汽轮机安装步骤

汽轮机安装步骤
汽轮机安装步骤

1:1施工准备

1:1:1技术资料准备

1:1:1:1设备供货清单和设备装箱清单;

1:1:1:2设备使用说明书和技术文件;

1:1:1:3设备产品合格证和随机图纸资料;

1:1:1:4有关规范和标准。

1:1:2工器具及消耗材料准备

1:1:2:1运输工具

工具现场施工实际情况可选用汽车、汽车吊、平板车、手拉葫芦、人力推车、卷扬机、滚杠、索具、麻绳、钢丝绳等。

1:1:2:2安装工具

钻床、电钻、砂轮机、切割机、电焊机、气割工具、刮刀、锉刀、铰刀、百分表架、电动试压泵、滤油机、空气压缩机、重型套筒扳手、内六角扳手、线锤、耳机、钢丝等。

1:1:2:3器具

经检验合格的水准仪、合像水平仪、0.02/1000mm框式水平仪、内径千分尺、外径千分尺、游标卡尺、塞尺、3500mm平尺(1级精度)、600*600平板(1级精度)、杠杆百分表、压力表等。

1:1:2:4主要施工材料

汽缸专用密封脂、黑铅粉、红丹粉、透平油、煤油、汽油、酒精等其它易耗材料。

1:1:3施工条件

1:1:3:1厂房内外符合“三通一平”条件

1:1:3:2行车轨道铺好,主辅设备基础浇筑完成,模板拆除,混凝土达到设计强度的70%以上,并经验收合格。

1:1:3:3外墙砌筑完成,门窗齐全,房顶不漏雨水,挡风玻璃措施齐全。

1:1:3:4各基础具有清晰准确的中心线,厂房零米层和运行层有准确标高线。

1:1:3:5楼梯具备使用条件,各孔、洞的部位有可靠的临时盖板和栏杆。

1:1:3:6机房内配有足够的消防器材,消防设施经验收合格。

1:1:3:7应有专门堆放精密零部件的货架。

1:2基础验收

1:2:1基础混凝土表面应平整,无裂纹、孔洞、蜂窝、麻面和露筋等缺陷。

1:2:2基础表面应标出清晰纵、横中心线和标高线。

1:2:3螺栓孔中心线对基础中心线偏差应不大于0.1D(D为预埋钢管内径)且小于10mm,螺栓孔壁的垂直度偏差不大于L/200(L为预埋钢管或地脚螺栓长度)且小于10mm,

1:2:4基础与主厂房及运转平台隔振缝隙中的模板和杂物应清理干净。

1:2:5基础承力面应按设备中心标高低60-80mm,以供设置垫铁和二次灌浆用。

1:2:6地脚螺栓预留孔下表面应平整,不得漏浆。

1:2:7发电机进出风道内壁应光滑,不得有脱壳、裂纹、掉灰等缺陷,必要时应刷油漆保护。

1:2:8发电机出线小室和风室铁门应安装齐全,并能上锁。

1:2:9基础周围应设置沉降观测点,并按规定观测,记录。

1:3设备开箱验收

1:3:1按开箱清单开列的数量、品种、规格进行清点检查,若有数量、品种、规格和质量

方面问题应做好记录,经各方代表确认签字,及时解决。

1:3:2经开箱清点过的零部件,由施工单位负责保管,备品、备件交建设单位负责保管。1:3:3设备开箱后不能立即安装,应复箱封闭好,对长时间露天放置的箱件应加防雨罩。1:3:4设备中合金钢材料的零部件和紧固件等,应在施工前逐渐进行光谱分析和硬度检查,以鉴定其材质,确认与制造厂图纸和有关标准相符。

1:3:5对开箱清点过的零部件应妥善保管,防止丢失和锈蚀。

1:4垫铁基础位置的研磨(查阅随机图纸)

1:4:1研磨条件:

1:4:1:1具备安全施工条件;

1:4:1:2基础强度达到设计强度;

1:4:1:3校准基础划线和地脚螺栓位置正确后;

1:4:1:4地脚螺栓模板高出基础部分应割去。

1:4:2研磨工具:

电源,角磨机,合金角磨片,防尘面罩,口罩,模板(光洁度3.2um),框式水平仪,红丹粉,毛刷,绸布,小斧子。

1:4:3步骤;

1:4:3:1确定基础垫铁位置;

