维持导通状态,只有当电源电压V变得相当小之后Q1和Q2才会再次截止。

1.2 双向可控硅

相比于单向可控硅,双向可控硅在原理上最大的区别就是能双向导通,不再有阳极阴极之分,取而代之以T1和T2,其结构示意图如图3-a所示,如果不考虑G级的不同,把它分割成图3-b所示,可以看出相当于两个单向可控硅反向并联而成[1-2],如图3-c所示连接。

当T1与T2之间接通电源后,给G极正向触发信号(相对于T1、T2所接电源负极而言),其工作原理如前面单向可控硅完全相同。当G极接负触发信号时,其工作过原理如图4所示,此时Q3的基极B和发射极E处于正偏电压而致使Q3导通,继而Q1导通给电容C充电后致Q2导通并保持导通状态。

1.3 双向可控硅的主要特点

双向可控硅的英文简称TRIC是英文Triad AC semiconductor switch的缩写,其意思是三端交流半导体开关,目前主要用于对交流电源的控制,主要特点表现在能在四个象限来使可控硅触发导通和保持导通,直到所接电源撤出或反向[6][7]。

第一象限是T2接电源V的正极T1接电源V的负极,G触发信号Vg的正。

第二象限是T2接电源V的正极T1接电源V的负极,G触发信号Vg的负。

第三、四象限是T1接电源V的正极T2接电源V的负极,G触发信号分别接Vg的正、负极。

2 类双向可控硅电路设计

在理解了前面所述双向可控硅的内部结构和工作原理之后,依据其内部结构采用我们熟悉的晶体管来设计一种类似有双向可控硅工作的双向可触发电路。如图5所示,电路采用用7个三极管和几个电阻组成。把图5电路中PN结的结构按图6所示结构图描出,与图3-a、b比较很是相似。在图5所示电路中,内部电流在外界所接电源的极性不同而有两种流向,如It12 和It21所示,It12流向是从P2流入经N2-P1-N1流出,It21从P1流入经N2-P2-N32流出;G极触发电流Ig+由P2流入或Ig- 从N31流出。下面是所设计电路在四个象限的触发导通工作过程。

2.1 T2接电源Vt21正极,T1接通电源Vt21负

此时当G极接Vg+为正电压,Q4、Q5、Q6、Q7处于反向截止,Q1的B极和E极之间无正偏压也处于截止状态,Vg+由P2输入后经R3使Q2的B极和E极之间产生正偏电压而导通,从而促使Q3导通,这时即使撤出Vg+,在电容C1的的作用下,Q2、Q3也仍然能处于导通状态,只有当Vt21先反向或撤除才重回截止。当G极接Vg为负,Q4、Q5、Q6、Q7同样处于反向截止状态,Q1的B极和E极之间因Vg产生正偏电压而导通,从而使Q3、Q2导通并得以保持导通状态。

2.2 T1接电源Vt12正极,T2接通负电源Vt12的负极

此时G极接Vg为正,Q1因B极和E极之间处于反向偏压而截止,Q3处于反向截止,Q2因B极和E极之间处于正向偏压导通而导致Q4、Q7的导通,从而Q6、Q7导通并保持导通状态,只有当Vt12先反向或撤除才重回截止。当G极接Vg为负,Q1、Q2、Q3和Q4处于反向截止,Q5的B极和E极之间因Vg而处于正偏导通,从而使Q6导通,继而Q7、Q6导通并得以保持导通状态。

3 电路制作与实验验证

为了验证所设计电路,采用比较常用的NPN三级管S8050和PNP三极管S8550来设计制作实际的测试电路板(PCB),如图5所示。图6 中所标识的T2、T1和G与图5所示的相同,也类似于双向可控硅的T2、T1和G三个接线极。利用该模块电路串入负载接通正或负的直流电源和触发信号来测试,所得结果如图7所示,在正或负触发信号接入前电流表上的指示为0,当正或负触发信号接通并撤离后电流表指示依然保持原来的电流值。该实验表明该电路在正负电源供电情况下能双向触发导通。

该模块电路在接通交流电源和脉冲控制信号时,其测验结果如图8所示。示波器探针1接触发信号,探针2接模块电路的两端T1-T2之间的电压。在触发信号为0是,T1-T2之间的电压等于电源电压值,表明该电路没有导通,当触发信号脉冲到来时,T1-T2两端的电压值为0,表明模块电路已经导通。

如图是一个由双向可控硅组成

220V时,双向可控硅SCR2控制极上的电压也随电网电压减小而降低,致使VD2导通角小,C1端电压上升,从而使双向可控硅SCRl控制极电压升高,使输出电压上升。反之,

输出电压下降,达到稳压。

注;双向晶闸管的T1和T2不能互换。否则会损坏管子和相关的控制电路。

检查晶闸管的触发能力(方法之一)

要使晶闸管导通,必须满足下述条件:

第一:晶闸管处于正向接法,即阳极接电源正极,阴极接电源负极;

第二:给门要加上正触发信号VGT。

晶闸管一旦导通,门极就失去控制作用,仅当阳极电压VA降某一规定值或施加反向电压时,晶闸管才能关断。

检查晶闸管触发能力的电路见图1。万用表选择R×1(或R×10)档。因表内电池电压仅1.5V低于正常的VGT值,(一般为2.5~4V),故不会损坏晶闸管。测量分两步进行:

第一步,先断开开关S,此时晶闸管尚未导通,测出的电阻值较大,表针应停在无穷大处。然后合上开关,将门极与阳极接通,使门极电位升高,这相当于加上正触发信号,因此晶闸管导通,电阻读数为几欧至十几欧。

第二步,再把开关断开,若读数不变,证明晶闸管质量良好。

图中的开关可用一根导线代替,导线的一端固定在阳极上,另一端搭在门极上时相当于开关闭合。

本方法仅适宜检查3CT1~3CT5等小功率晶闸管或小功率快速晶闸管(亦称高频晶闸管)。

检查晶闸管的触发能力(方法之二)

对于大功率晶闸管,因其通态压降较大,加之R×1档提供的阳极电流低于维持电流IH,所以晶闸管不能完全导通,在开关断开时晶闸管会随之关断。

检查3CT10~3CT100型晶闸管,可采用双表法,把两块万用表的R×1档上再串联两节1.5V电池,把电源电压提升到4.5V左右。

实例:按图1所示电路检查一只3CT20/500型晶闸管。把MF10型万用表均拨到R×1档,然后串联使用。用一根导线将门极与阳极知路,这时MF30型万用表的读数为2W。再撤掉短路导线,晶闸管仍保持导通状态。

检查晶闸管的触发能力(方法之三)

利用图1的电路也可以检查晶闸管的触发能力。万用表Ⅰ拨到R×10k档,该档电池电压较高,以提高阳极电压。万用表Ⅱ选择R×10档,该档电池电压为1.5V。不接表Ⅱ时,表Ⅰ测出的电阻值很大。接表Ⅱ后晶闸管导通,表Ⅰ的电阻读数很小。此法只能检查小功率晶闸管。

检查晶闸管的触发能力(方法之四)

利用兆欧表和万用表检查晶闸管触发能力的电路见图1。将万用表拨至1mADC 档,串联在电路中。首先断开开关,按额定转速摇兆欧表,兆欧表上的读数很快趋于稳定,说明晶闸管已正向击穿,把兆欧表的输出电压钳位于直流转折电压V (BO)上。此时晶闸管并未导通,所以毫安表读数为零。然后闭合开关,晶闸

管导通,兆欧表读数变成零,毫安表指示出通态电流值。

实例:用ZC25-4型兆欧表检查一只3CT20/500型晶闸管,万用表选择MF10型1mADC档。断开开关,按120r/min摇兆欧表时,兆欧表读数为25MW,毫安表无指示。闭合开关时,毫安表读数为0.21mA,兆欧表指零,证明晶闸管已导通。

注间事项:

(1)由于兆欧表提供的阳极电流很小,管子导通的并不理想,尤其对于大功率晶闸管,所需维持电流较大(例如3CT100型的IH=801mA),所以一旦断开开关,晶闸管又变成断态了。

(2)晶闸管的导通时间应尽量缩短,以防兆欧表短中时间过久而烧毁发电机绕检查大功率双向晶闸管触发能力的方法

由于小功率双向晶闸管的触发电流只有几十毫安,因此可用R×1档检查其触发能力。大功率双向晶闸管则不然,例如BA40-700型40A/700V双向晶闸管的IGT=100mA,利用R×1档已无法使管子触发。为此可采用图5.9.13所示电路,给万用表R×1档外接一节1.5V电池E′,将测试电压升到3V,同时增加测试电流(I′M=3V/R0)。

以500型万用表R×1档为例,将E′接在万用表“+”插孔与红表笔之间,这时总电压E+ E′=3V。该电阻档的欧姆中心值R0=10Ω,改装后的短路电流I′M=(E+ E′)/ R0=3V/10Ω=300 mA,实际可提供100 mA左右的测试电流。图1中的虚线表示在测量时T1极与G 极可以短路,也可以开路。具体检查步骤见5.9.7。

注意事项:

本方法对检查大功率单向晶闸管也适用。

双向晶闸管(TRIAC)

普通晶闸管实质上属于直流器件。要控制交流负载,必须将两只晶闸管反极性并联,让每只SCR控制一个半波,为此需两套独立的触发电路,使用感到不便。双向晶闸管是在普通晶闸管的基础上发展起来的,它不仅能代替两只反极性并联的晶闸管,而且仅用一个触发电路,是目前比较理想的交流开关器件。其英文名称TRIAC就是三端双向交流开关的意思。尽管从形式上可以把双向晶闸管看成两只普通晶闸管的组合,但实际上它是由七只晶体管和多只电阻构成的功率集成器件。小功率双向晶闸管一般采用塑料封存装,有的还带小散热极,外形如图1所示。典型产品有BCM1AM(1A/600V)、BCM3AM (3A/600V)、2N6075(4A/600V)、MAC218-10(8A/800V)等。大功率双向晶闸管大多采用RD91型封装,例如BTA40-700型的主要参数是:IT=40A,VDRM=700V,

IGT=100mA。双向晶闸管可广泛用于工业、交通、家电领域,实现交流调压、交流调速、交流开关、舞台调光、台灯调光等多种功能。此外,它还被用在固态继电器和固态接触器的电路中。

双向晶闸管的结构与符号见图2。它属于NPNPN五层器件,三个电极分别是T1、T2、G。因该器件可以双向导通,故门极G以外的两个电极统称为主端子,用T1、T2表示,不再划分成阳极或阴极。其特点是,当G极和T2极相对于T1的电压均为正时,T2是阳极,T1是阴极。反之,当G极和T2极相对于T1 的电压均为负时,T1变成阳极,T2为阴极。

双向晶闸管的伏发特性见图3,由于正、反向特性曲线具有对称性,所以它可在任何一个方向导通。

下面介绍利用万用表R×1档判定双向晶闸管电极的方法,同时还检查触发能力。1.判定T2极

由图2(a)可见,G极与T1极靠近,距T2极较远。因此,G-T1之间的正、反向电阻都很小。在用R×1档测任意两脚之间的电阻时,只有G- T1之间呈现低阻,正、反向电阻仅几十欧。而T2-G、T2- T1之间的正、反向电阻均为无穷大。这表明,如果测出某脚和其它两脚都不通,就肯定是T2极。

另外,采用TO-220封装的双向晶闸管,T2极通常与小散热板连通。据此亦可确定T2极。

2.区分G极和T1极

(1)找出T2极之后,首先假定剩下两脚中某一脚为T1极,另一脚为G极。(2)把黑表笔接T1极,红表笔接T2极,电阻为无穷大。接着用红表笔尖把T2与G短路,给G极加上负触发信号,电阻值应为十欧左右(参见图4(a))证明管子已经导通,导通方向为T1→T2。再将红表笔尖与G极脱开(但仍接T2),如果电阻值保持不变,就表明管子在触发之后能维持之后能维持导通状态(见图4(b))

(3)把红表笔接T1极,黑表笔接T2极,然后使T2与G短路,给G极加上正触发信号,电阻值仍为十欧左右,与G极脱开后若阻值不变,则说明管子经触发后,在T2→T1方向上也能维持导通状态,因此具有双向触发性质。由此证明上述假定正确。否则是假定与实际不符,需从新作出假定,重复以上测量。

显见,在识别G、T的过程中,也就检查了比向晶闸管的触发能力。

实例:选择500型万用表档R×1档检测一只由日本三菱公司生产的BCR3AM 型双向晶闸管,外形见图1中。测量结果与上述规律完全相符,证明管子质量良

好。

注意事项:

如果按哪种假定去测量,都不能使双向晶闸管触发导通,证明管子已损坏。为可靠起见,这里规定只用R×1档检测,而不用R×10档。这是因为R×10档的电流较小,采用上述方法检查1A的双向晶闸管还双较可靠,但在检查3A或3A 以上的双向晶闸管时,管子很难导通状态,一旦脱开G极,即自行关断,电阻值又变成无穷大。

双向晶闸管(TRIAC)