1:4:3:2用小斧子除去基础灰浆;

1:4:3:3用模板找平,配合红丹粉找不平面;

1:4:3:4用角磨机磨去高点,用模板研磨,找平;

1:4:3:5重复3,4工作;

1:4:3:6用平板着色检查,基础接触面积应大于70%,四角无翘动,用水平仪检查任何方向上应呈水平状态。

1:5基础垫铁厚度的计算(查阅随机图纸)

1:5:1工具:

水准仪,测量尺,测量柱标高线(10m,如下图),纸和笔

1:5:2步骤:

1:5:2:1把水准仪架好;

1:5:2:2用测量尺零位对准10m标高线;

1:5:2:3看水准仪后视读数386mm,即(10m+386mm=10386mm);

1:5:2:4把测量尺放在基础垫铁位置,看水准仪读数1602mm(其中一块);

1%:2:5计算10386-1602=8784mm为基础实测标高,而图纸要求标高8800mm,实测比图纸要求低8784-8800=-16mm;

1:5:2:6结合总布置图计算设备标高,中心线标高为9750mm,中心线到设备和斜垫铁高度(按35mm算)计750+150+35=935mm。设备实际标高为9750-935=8815比图纸要求高15mm(8815-8800=15mm)。

1:5:2:7实际基础平垫铁厚度为15+16=31mm,或设备标高8815mm减去基础实测标高8784mm即(8815-8784=31mm)为需要基础平垫铁厚度。依次计算每一块平垫铁厚度,

注意:汽轮机前轴承座平垫铁厚度应考虑前轴承座转子扬度0.5-1.0mm,实际前轴承座平垫铁厚度应为31.5-32mm。后轴承座和汽缸平垫铁厚度应为实测数据。

1:5:3发电机基础垫铁计算方法:

1:5:3:1以10m为水准仪标尺零位,水准仪后视读数为386mm;

1:5:3:2水准仪放在基础上,水准仪读数为1575mm(其中一块标高);

1:5:3:3计算基础实际标高为(10386-1575=8811mm),图纸要求8830mm,低于图纸要求(8811-8830=-19mm);

1:5:3:4结合总布置图计算9750-850(100为台板厚度)-40(斜垫铁厚度)=8860mm,为设备台板加斜垫铁标高,图纸要求8830mm,设备台板加斜垫铁标高高于图纸要求(8860-8830=30mm);

1:5:3:5计算平垫铁厚度8860-8811=49mm。依次计算每一块平垫铁厚度。

注意:发电机定子和发电机后轴承座平垫铁厚度应考虑定子垫片和后轴承座绝缘垫片厚度(2-3mm)即平垫铁厚度为(47-46mm)。

1:6垫铁,地脚螺栓和底板安装

1:6:1垫铁布置原则

1:6:1:1应布置在负荷集中的地方或台板地脚螺栓的两侧;

1:6:1:2台板四角处一定要布置垫铁;

1:6:1:3台板加强筋部位应适当增设垫铁;

1:6:1:4相邻两垫铁之间一般为300—500mm;

1:6:1:5垫铁正式安装完成后,应按实际情况做好垫铁的隐蔽记录。

1:6:2垫铁安装要求

1:6:2:1平垫铁用A3钢板割制,承力面加工粗糙度6.3级;

1:6:2:2每一垫铁组的层数一般不宜超3块,其中只允许一对斜垫铁;

1:6:2:3底座与垫铁或垫铁之间应接触密实,0.05mm塞尺不得塞入,局部塞入部分在同一端面处以两侧塞入的长度总和不得超出垫铁长度和宽度的1/4

1:6:2:4配对斜垫铁的搭接长度应不小于全长的3/4,其相互间的偏斜角a应不大于3°;1:6:2:5与二次灌浆结合的水平面和垂直面应凿出麻坑,使其与二次灌浆结合好;

1:6:2:6汽缸正式闭合前,应将各垫铁组侧面进行定位焊。

1:6:3地脚螺栓安装要求

1:6:3:1地脚螺栓上的油污应清洗干净;

1:6:3:2螺母与垫圈、垫圈与设备支座接触面应良好,地脚螺栓拧紧后,螺母应露出3-5扣;

1:6:3:3地脚螺栓孔预埋套管高出基础部分应割去,以便垫铁尽量靠近地脚螺栓;

1:6:3:4地脚螺栓安装时,螺栓与孔壁的最小间隙不得小于5mm,螺栓应处于垂直状态,无歪斜,螺栓下面的地板应安放平整,且与基础接触密实,螺母应点焊或锁紧;

1:6:3:5地脚螺栓应在汽缸调好水平、标高、转子调好中心后作正式紧固,同时用0.05mm 塞尺检查台板与轴承座、台板与汽缸间的滑动面、台板与垫铁以及各层垫铁之间的接触面均应接触密实。紧固时不得使汽缸的负荷分配和中心位置发生变化。

1:6:4底板安装要求

1:6:4:1底板与地脚螺栓的螺母接触面应达到粗糙度12.5级;

1:6:4:2底板与基础贴合面可用角向磨光机将其修理平整,使其贴合良好,灌浆时不得漏浆;

1:6:4:3底板被地脚螺栓紧固后,应用10磅榔头振打底板四角,以消除地脚螺栓的应力,并使底板与基础粘贴更密实。

汽轮机毕业设计

汽轮机毕业设计 篇一:汽轮机毕业设计(论文) 摘要 汽轮机是发电厂三大主要设备,汽轮机的启动是指汽轮机转 子从静止状态升速至额定转速,并将负荷加到额定负荷的过程。在启动过程中,汽轮机各部件的金属温度将发生十分剧烈的变化,从冷态或温度较低的状态加热到对应负荷下运行的高温工作状态。因而汽轮机启动中零部件的热应力和热疲劳、转子和汽缸的胀差、机组振动都变化很大,将严重威胁汽轮机的安全,并使整个电厂发电负荷降低,经济损失严重。分析汽轮机启动中的特点,并及时采取相应对策和正确的运行方式对保证设备健康水平和安全、经济运行有深刻的意义。 本文以哈汽600MW汽轮机的启动过程为研究对象,分析与探 讨了启动过程中蒸汽温升率的计算方法,并在此基础上研究了蒸汽初温与转子金属温度的匹配问题,使得汽轮机启动过程优化。同时对启动过程中的换热系数进行了计算与比较。 关键词:启动;寿命分配;安全性; 目录

摘要 ................................................ ................................................... ........ I 1绪论 ................................................ ................................................... . (1) 1.1 课题背景和意义 ................................................ (1) 1.2 高压加热器的作用介绍及分类 ...................... 错误!未定义书签。 1.3本课程研究的主要内容和任务 ....................... 错误!未定义书签。 2 高压加热器停运的热经济性分析 ................................................ .. (3) 2.1概述 ................................................ ................................................... . (3)

毕业设计--某电厂660MW机组的初步设计-精品

毕业设计说明书(论文) 系部:能源与动力工程学院 专业:热能与动力工程 题目:芜湖某电厂660MW机组的初步设计 (神华烟煤) 2011年05月南京

目 录 前 言 ........................................................... 1 第一章 绪 论 . (2) 1.1中国电力工业的背景 ............................................ 2 1.2中国电力行业的现状 ............................................ 2 1.3中国电力行业的发展趋势 ........................................ 2 1.4研究内容 ...................................................... 3 第二章 汽轮机原则性热力系统计算 (4) 2.1汽轮机类型和参数 .............................................. 4 2.2原则性热力系统计算 .. (6) 2.2.1全厂物质平衡 ........................................... 6 2.3计算汽轮机各段抽汽量D J 和凝汽流量D C ............................ 6 2.3.1由高压加热器H1热平衡计算D 1 ........................... 6 2.3.2由高压加热器H2热平衡计算D 2 ........................... 7 2.3.3由高压加热器H3热平衡计算D 3 ........................... 7 2.3.4由除氧器H4热平衡计算D4 .............................. 8 2.3.由低压加热器H5热平衡计算D 5 ............................ 8 2.3.6由低压加热器H6热平衡计算D 6 ........................... 9 2.3.7由低压加热器H7热平衡计算D 7 ........................... 9 2.3.8由低压加热器H8热平衡计算D 8等 ....................... 10 2.3.9凝汽器热井 ............................................ 10 2.4汽轮机汽耗及功率计算 ......................................... 11 2.4.1计算汽轮机内功率 .. (11) 2.4.2由功率方程式求0D ..................................... 11 2.4.3各级抽汽量及功率校核 ................................. 11 2.5热经济指标计算 .. (13) 2.5.1机组热耗0Q 、热耗率q 、绝对电效率e (13) 第三 章锅炉初步设计 (14) 3.1锅炉介绍 ..................................................... 14 3.1.1锅炉主要设计参数 ...................................... 14 3.1.2设计煤种 ............................................... 14 3.2锅炉整体介绍 ................................................. 15 3.3锅炉制粉系统设计及相关计算 .. (16)