普通晶闸管实质上属于直流器件。要控制交流负载,必须将两只晶闸管反极性并联,让每只SCR控制一个半波,为此需两套独立的触发电路,使用感到不便。双向晶闸管是在普通晶闸管的基础上发展起来的,它不仅能代替两只反极性并联的晶闸管,而且仅用一个触发电路,是目前比较理想的交流开关器件。其英文名称TRIAC就是三端双向交流开关的意思。尽管从形式上可以把双向晶闸管看成两只普通晶闸管的组合,但实际上它是由七只晶体管和多只电阻构成的功率集成器件。小功率双向晶闸管一般采用塑料封存装,有的还带小散热极,外形如图1所示。典型产品有BCM1AM(1A/600V)、BCM3AM (3A/600V)、2N6075(4A/600V)、MAC218-10(8A/800V)等。大功率双向晶闸管大多采用RD91型封装,例如BTA40-700型的主要参数是:IT=40A,VDRM=700V,

IGT=100mA。双向晶闸管可广泛用于工业、交通、家电领域,实现交流调压、交流调速、交流开关、舞台调光、台灯调光等多种功能。此外,它还被用在固态继电器和固态接触器的电路中。

双向晶闸管的结构与符号见图2。它属于NPNPN五层器件,三个电极分别是

T1、T2、G。因该器件可以双向导通,故门极G以外的两个电极统称为主端子,用T1、T2表示,不再划分成阳极或阴极。其特点是,当G极和T2极相对于T1的电压均为正时,T2是阳极,T1是阴极。反之,当G极和T2极相对于T1 的电压均为负时,T1变成阳极,T2为阴极。

双向晶闸管的伏发特性见图3,由于正、反向特性曲线具有对称性,所以它可在任何一个方向导通。

下面介绍利用万用表R×1档判定双向晶闸管电极的方法,同时还检查触发能力。1.判定T2极

由图2(a)可见,G极与T1极靠近,距T2极较远。因此,G-T1之间的正、反向电阻都很小。在用R×1档测任意两脚之间的电阻时,只有G- T1之间呈现低阻,正、反向电阻仅几十欧。而T2-G、T2- T1之间的正、反向电阻均为无穷大。这表明,如果测出某脚和其它两脚都不通,就肯定是T2极。

另外,采用TO-220封装的双向晶闸管,T2极通常与小散热板连通。据此亦可确定T2极。

2.区分G极和T1极

(1)找出T2极之后,首先假定剩下两脚中某一脚为T1极,另一脚为G极。(2)把黑表笔接T1极,红表笔接T2极,电阻为无穷大。接着用红表笔尖把T2与G短路,给G极加上负触发信号,电阻值应为十欧左右(参见图4(a))证明管子已经导通,导通方向为T1→T2。再将红表笔尖与G极脱开(但仍接T2),如果电阻值保持不变,就表明管子在触发之后能维持之后能维持导通状态(见图4(b))

(3)把红表笔接T1极,黑表笔接T2极,然后使T2与G短路,给G极加上正

触发信号,电阻值仍为十欧左右,与G极脱开后若阻值不变,则说明管子经触发后,在T2→T1方向上也能维持导通状态,因此具有双向触发性质。由此证明上述假定正确。否则是假定与实际不符,需从新作出假定,重复以上测量。

显见,在识别G、T的过程中,也就检查了比向晶闸管的触发能力。

实例:选择500型万用表档R×1档检测一只由日本三菱公司生产的BCR3AM 型双向晶闸管,外形见图1中。测量结果与上述规律完全相符,证明管子质量良好。

注意事项:

如果按哪种假定去测量,都不能使双向晶闸管触发导通,证明管子已损坏。为可靠起见,这里规定只用R×1档检测,而不用R×10档。这是因为R×10档的电流较小,采用上述方法检查1A的双向晶闸管还双较可靠,但在检查3A或3A 以上的双向晶闸管时,管子很难导通状态,一旦脱开G极,即自行关断,电阻值又变成无穷大。

可控硅快速测试器;

控硅测试仪

测试仪由脉冲信号发生器、闭合导通环路、发光二极管、可控硅SCR等组成。脉冲信号发生器即为由时基电路555和R1、R2、C等组成的多谐振荡器,其振荡频率为f=1.44/(R1+2R2)C。图示参数对应的振荡频率约为1Hz。由于R1<

插上可控硅SCR,当按下按钮AN后,在555输出高电平时,发光二极管LED1、

(完整版)高中物理知识点总结和知识网络图(大全)

力学知识结构图

匀变速直线运动 基本公式:V t =V 0+at S=V 0t+21 at 2 as V V t 22 02 += 2 0t V V V += 运动的合成与分解 已知分运动求合运动叫运动的合成,已知合运动求分运动叫运动的分解。运动的合成与分解遵守平行四边形定则 平抛物体的运动 特点:初速度水平,只受重力。 分析:水平匀速直线运动与竖直方向自由落体的合运动。 规律:水平方向 Vx = V 0,X=V 0t 竖直方向 Vy = gt ,y = 22 1gt 合 速 度 V t = ,2 2y x V V +与x 正向夹角tg θ= x y V v 匀速率圆周运动 特点:合外力总指向圆心(又称向心力)。 描述量:线速度V ,角速度ω,向心加速度α,圆轨道半径r ,圆运动周期T 。 规律:F= m r V 2=m ω2r = m r T 2 2 4π 物 体 的 运 动 A 0 t/s X/cm T λx/cm y/cm A 0 V 天体运动问题分析 1、行星与卫星的运动近似看作匀速圆周运动 遵循万有引力提供向心力,即 =m =m ω2R=m( )R 2、在不考虑天体自转的情况下,在天体表面附近的物体所受万有引力近似等于物体的重力,F 引=mg,即?=mg,整理得GM=gR 2。 3、考虑天体自传时:(1)两极 (2)赤道 平均位移:02 t v v s vt t +== 模 型题 2.非弹性碰撞:碰撞过程中所产生的形变不能够完全恢复的碰撞;碰撞过程中有机械能损失. 非弹性碰撞遵守动量守恒,能量关系为: 12m 1v 21+12m 2v 22>12m 1v 1′2+1 2 m 2v 2′2 3.完全非弹性碰撞:碰撞过程中所产生的形变完全不能够恢复的碰撞;碰撞过程中机械能损失最多.此种情况m 1与m 2碰后速 度相同,设为v ,则:m 1v 1+m 2v 2=(m 1+m 2)v 系统损失的动能最多,损失动能为 ΔE km =12m 1v 21+12m 2v 22-12 (m 1+m 2)v 2 1 .弹性碰撞:碰撞过程中所产生的形变能够完全恢复的碰撞;碰撞过程中没有机械能损失.弹性碰撞除了遵从动量守恒定律外,还具备:碰前、碰后系统的总动能相等,即 12m 1v 21+12m 2v 22=12m 1v 1′2+1 2 m 2v 2′2 特殊情况:质量m 1的小球以速度v 1与质量m 2的静止小球发生弹性正碰,根据动量守恒和动能守恒有m 1v 1=m 1v 1′+m 2v 2′,1 2m 1v 21= 12m 1v 1′2+1 2m 2v 2′2.碰后两个小球的速度分别为: v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1 m 1+m 2v 1 动 量碰撞 如图所示,在水平光滑直导轨上,静止着三个质量为m =1 kg 的相同的小球A 、B 、C 。现让A 球以v 0=2 m/s 的速 度向B 球运动, A 、 B 两球碰撞后粘在一起继续向右运动并与 C 球碰撞,C 球的最终速度v C =1 m/s 。问: om (1)A 、B 两球与C 球相碰前的共同速度多大? (2)两次碰撞过程中一共损失了多少动能? 【答案】(1)1 m/s (2)1.25 J .线球模型与杆球模型:前面是没有支撑的小球,后两幅图是 有支撑的小球 过最高点的临界条件 由mg=mv 2/r 得v 临=? 由小球恰能做圆周运动即可 得 v 临=0 .车过拱桥问题分析 对甲分析,因为汽车对桥面的压力F N'=mg-?,所以(1)当v=?时,汽车对桥面的压力F N'=0; (2)当0≤v?时,汽车将脱离桥面危险。 对乙分析则:F N-mg=m , 甲 1.做平抛(或类平抛)运动的物体 任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点 2. 自由落体