汽轮机参数(TRL、THA、T-MCR、VWO等)

1.额定功率(铭牌功率TRL)是指在额定的主蒸汽及再热蒸汽参数、背压11.8KPa 绝对压力,补给水率3%以及回热系统正常投入条件下,考虑扣除非同轴励磁、润滑及密封油泵等所耗功率后,制造厂能保证在寿命期内任何时间都能安全连续地在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。此时调节阀应仍有一定裕度,以保证满足一定调频等需要。在所述额定功率定义条件下的进汽量称为额定进汽量。 2.最大连续功率(T-MCR)是指在1.额定功率条件下,但背压为考虑年平均水温等因素确定的背压,(设计背压)补给水率为0%的情况下,制作厂能保证在寿命期内安全连续在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。该功率也可作为保证热耗率和汽耗率的功率。保证热耗率考核工况:系指在上述条件下,将出力为额定功率时的热耗率和汽耗率作为保证,此工况称为保证热耗率的考核工况。 3.阀门全开功率(VWO)是指汽轮机在调节阀全开时的进汽量以及所述T-MCR 定义条件下发电机端输出的功率。一般在VWO下的进汽量至少应为额定进汽量的1.05倍。此流量应为保证值。上述所指是由主汽轮机机械驱动或由主汽轮机供汽给小汽轮机驱动的给水泵,所需功率不应计算在额定功率中,但进汽量是按汽动给水泵为基础的,如果采用电动给水泵时,所需功率应自额定功率中减除(但在考核热耗率和汽耗率时是否应计入所述给水泵耗工,可由买卖双方确定)。 二.锅炉 1.锅炉额定蒸发量,即是汽轮机在TRL工况下的进汽量。对应于:汽轮机额定功率TRL,指在额定进汽参数下,背压11.8KPa,3%的补给水量时,发电机端带额定电功率MVA。

2.锅炉额定蒸发量,也对应汽轮机TMCR工况。对应于:汽轮机最大连续出力TMCR,指在额定进汽参数下,背压4.9KPa,0%补给水量,汽轮机进汽量与TRL 的进汽量相同时在发电机端所带的电功率MVA。 3.锅炉最大连续出力(BMCR),即是汽轮机在VWO工况下的汽轮机最大进汽量。对应于:汽轮机阀门全开VWO工况,指在额定进汽参数下,背压 4.9KPa,0%补给水量时汽轮机的最大进汽量。 注: a.汽机进汽量和锅炉蒸发量是按机组采用汽动给水泵考虑的。 b.在TMCR工况下考核汽机热耗和锅炉效率的保证值。在VWO工况下考核汽机最大进汽量和锅炉最大连续出力保证值。 c.一般说,汽机TMCR时的出力比之TRL时的出力大5%左右。汽机VWO时的进汽量比之TMCR时的进汽量多3~5%,出力则多4~4.5%。 d.如若厂用汽需用量较大时,锅炉BMCR的蒸发量考虑比汽机VWO时的进汽量再增多3%左右。 e.不考虑超压条件。 f.TMCR工况下汽机背压4.9KPa为我国北方地区按冷却水温为20℃的取值。在我国南方地区可根据实际冷却水温取值,调整为5.39KPa或更高些。 600MW机组 1机组热耗保证工况(THA工况)机组功率(已扣除励磁系统所消耗的功率)为600MW时,额定进汽参数、额定背压、回热系统投运、补水率为0%.2铭牌工况(TRL工况)机组额定进汽参数、背压11.8KPa、补水率3%,回热系统投运下安全连续运行,发电机输出功率(已扣除励磁系统所消耗的

汽轮机各设备作用及内部结构图

汽轮机各设备的作用收藏 01.凝汽设备主要有凝汽器、循环水泵、抽汽器、凝结水泵等组成。 任务:⑴在汽轮机排汽口建立并保持高度真空。 ⑵把汽轮机排汽凝结成水,再由凝结泵送至回热加热器,成为供给锅炉的给水。此 外,还有一定的真空除氧作用。 02.凝汽器冷却水的作用:将排汽冷凝成水,吸收排汽凝结所释放的热量。 03.加热器疏水装置的作用:可靠的将加热器内的疏水排出,同时防止蒸汽随之漏出。 04.轴封加热器的作用:回收轴封漏汽,用以加热凝结水从而减少轴封漏汽及热量损失,并改善车间的环境条件。 05.低压加热器凝结水旁路的作用:当加热器发生故障或某一台加热器停用时,不致中断主凝结水。 06.加热器安装排空气门的作用:为了不使空气在铜管的表面形成空气膜,使热阻增大,严重地影响加热器的传热效果,从而降低换热效率,故安装排空气门。 07.高压加热器设置水侧保护装置的作用:当高压加热器发生故障或管子破裂时,能迅速切断加热器管束的给水,同时又能保证向锅炉供水。 08.除氧器的作用:用来除去锅炉给水中的氧气及其他气体,保证给水的品质。同时, 又能加热给水提高给水温度。 09.除氧器设置水封筒的目的:保证除氧器不发生满水倒流入其他设备的事故。防止除氧器超压。 10. 除氧器水箱的作用:储存给水,平衡给水泵向锅炉的供水量与凝结水泵送进除氧器水量的差额,从而满足锅炉给水量的需要。 11. 除氧器再沸腾管的作用:有利于机组启动前对水箱中给水加温及备用水箱维持水温。正常运行中对提咼除氧效果有益处。

12. 液压止回阀的作用:用于防止管道中的液体倒流。 13. 安全阀的作用:一种保证设备安全的阀门。 14. 管道支吊架的作用:固定管子,并承受管道本身及管道内流体的重量和保温材料重量。 15. 给水泵的作用:向锅炉连续供给具有足够压力,流量和相当温度的给水。 16. 循环水泵的作用:主要是用来向汽轮机的凝汽器提供冷却水,冷凝进入凝汽器内的汽轮机排汽,此外,还向冷油器、发电机冷却器等提供冷却水。 17. 凝结水泵空气管的作用:将泵内聚集的空气排出。 18. 减温减压器的作用:作为补偿热化供热调峰之用(本厂)。 19. 减温减压装置的作用:⑴对外供热系统中,用以补充汽轮机抽汽的不足,还可做备用汽源。⑵当机组启停机或发生故障时,可起调节和保护的作用。⑶可做厂用低压用汽的汽源。 ⑷用于回收锅炉点火的排汽。 20. 汽轮机的作用:一种以具有一定温度和压力的水蒸气为介质,将热能转变为机械能的回转式原动机。 21. 汽缸的作用:将汽轮机的通流部分与大气隔开,以形成蒸汽热能转换为机械能的封闭汽室。 22. 汽封的作用:减少汽缸内的蒸汽向外漏泄和防止外界空气漏入汽缸。 23. 排汽缸的作用:将汽轮机末级动叶排出的蒸汽倒入凝汽器。 24. 排汽缸喷水装置的作用:为了防止排汽温度过高而引起汽缸变形,破坏汽轮机动静部分中心线的一致性,引起机组振动或其他事故。 25. 低压缸上部排汽门的作用:在事故情况下,如果低压缸内压力超过大气压力,自动打开向空排汽,以防止低压缸、凝汽器、低压段转子等因超压而损坏。 26. 叶轮的作用:用来装置叶片,并将汽流力在叶栅上产生的扭矩传递给主轴。 27. 叶轮上平衡孔的作用:为了减小叶轮两侧蒸汽压差,减小转子产生过大的轴向力 28. 叶根的作用:紧固动叶,使其在经受汽流的推力和旋转离心力作用下,不至于从轮缘沟

汽轮机本体检修

汽轮机本体检修交流材料 一、汽轮机本体大修目的 1.1对汽轮机本体设备进行全面的解体、测量、检修和调整,最大程度的恢复设备的经济性和安全性能;掌握设备状态变化的规律,对变化的原因进行分析和记录,以采取必要的措施; 1.2对本体设备的零部件按照规定进行检验和修理,对存在安全隐患、失效和达到使用周期的零部件进行必要的更换,保证设备运行可靠性; 1.3对修前存在的主要设备问题进行技术分析和诊断,并进行处理; 1.4根据节能要求对设备和系统进行必要的技术改造,改善设备运行性能; 状态分析和专家分析系统的局限性,做好资料的积累以掌握设备状态变化; 二、修前的技术分析要求 2.1运行工况分析 根据技术在启停过程和运行中存在的异常现象,如机组振动异常、胀差超限、符合失稳、调门卡涩、汽封漏气、轴承温度不正常等,及运行的监控参数是否符合制造厂家的规定,进行全面的梳理和分析,充分发现设备存在的问题; 2.2修前性能试验和设备分析