高等数学知识点总结 (1)

高等数学(下)知识点 主要公式总结 第八章 空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2 222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222 双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111C B A n =ρ,),,(2222C B A n =ρ, ?∏⊥∏21 0212121=++C C B B A A ;?∏∏21// 2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: (三) 空间直线及其方程 1、 一般式方程:?????=+++=+++0 022221111D z C y B x A D z C y B x A 2、 对称式(点向式)方程: p z z n y y m x x 0 00-=-=-

初中数学几何空间与图形知识点

初中数学《几何空间与图形》知识点 初中数学《几何空间与图形》知识点 A、图形的认识 1、点,线,面 点,线,面:图形是由点,线,面构成的。面与面相交得线,线与线相交得点。点动成线,线动成面,面动成体。 展开与折叠:在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。N棱柱就是底面图形有N条边的棱柱。截一个几何体:用一个平面去截一个图形,截出的面叫做截面。 视图:主视图,左视图,俯视图。 多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。 弧、扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。圆可以分割成若干个扇形。 2、角 线:线段有两个端点。将线段向一个方向无限延长就形成了射线。射线只有一个端点。将线段的两端无限延长就形成了直线。直线没有端点。经过两点有且只有一条直线。 比较长短:两点之间的所有连线中,线段最短。两点之间线段的长度,叫做这两点之间的距离。 角的度量与表示:角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。一度的1/60是一分,一分的1/60是一秒。角的比较:角也可以看成是由一条射线绕着他的端点旋转而成的。一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。 平行:同一平面内,不相交的两条直线叫做平行线。经过直线外一点,有且只有一条直线与这条直线平行。如果两条直线都与第3条直线平行,那么这两条直线互相平行。

生物必修一章知识框架图

第一章 走进细胞 走进细胞 从生物圈到细胞 生命活动离不开细胞 生命系统的结构层次 组织:由形态相似,结构、功能相同的细胞联合在一起的细胞群 器官:不同的组织按照一定的次序结合在一起而构成器官 系统:能够共同完成一种或几种生理功能的多个器官按照一定的次序组合在起而构成系统 个体:由各种器官(植物)或系统(动物和人)协调配合共同完成复杂的生命活动的生物。单细胞生物是由一个细胞构成的生物体。 种群:在一定的自然区域内,同种生物的所有个体是一个种群。 群落:在一定的自然区域内,所有的种群(生物)组成一个群落。 生态系统:生物群落与它的无机环境相互作用而形成的统一整体 生物圈:由地球上所有的生物和这些生物生活的无机环境共同组成 细胞的多样性和统一性 观察细胞(显微镜的使用) 原核细 胞与真核细胞 低倍镜的视野大(小),通过的光多(少),放大倍数小(大); 物镜放大倍数小(大),镜头较短(长) 显微镜放大倍数=目镜放大倍数×物镜放大倍数 先用低倍镜观察清楚,把要放大观察的移到视野中央,再换高倍镜观察 看到物像是倒像,因而物像移动的方向与实际材料(装片)移动方向相反 主要内容:(1)细胞是一个有机体,一切动植物都是由细胞发育而来,并由细胞和细胞产物所构成。(2)细胞是一个相对独立的单位,既有它自己的生命,又对与其他 细胞共同组成的整体的生命起作用。(3)新细胞可以从老细胞中产生 细胞学说 从学说的建立过程可以领悟到科学发现具有以下特点: 1、 科学发现是很多科学家的共同参与,共同努力的结果 2、 科学发现的过程离不开技术的 3、 科学发现需要理性思维和实验的结合 4、 科学学说的建立过程是一个不断开拓、继承、修正和发展的过程 细胞:细胞是生物体结构和功能的基本单位

《高等数学》 各章知识点总结——第6章

第6章 微分方程总结 1.可分离变量微分方程 一阶微分方程y '=?(x , y ) 或M(x)N(y )dx +P(x)Q(y )dy =0能写成 g (y )dy =f (x )dx 两边积分可得通解。 2.齐次微分方程 dy y ()dx x =φ,令x y u =, 即y =ux , 有)(u dx du x u ?=+, 得??=-x dx u u du )(?。 3.一阶线性微分方程 (1)齐次线性 0)(=+y x P dx dy 用分离变量法可求得通解P(x)dx y Ce -?=。 (2)非齐次线性方程)()(x Q y x P dx dy =+ 由齐次方程常数变易法可得通解 ])([)()(C dx e x Q e y dx x P dx x P +??=?-。 4.伯努利方程 n y x Q y x P dx dy )()(=+ (n ≠0, 1),以y n 除方程的两边, 得 )()(1x Q y x P dx dy y n n =+-- 令z =y 1-n , 得线性方程 )()1()()1(x Q n z x P n dx dz -=-+. 5.可降阶的高阶微分方程 (1)y (n )=f (x ) :积分n 次 1)1()(C dx x f y n +=?-, 21)2(])([C dx C dx x f y n ++=??-,? ? ?. (2)y ''= f (x , y '):设y '=p(x) , 则方程化为 p '=f (x , p )。 (3)y ''=f (y , y '):设y '=p(y), dy dp p dx dy dy dp dx dp y =?=='',原方程化为 ),(p y f dy dp p = 6.二阶常系数线性微分方程 (1)二阶常系数齐次线性微分方程: y ''+py '+qy =0 (2)二阶常系数非齐次线性微分方程: y ''+py '+qy =f (x )

《幼儿教育学》第一章知识框架图



























教育的 起源
教育的 概念
教育学 的概念
幼儿教育 的概念
神话起源说
生物起源说
心理起源说
劳动起源说
教育是新生一代成长和人类社会延续、发展的必要手段,是人类社会特有的社 会现象。 广义:有目的、有意识地对人身心施加影响并促进人向社会要求的方向发展的 一种社会实践活动。包括家庭教育、社会教育和学校教育。 狭义:指学校教育,如幼儿园教育,小学、中学和大学教育以及其他人们为了 某种目的而特别组织的教育。
注意三点: 1、教育活动是人类社会特有的社会实践活动 2、教育活动是培养人的社会实践活动 3、学校教育活动是一种专门的培养人的社会实践活动
教育学是研究教育这一社会现象并揭示其规律的一门科学。
幼儿教育主要指的是对 3 到 6 岁年龄阶段的幼儿所实施的教育,是一个人教育与发 展的重要而特殊的阶段。 广义:凡是能够影响幼儿身体成长和认知、情感、性格等方面发展的活动,如幼儿 的家庭生活的形态,父母养育他的态度和方式,幼儿周围的人和事,他所读的书, 接触他的人,看电影、电视等等,都可说是幼儿教育。 狭义的幼儿教育则特指幼儿园和其他专门开设的幼教机构的教育。
幼儿教育 学的概念
幼儿教育 的意义
幼儿教育学是一门研究 3-6 岁幼儿教育规律和幼儿教育机构的教育工作规律的 科学,它是人们从教育幼儿的实践中总结提炼出来的教育理论
(1)促进幼儿在体、智、德、美诸方面全面和谐的发展。 (2)帮助幼儿适应学校生活,为入小学学习做好准备。 (3)减轻父母教养幼儿的负担并改善处境不利幼儿的状况。
幼儿教育对个体发展的意义 (一) 促进生长发育,提高身体素质,使幼儿健康、安全、愉快地成长 (二) 发展儿童的智力潜力和特点,识别和培养他们区别于他人的智能和兴趣, 帮助他们实现富有个性的发展 (三) 培养良好的品行和性格,促进个性、人格的完善和健康发展 (四) 激发幼儿感受美、表现美、创造美的情趣,丰富他们的审美经验,使之 体验到自由表达和创造的快乐
幼儿教育对社会发展的意义 (一) 幼儿教育对巩固提高“普九”水平,发展各类教育,构筑终身教育体系, 具有基础性、全局性和先导性的作用 (二) 幼儿教育的发展使人民群众日益增长的教育需求得到满足 (三) 幼儿教育的发展有力于国民素质的提高,有利于经济社会的持续、健康、 和谐的发展

八年级物理最新第八章《电功率》的知识结构思维导图

1 第八章 电功率知识结构 一、知识梳理 电热功率公式 电热的利用和危害 家庭电路中电流过大的原因 保险丝的材料及作用 ?????????????????????????????????????????????????<<>>======????????????????=??====,用电器不能发挥正常,当,用电器易被烧坏,当,用电器正常工作,当实际功率与额定功率、单位:公式:做功的多少定义:单位时间内电流功的快慢物理意义:表示电流做)电功率(测量仪表:电能表或单位:公式:形式能的过程实质:电能转化为其它定义:电流所做的功发光、发声等现象动、发热、种用电器使之产生的转表现形式:电流通过各)电功(额实额实额实额实额实额实P P U U P P U U P P U U kW W R U R I UI t W P P J h kW h kW J t R U Rt I Pt UIt W W 2 2622)106.31( 第一课时 一、复习引入 出示问题: 将一个标有“220V ,40W ”的灯泡接入220V 的电路中,灯泡为什么会发光?

将它分别接在220V与110V的电路中,哪种情况下灯比较亮?为什么? 若把“220V、100W”与“110V,100W”的两灯泡分别接在110V的电器中,哪个灯亮? 这些问题的解决就涉及到电功、电功率的知识? 二、复习容及过程 (一)、电功: 1、定义:电流通过某段电路所做的功叫电功。 2、实质:电流做功的过程,实际就是电能转化为其他形式的能(消耗电能)的过程;电流做多少功,就有多少电能转化为其他形式的能,就消耗了多少电能。 电流做功的形式:电流通过各种用电器使其转动、发热、发光、发声等都是电流做功的表现。 3、规定:电流在某段电路上所做的功,等于这段电路两端的电压,电路中的电流和通电 时间的乘积。 4、计算公式:W=UIt=UQ=Pt(适用于所有电路) 对于纯电阻电路可推导出:W= I2Rt= U2t/R ①串联电路中常用公式:W= I2Rt 。 ②并联电路中常用公式:W= U2t/R W1:W2= R2:R1 ③无论用电器串联或并联。计算在一定时间所做的总功,常用公式W= W1+W2+…Wn 5、单位:国际单位是焦耳(J)常用单位:度(kwh) 1度=1千瓦时=1 kwh=3.6×106J 6、测量电功: ⑴电能表:是测量用户用电器在某一段时间所做电功(某一段时间消耗电能)的仪器。 ⑵电能表上“220V”“5A”“3000R/kwh”等字样,分别表示:电电能表额定电压220V;允许通过的最大电流是5A;每消耗一度电电能表转盘转3000转。 2

【小学数学】人教版五年级下册数学空间与图形知识点汇总

人教版五年级下册数学空间与图形知识点汇总 一、轴对称与旋转 1、图形的变换包括平移、旋转和对称。 2、轴对称图形:一个图形沿某一条直线对折;直线两侧的图形能够完全重合;这个图形就是轴对称图形。这条直线叫做它的对称轴。 3、轴对称图形都有对称轴。有一条对称轴的图形有等腰三角形;等腰梯形、线段、角。有两条对称轴的图形有长方形、菱形。有三条对称轴的图形有正三角形。正方形有4条对称轴。 4、轴对称图形的特征: (1)、对应点到对称轴的距离相等; (2)、对应点连线与对称轴互相垂直。 5、轴对称图形的画法: (1)、找出已知图形的关键点。 (2)、在对称轴的另一侧画出关键点的对应点。 (3)、按顺序连接各对应点。 6、旋转:图形或物体绕着一个点或一条轴运动的现象叫做旋转。图形旋转后只改变位置;不改变形状和大小。 一、长方体和正方体的认识 在3个、4个、5个面是正方形!