对机组修前的经济性进行效率试验,并通过调节系统的各种试验分析系统的可靠性和完好性;对各经济指标进行分析对比,是否达到制造厂家的设计值,对存在的偏差进行针对性检查和处理; 2.3设备可靠性分析 通过对可靠性指标的统计和分析,确定影响机组强迫停运的主要因素,确定大修的检查重点和方向。 三、汽轮机大修项目包含的主要内容 现在各发电厂都有大修导则,附有大修参考项目表,包括标准项目和更改项目,是确定大修项目的主要依据。修前技术分析发现的问题,应作为大修重点项目。此外,还有根据节能要求进行收资调研后确定的改造项目,一般应包含以下内容: 3.1通过解体测量和数据对比,掌握设备状态变化的项目; 3.2对承受高温、高压、高应力部件,根据技术监督规定必须进行的检测和试验项目; 3.3提高汽轮机经济性的项目; 3.4保证安全可靠的项目; 四、汽轮机本体大修的重点 4.1汽缸变形检查(主要和抽气口和弯头部位),结合面水平的测量,中分面间隙检查,同心度检查; 4.2转子弯曲和瓢偏测量,椭圆度检查和推力间隙检查;

汽轮机课设心得总结

汽轮机课设心得总结 经过两个星期的汽轮机课设,对我们而言收获颇丰。整个过程我们都认真完成,其中不免遇到很多问题,经过大家的齐心协力共同克服了它们,不仅从中熟悉了汽轮机的工作原理及流程,而且还获得了许多心得体会。 汽轮机是将蒸汽的热能转换为机械能的回转式原动机,是火电和核电的主要设备之一,用于拖动发电机发电。在大型火电机组中还用于拖动锅炉给水泵。 就凝汽式汽轮机而言,从锅炉产生的新蒸汽经由主阀门进入高压缸,再进入中压缸,再进入低压缸,最终进入凝汽器。蒸汽的热能在汽轮机内消耗,变为蒸汽的动能,然后推动装有叶片的汽轮机转子,最终转化为机械能。 除了凝汽式汽轮机,还有背压式汽轮机和抽汽式汽轮机,背压式汽轮机可以理解为没有低压缸和凝汽器的凝汽式汽轮机,它的出口压力较大,可以提供给供热系统或其它热交换系统。抽汽式汽轮机则是指在蒸汽流通过程中抽取一部分用于供热和或再热的汽轮机。 在设计刚进行时,我们也参考了从研究生那里借来的《设计宝典Xp》,但在使用过程中发现此软件只适用于单列级的计算而不适用于双列级,虽然如此,但我们在计算时也参考了其中的部分步骤。我们这次在设计之前又重新温习了《汽轮机原理》中所学的知识,因为汽轮机的热工转换是在各个级内进行的,所以研究级的工作原理是掌握整个汽轮机工作原理的基础,而级的定义是有一列喷嘴叶栅和紧邻其

后的一列动叶栅构成的工作单元。在第一章第七节介绍了级的热力计算示例,书上是以国产N200-12.75/535/535型汽轮机某高压级为例,说明等截面直叶片级的热力计算程序,主要参考了喷嘴部分计算、动叶部分计算、级内损失计算和级效率与内功率的计算。为了保证汽轮机的高效率和增大汽轮机的单机功率就必须把汽轮机设计成多级汽轮机,使很大的蒸汽比焓降由多级汽轮机的各级分别利用,即逐级有效利用,驶各级均可在最加速比附近工作。这一章也讲解了进气阻力损失和排气阻力损失、轴封及其系统,我们也参考了其中的内容。 通过本课程设计,加深、巩固《汽轮机原理》中所学的理论知识,了解汽轮机热力设计的一般步骤,掌握每级焓降以及有关参数的选取,熟练各项损失和速度三角形的计算,通过课程设计以期达到对汽轮机的结构进一步了解,明确主要零部件的作用与位置。具体要求就是按照某机组存在的问题,根据实际情况,制定改造方案,通过理论与设计计算,解决该汽轮机本体存在的问题,达到汽轮机安全、经济运行的目的。 数据的处理 这次汽轮机课设我们负责的是数据的处理,这是一个非常庞大而繁重的工作。接下来就着重说说我们在处理数据时候遇到的一些问题。 刚开始的时候,我们和其他组一起根据课本上的计算公式和焓熵表等编了我们汽轮机课设计算所需要的excel表格,这其中将近耗了接近一周的时间,最后完成时大家觉得很有成就感。接下来我们看汽