练习: (1)判断并改正: 1、长方体的六个面一定是长方形; ( ) 2、正方体的六个面面积一定相等; ( ) 3、一个长方体(非正方体) 最多有四个面面积相等; ( ) 4、相交于一个顶点的三条棱相等的长方体一定是正方体。 ( ) 7、长方体的三条棱分别叫做长、宽、高。 ( ) 8、有两个面是正方形的长方体一定是正方体。( ) 9、有三个面是正方形的长方体一定是正方体。( ) 11、有两个相对的面是正方形的长方体;另外四个面的面积是相等的。( ) 12、长方体和正方体最多可以看到3个面。( ) 14、正方体不仅相对的面的面积相等;而且所有相邻的面的面积也都相等。( ) 15、长方体(不包括正方体)除了相对的面相等;也可能有两个相邻的面相等。 ( ) 16、一个长方体中最少有4条棱长度相等;最多有8条棱长度相等。( ) (2)填空: 1、一个长方体最多有( )个面是正方形;最多有( )条棱长度相等。 2、一个长方体的底面是一个正方形;则它的4个侧面是 ( )形。 3、 正方体不仅相对的面相等;而且所有相邻的面( );它的六 个面都是相等的( )形。 4、 把长方体放在桌面上;最多可以看到( )个面。最少可以看 到( )个面。 【知识点2】 棱长和公式:长方体棱长和=(长+宽+高)×4 长+宽+高=棱长和÷4 长方体棱长和= 下面周长×2+高×4 长方体棱长和=右面周长×2+长×4 长方体棱长和=前面周长×2+宽×4 正方体棱长和=棱长×12 棱长=棱长和÷12 棱长和的变形: 例如:有一个礼盒需要用彩带捆扎;捆扎效果如图;打结部分需要10厘米彩带;一共需要多长的彩带? 分析:本题虽然并未直接提出求棱长和;但由 于彩带的捆扎是和棱相互平行的; 因此;在解决问题时首先确定每部分彩带 与那条棱平行;从而间接去求棱长和。 前面和后面的彩带长度=高的长度;左面和右 面的彩带长度=高的长度; 上面和下面的彩带长度=长的长度。 需要彩带的长度=高×4+长×2+宽×2+打结部分长度 20×4+30×2+10=150cm

七年级上册数学第一章知识结构图

第一章:有理数 ★知识结构图: 正分数 负分数 正整数 负整数 ★正数和负数 概念、定义:

1.大于0的数叫做正数(positive number)。 2.在正数前面加上负号“-”的数叫做负数(negative number)。 3.整数和分数统称为有理数(rational number)。 4.规定了原点、正方向和单位长度的直线叫做数轴(number axis)。 5.在直线上任取一个点表示数0,这个点叫做原点(origin)。 6.一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。 7.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。 8.正数大于0,0大于负数,正数大于负数。两个负数,绝对值大的反而小。 ★有理数加法法则: 1.同号两数相加,取相同的符号,并把绝对值相加。 2.绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。 3.一个数同0相加,仍得这个数。

4.有理数的加法中,两个数相加,交换交换加数的位置,和不变。 5.有理数的加法中,三个数相加,先把前两个数相加,或者先将后两个数相加,和不变。 6.有理数减法法则:减去一个数,等于加上这个数的相反数。 ★有理数乘法法则 1.两数相乘,同号得正,异号得负,并把绝对值向乘;任何数同0相乘,都得0。 2. 有理数中仍然有:乘积是1的两个数互为倒数。 3. 一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。 4.三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。 5.一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。 ★有理数除法法则 1.除以一个不等于0的数,等于乘这个数的倒数。 2.两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。★做有理数混合运算时,应注意以下运算顺序:

《高等数学》 各章知识点总结——第9章

第9章 多元函数微分学及其应用总结 一、多元函数的极限与连续 1、n 维空间 2R 为二元数组),(y x 的全体,称为二维空间。3R 为三元数组),,(z y x 的全体,称为三 维空间。 n R 为n 元数组),,,(21n x x x 的全体,称为n 维空间。 n 维空间中两点1212(,,,),(,,,)n n P x x x Q y y y 间的距离: ||PQ = 邻域: 设0P 是n R 的一个点,δ是某一正数,与点0P 距离小于 δ的点P 的全体称为点0P 的δ 邻域,记为),(0δP U ,即00(,){R |||}n U P P PP δδ=∈< 空心邻域: 0P 的 δ 邻域去掉中心点0P 就成为0P 的δ 空心邻域,记为 0(,)U P δ =0{0||}P PP δ<<。 内点与边界点:设E 为n 维空间中的点集,n P ∈R 是一个点。如果存在点P 的某个邻域 ),(δP U ,使得E P U ?),(δ,则称点P 为集合E 的内点。 如果点P 的任何邻域内都既有 属于E 的点又有不属于E 的点,则称P 为集合E 的边界点, E 的边界点的全体称为E 的边界. 聚点:设E 为n 维空间中的点集,n P ∈R 是一个点。如果点P 的任何空心邻域内都包含E 中的无穷多个点,则称P 为集合E 的聚点。 开集与闭集: 若点集E 的点都是内点,则称E 是开集。设点集n E ?R , 如果E 的补集 n E -R 是开集,则称E 为闭集。 区域与闭区域:设D 为开集,如果对于D 内任意两点,都可以用D 内的折线(其上的点都属于D )连接起来, 则称开集D 是连通的.连通的开集称为区域或开区域.开区域与其边界的并集称为闭区域. 有界集与无界集: 对于点集E ,若存在0>M ,使得(,)E U O M ?,即E 中所有点到原点的距离都不超过M ,则称点集E 为有界集,否则称为无界集. 如果D 是区域而且有界,则称D 为有界区域.

初中几何空间与图形知识点

初中几何空间与图形知识点 A、图形的认识 1、点,线,面 点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②N棱柱就是底面图形有N条边的棱柱。 截一个几何体:用一个平面去截一个图形,截出的面叫做截面。 视图:主视图,左视图,俯视图。 多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。 弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。 2、角 线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。

角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。 角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。 平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。 垂直平分线:垂直和平分一条线段的直线叫垂直平分线。 垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。 垂直平分线定理: 性质定理:在垂直平分线上的点到该线段两端点的距离相

语言学---第一章知识框架

Chapter 1 Invitations to Linguistics 1.1 Why Study Language? 1.Some myths about language 2.Some fundamental views about language 3.Some concrete demonstrations to show Linguistics’importance 1.2 What is Language? 1. Language “is not to be confused with human speech, of which it is only a definite part, though certainly an essential one. It is both a social product of the faculty of speech and a collection of necessary conventions that have been adopted by a social body to permit individuals to exercise that faculty”. --Ferdinand de Saussure (1857-1913): Course in General Linguistics (1916) 2. “Language is a purely human and non-instinctive method of communicating ideas, emotions and desires by means of voluntarily produced symbols.” --Edward Sapir (1884-1939): Language: An Introduction to the Study of Speech (1921) 3. “A language is a system of arbitrary vocal symbols by means of which a social group co-operates.” --Bernard Bloch (1907-1965) & George Trager (1906-1992): Outline of Linguistic Analysis (1942) 4. “A language is a system of arbitrary vocal symbols by means of which the members of a society interact in terms of their total culture.” --George Trager: The Field of Linguistics (1949) 5. “From now on I will consider language to be a set (finite or infinite) of sentences, each finite in length and constructed out of a finite set of elements.” --Noam Chomsky (1928- ): Syntactic Structures (1957) 6. Language is “the institution whereby humans communicate and interact with each other by means of habitually used oral-auditory arbitrary symbols.” --Robert A. Hall (1911-1997): Introductory Linguistics (1964) 7.“Language is a system of arbitrary vocal symbols used for human communication.” --Ronald Wardhaugh: Introduction to Linguistics (1977) 8. “Language is a means of verbal communication.” —It is instrumental in that communicating by speaking or writing is a purposeful act. —It is social and conventional in that language is a social semiotic and communication can only take place effectively if all the users share a broad understanding of human interaction including such associated factors as nonverbal cues, motivation, and socio-cultural roles. -- Our textbook (2006) 9. Language is a system of arbitrary vocal symbols used for human communication.

初中知识结构图

初中语文知识结构图 字音 3.汉字 2.字形 4.含义 5.色彩 9.词语 6.近义词辨析 7.熟语 8.关联词语 点号 12.标点符号 11.误用辨析 47 27.基础知识13.常见修辞格 初15.修辞 中辞格辨 语词类 文20.语法17.短语 18.复句 19.辨析修改病句 21.作家作品 24.文学文化常识22.名篇名句 23.文化常识 45.知识体系26.语言表达——25.简明、连贯、得体 28.常见实词 31.文章内容的归纳,中心的概括29.常见虚词 34.古代诗文阅读30.一词多义 32.实词、虚词 33.文章内容的理解(翻译、断句) 35.文体知识 36.依据作品内容进行的合理推断 37.作文作品语言、表达技巧和形象的鉴赏 38.文学作品思想内容、作者态度的评价 44.现代文阅读39.重要句子的理解和解释 40.重点词语的理解 41.文中信息的分析和筛选 42.内容的归纳,中心的概括 43.结构的分析,思路的把握 46.中考复习

初中数学知识结构图 1.有理数(正数与负数) 2.数轴 6.有理数的概念 3.相反数 4.绝对值 5.有理数从大到小比较 7.有理数的加法、加法运算律 17.有理数8.有理数的减法 9.有理数的加减混和运算 10.有理数的乘法、乘法运算 16.有理数的运算11.有理数的除法、倒数 12.有理数的乘方 21.代数式13.有理数的混和运算 22、列代数式14.科学记数法、近似数与有效数字 23、代数式的值15.用计算器进行简单的数的运算 18.单项式 27、整式的加减20、整式的概念19、多项式 24、合并同类项 25、去括号与添括号 26、整式的加减法 28、等式及其基本性质 29、方程和方程的解、解方程 32、一元一次方程30、一元一次方程及其解法 198 31、一元一次方程的应用 初、二元一次方程组的解法 中36、相关概念及性质 数193 39、二元一次方程组37、三元一次方程组及其解法举例 学数、一次方程组的应用 . 与43、一元一次不等式40、一元一次不等式及其解法代45、一元一次不等式41、不等式的解集 数和一元一次不等、一元一次不等式组42、不等式和它的基本性质 式组46、同底数幂的乘法、单项式的乘法 47、幂的乘法、积的乘方 51、整式的乘法48、单项式与多项式相乘 49、多项式的乘法 56、整式的乘除50、平方差与完全平方根 52、多项式乘以单项式 55、整式的除法53、单项式除以单项式 54、同底数幂的除法 57、提取 61、方法58、运用公式法 63、因式分解59、分组分解法 62、意义60、其他分解法66、含字母系数的 65、分式的乘除法——64、分式的乘除运算一元一次方程 69、可化为一元一次方程的分式方程及其应用67、分式方程解法、

高等数学各章知识结构复习课程

高等数学各章知识结构 一.总结构 数学中研究导数、微分及其应用的部分称为微分学,研究不定积分、定积分及其应用的部分称为积分学.微分学与积分学统称为微积分学. 微积分学是高等数学最基本、最重要的组成部分,是现代数学许多分支的基础,是人类认识客观世界、探索宇宙奥秘乃至人类自身的典型数学模型之一. 恩格斯(1820-1895)曾指出:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发明那样被看作人类精神的最高胜利了”. 微积分的发展历史曲折跌宕,撼人心灵,是培养人们正确世界观、科学方法论和对人们进行文化熏陶的极好素材(本部分内容详见光盘). 微积分是近代数学中最伟大的成就,对它的重要性无论做怎样的估计都不会过分. 冯. 诺伊曼 注:冯. 诺依曼(John von Neumann,1903-1957,匈牙利人),20世纪最杰出的数学家之一,在纯粹数学、应用数学、计算数学等许多分支,从集合论、数学基础到量子理论与算子理论等作多方面,他都作出了重要贡献. 他与经济学家合著的《博弈论与经济行为》奠定了对策论的基础,他发明的“流程图”沟通了数学语言与计算机语言,制造了第一台计算机,被人称为“计算机之父”.

微积分中重要的思想和方法: 1.“极限”方法,它是贯穿整个《微积分》始终。导数是一种特殊的函数极限;定积分是一种特殊和式的极限;级数归结为数列的极限;广义积分定义为常义积分的极限;各种重积分、曲线积分、曲面积分都分别是某种和式的极限。所以,极限理论是整个《微积分》的基础。尽管上述各种概念都是某种形式的极限,但是它们都有各自独特和十分丰富深刻的内容,这是《微积分》最有魅力的地方之一。 2.“逼近”思想,它在《微积分》处处体现。在近似计算中,用容易求的割线代替切线,用若干个小矩形面积之和代替所求曲边梯形面积;用折线段的长代替所求曲线的长;用多项式代替连续函数等。这种逼近思想在理论和实际中大量运用。 3.“求极限、求导数和求积分”是最基本的方法。熟练掌握求极限、求导数和求积分的方法,学习《微积分》就不会遇到太多困难,甚至能做到得心应手。 4.“特色定理”是《微积分》的支柱。夹逼定理、中值定理、微积分基本定理等是《微积分》中最深刻、最基本、最能体现《微积分》特色的定理,支撑起《微积分》的大厦。 5.“综合运用能力”是《微积分》学习的出发点和归宿。充分注重综合运用极限概念与方法的能力、综合运用导数与积分相结合的各种方法的能力、综合运用定积分思想方法解决问题的能力、综合运用一元和多元相结合方法的能力、综合运用各种方法解决实际问题的能力。

空间与图形知识点整理与习题

来源:网络 2009-07-27 10:02:14 [标签:图形总复习六年级苏教版数学]奥数精华资讯免费订阅 教学内容:义务教育课程标准实验教科书97-98页“整理与反思”和“练习与实践”7 -10题。 教学目标: 1、通过复习,使学生加深对长方形.正方形.平行四边形.梯形.三角形和圆等平面图形基本特征的认识。 2、能用所学的知识解决一些简单的实际问题。 教学重点、难点:用所学的知识解决一些简单的实际问题。 教学设计: 一、整理与复习 1.提出要求:请大家回忆,我们学过哪些围成的平面图形?先画出相关的图形,再在小组里交流一下。 2.进一步要求;如果把这些平面图形分成两类,可以怎样分? 引导学生认识到:由线段围成的平面图形分为一类,由曲线或由曲线和线段共同围成平面图形分为一类。 3.追问:由线段围成的平面图形都可称为什么图形?如果把多边形进一步分类,可以怎样分? 4.让学生在画出的三角形.平行四边形和梯形上作高,在画出的圆中用字母标出圆心.半径和直径。 二、复习三角形的知识 1、三角形的概念。 “我们已经学过三角形,请同学们自己画出几种不同的三角形。”教师巡视。