参数的选择与汽轮机内效率分析

参数的选择对汽轮机内效率浅析 原创:孙维兵连云港碱厂22042 摘要:简要叙述电力和工业用汽轮机的内效率,以及蒸汽初、终参数选择对对全厂能耗的影响。 关键词:汽轮机内效率蒸汽参数能耗 一、汽轮机内效率 1、背压汽轮机数据模拟本表来源某碱厂6000kw背压机组,带下划线的为表计显示值。其他为计算或模拟值。

本机组型号B6-35 /5,设计蒸汽压力℃,排汽压力。设计内效率%。 由于蒸汽和喷管叶片的磨擦生热,被蒸汽吸收后汽温提高,在下一级得到利用,机组级数越多,利用次数越多,总内效率有所提高。热机内效率η=100%×实际焓降÷理想焓降,汽轮机的内效率表示的是设计的汽轮机组的完善程度,相当于存在的所有不可逆损失的大小,即实际利用的焓降与理论上能达到的焓降的比值。 严济慈说:“所费多于所当费,或所得少于所应得,都是一种浪费”。提高热机的热效率的方法有二种,一是提高高温热源的温度,二是降低低温热源即环境的温度;低温热源变化较小,因此提高蒸汽初温和初压就成为提高机组的热效率的途径。相对地,提高热机的内效率则基本上只有一种方法,即设计更完善的机组使汽机内部各种不可逆损失减少到最少。 从热力学第二定律上看,冷源损失是必不可少的,如果用背压抽汽供热机组,它是将冷源损失算到热用户上,导致所有背压热效率接近100%,但内效率差距仍然很大。 2、纯碱行业真空透平机、压缩透平机和背压汽轮机相对内效率比较

各个背压供热机组热效率都接近100%,但汽耗率分别为、、、kg/kwh,即消耗同样多的蒸汽量发出的电能有大有小。小容量汽轮机的汽封间隙相对较大,漏汽损失较大,同时由于成本投资所限,汽轮机级数少,设计的叶型也属早期产品,所以容量小的机组内效率很低。目前电力系统主力机组亚临界压力汽轮机组都较大,总内效率高达90-92%,热力学级数达到27级;相比于发电用汽轮机,工业汽轮机级数少,内效率偏低,明显是不经济的。 3、喷咀和喷管。冲动式汽轮机的蒸汽在静止的喷咀中膨胀加速,冲击汽轮机叶片。对喷咀来说,存在临界压力和临界压力比。如渐缩喷管,流量达到最大值时,出口压力p2与进口压力p1之比βc约为,当背压p2下降低于βc ×p1时,实际流量和汽体的速度不再增加,相当于压力降白白损失了。反动式汽轮机内效率较高,但单级压降较冲动式更小。纯碱厂常用的压缩工业汽轮机有11级,但压力降能力较小,实际运行时内效率不高。真空岗位的工业汽轮机,只有一级双列速度级,单级压力降能力是有限的,如果选择的排汽参数太小,那