“大家已经会画三角形了,说一说三角形是什么样的图形。”(三角形是由三条线段围成的图形。) “三角形具有什么特性?日常生活中哪些地方用到这一特性?” “在三角形中一个顶点的对边是哪一条边?看一看自己画的三角形,指一下每个顶点的对边。” “想一想三角形的高指的是什么,怎样画一个三角形的高。”教师巡视,检查学生的画法是否正确。 2、三角形的分类。 “同学们刚才画了几种不同的三角形,它们有什么不同?是按照什么标准分类的?”(两种标准:按角分类,按边分类。) “按照三角形中角的不同可以把三角形分成几类?它们分别叫做什么三角形?” (可以把三角形分成三类:锐角三角形、直角三角形和钝角三角形。) “每类三角形的三个角各是什么角?” “我们学过什么特殊的三角形?”(等边三角形和等腰三角形。) 3.出示三角形的集合图 提问:你是怎样理解上面这个图形的? 什么样的三角形是等腰三角形?什么样的三角形是等边三角形? 判断下面说法是否正确: (1)等边三角形一定是等腰三角形。() (2)等腰三角形一定是等边三角形?两边之和大于第三边。 你能用学过的其他知识来解释上面的结论吗? 4.完成“练习与实践”第8.9题 第8题让学生先独立选一选,再要求说说选择时是怎样想的。

物理第十八章《电功率》知识框架

第十八章《电功率》复习题 一、电能(电功) 1.电功(W ):电流所做的功叫电功, 2 .电功的单位:国际单位: ,符号是( ) 常用单位有: ,也叫做 ,符号是( ), 1度= 千瓦时= 焦耳。 3.测量电功的工具: (测量一段时间内消耗的电能) 4.电能的参数:如图 ①电能表盘上“3000R/kwh ”的字样表示: ②表盘上最后一个方格为小数 ③电能表前后两次读数之差就是这段时间内用电量 ④消耗的电能W=n/N(n 为实际转的转数,N 为电能表上标有的字样) 二、电功率 1. 电功率(P ):表示电流做功的 (消耗电能的快慢)。 国际单位有: 常用单位有: 2. 计算电功率公式:P= = = = 3.利用计算时单位要统一: ①如果W 用焦、t 用秒,则P 的单位是瓦; ② 如果W 用千瓦时、t 用小时,则P 的单位是千 瓦。 4.电功和电功率的区别与联系 知识梳理

三、额定功率和实际功率 1. 额定电压(0U ):用电器 的电压。 额定功率(0P ):用电器在 下的功率。 实际电压(U ):实际加在用电器两端的电压。 实际功率(P ):用电器在实际电压下的功率。 用电器正常工作的电压有 个,对应的额定功率有 个;而实际可加在 它两端的电压有 个,对应的实际功率有 个。 2.用电器实际功率与它两端的实际电压的关系: 当U > 0U 时,则P > 0P ;灯很亮,易烧坏。 当U < 0U 时,则P <0P ;灯很暗, 当U = 0U 时,则P = 0P ;正常发光。 (同一个电阻或灯炮,接在不同的电压下使用,则有;如:当实际电压是额 定电压的一半时,则实际功率就是额定功率的1/4。例“220V100W”是表示额定电 压是220伏,额定功率是100瓦的灯泡如果接在110伏的电路中,则实际功率是 25瓦。) 3.灯泡的亮度由 决定 四、测量灯泡的电功率 ①伏安法原理: ②电路图: 、 、 与实验的 电路图一样 ③在实验中,连接实物电路时,应注意:开关必须是 的;闭合开关前, 滑动变阻器的滑片滑到 位置,这种做的目的是 ④测量家用电器的电功率: a 原理: b 器材: 、 五、电热 1.焦耳定律:电流通过导体产生的热量跟 成正比,跟导体的 成正比,跟通电 成正比 2.焦耳定律公式:Q=

高等数学各章知识结构

高等数学各章知识结构一.总结构 的部分称为积分学.微分学与积分学统称为微积分学. 微积分学是高等数学最基本、最重要的组成部分,是现代数学许多分支的基础,是人类认识客观世界、探索宇宙奥秘乃至人类自身的典型数学模型之一. 恩格斯(1820-1895)曾指出:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发明那样被看作人类精神的最高胜利了”. 微积分的发展历史曲折跌宕,撼人心灵,是培养人们正确世界观、科学方法论和对人们进行文化熏陶的极好素材(本部分内容详见光盘). 微积分是近代数学中最伟大的成就,对它的重要性无论做怎样的估计都不会过分. 冯. 诺伊曼注:冯. 诺依曼(John von Neumann,1903-1957,匈牙利人),20世纪最杰出的数学家之一,在纯粹数学、应用数学、计算数学等许多分支,从集合论、数学基础到量子理论与算子理论等作多方面,他都作出了重要贡献. 他与经济学家合着的《博弈论与经济行为》奠定了对策论的基础,他发明的“流程图”沟通了数学语言与计算机语言,制造了第一台计算机,被人称为“计算机之父”. 微积分中重要的思想和方法: 1.“极限”方法,它是贯穿整个《微积分》始终。导数是一种特殊的函数极限;定积分是一种特殊和式的极限;级数归结为数列的极限;广义积分定义为常义积分的极限;各种重积分、曲线积分、曲面积分都分别是某种和式的极限。所以,极限理论是整个《微积分》的基础。尽管上述各种概念都是某种形式的极限,但是它们都有各自独特和十分丰富深刻的内容,这是《微积分》最有魅力的地方之一。 2.“逼近”思想,它在《微积分》处处体现。在近似计算中,用容易求的割线代替切线,用若干个小矩形面积之和代替所求曲边梯形面积;用折线段的长代替所求曲线的长;用多项式代替连续函数等。这种逼近思想在理论和实际中大量运用。 3.“求极限、求导数和求积分”是最基本的方法。熟练掌握求极限、求导数和求积分的方法,学习《微积分》就不会遇到太多困难,甚至能做到得心应手。 4.“特色定理”是《微积分》的支柱。夹逼定理、中值定理、微积分基本定理等是《微积分》中最深刻、最基本、最能体现《微积分》特色的定理,支撑起《微积分》的大厦。

相关文档
最新文档