汽轮机课设心得总结

汽轮机课设心得总结文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

汽轮机课设心得总结经过两个星期的汽轮机课设,对我们而言收获颇丰。整个过程我们都认真完成,其中不免遇到很多问题,经过大家的齐心协力共同克服了它们,不仅从中熟悉了汽轮机的工作原理及流程,而且还获得了许多心得体会。 汽轮机是将蒸汽的热能转换为机械能的回转式原动机,是火电和核电的主要设备之一,用于拖动发电机发电。在大型火电机组中还用于拖动锅炉给水泵。 就凝汽式汽轮机而言,从锅炉产生的新蒸汽经由主阀门进入高压缸,再进入中压缸,再进入低压缸,最终进入凝汽器。蒸汽的热能在汽轮机内消耗,变为蒸汽的动能,然后推动装有叶片的汽轮机转子,最终转化为机械能。 除了凝汽式汽轮机,还有背压式汽轮机和抽汽式汽轮机,背压式汽轮机可以理解为没有低压缸和凝汽器的凝汽式汽轮机,它的出口压力较大,可以提供给供热系统或其它热交换系统。抽汽式汽轮机则是指在蒸汽流通过程中抽取一部分用于供热和或再热的汽轮机。 在设计刚进行时,我们也参考了从研究生那里借来的《设计宝典Xp》,但在使用过程中发现此软件只适用于单列级的计算而不适用于双列级,虽然如此,但我们在计算时也参考了其中的部分步骤。我们这次在设计之前又重新温习了《汽轮机原理》中所学的知识,因为汽轮机的热工转换是在各个级内进行的,所以研究级的工作原理是掌握整个汽轮

机工作原理的基础,而级的定义是有一列喷嘴叶栅和紧邻其后的一列动叶栅构成的工作单元。在第一章第七节介绍了级的热力计算示例,书上是以国产N200-12.75/535/535型汽轮机某高压级为例,说明等截面直叶片级的热力计算程序,主要参考了喷嘴部分计算、动叶部分计算、级内损失计算和级效率与内功率的计算。为了保证汽轮机的高效率和增大汽轮机的单机功率就必须把汽轮机设计成多级汽轮机,使很大的蒸汽比焓降由多级汽轮机的各级分别利用,即逐级有效利用,驶各级均可在最加速比附近工作。这一章也讲解了进气阻力损失和排气阻力损失、轴封及其系统,我们也参考了其中的内容。 通过本课程设计,加深、巩固《汽轮机原理》中所学的理论知识,了解汽轮机热力设计的一般步骤,掌握每级焓降以及有关参数的选取,熟练各项损失和速度三角形的计算,通过课程设计以期达到对汽轮机的结构进一步了解,明确主要零部件的作用与位置。具体要求就是按照某机组存在的问题,根据实际情况,制定改造方案,通过理论与设计计算,解决该汽轮机本体存在的问题,达到汽轮机安全、经济运行的目的。 数据的处理 这次汽轮机课设我们负责的是数据的处理,这是一个非常庞大而繁重的工作。接下来就着重说说我们在处理数据时候遇到的一些问题。 刚开始的时候,我们和其他组一起根据课本上的计算公式和焓熵表等编了我们汽轮机课设计算所需要的excel表格,这其中将近耗了接近一周的时间,最后完成时大家觉得很有成就感。接下来我们看汽轮机课

汽轮机开题报告

南华大学本科生毕业设计(论文)开题报告 设计(论文)题目 12MW机组抽汽汽轮机总体设计 设计(论文)题目来源 自选课题 设计(论文)题目类型 工程设计类 起止时间 20150112~20150530 设计(论文)依据及研究意义: 本设计研究的依据: 1883年瑞典工程师拉法尔创造出第一台轴流式汽轮机,它是一台3.7kw的单级冲动式汽轮机,转速高达26000r/min,相应的轮轴速度为475m/s。1884到1894年,英国工程师巴森斯相机创造出了现在复速级单级汽轮机。为了满足其他工业部门对蒸汽的需要,在1903到1907年间,出现了热能、电能联合生产的汽轮机,即背压式及调节抽汽式汽轮机。1920年左右,出现了给水回热式汽轮机。到1925年,出现了第一台中间再热式汽轮机。上个世纪40年代以后,汽轮机发展特别迅速。自70年代以来,工业发达国家汽轮机的制造水平普遍进入百万级。最大单机功率达到1300MW。1980年苏联制造的1200WM单轴汽轮机投入运行。 我国自1955年制造第一台中压6MW汽轮机以来,在之后的30几年时间里,已经走完了从中压机组到亚临界600WM机组的全部过程。目前我国超高压、亚临界参数125MW以上到60MW功率等级范围内汽轮机产品的制造质量、运行性能、可靠信等综合指标已达到国际同类机组的水平。我国已具有了与国际跨国公司相当的亚临界、常规超临界参数大功率汽轮机的设计制造能力。 对于小功率汽轮机具有如下特点: 1)初参数低。小功率汽轮机一般为中低压机组,初参数在3.4MPa/435℃以下。但是也有个别次高压(4.9~5.9MPa/435~450℃)或高压(8.9MPa/500℃)机组。 2)热力系统简单。小功率汽轮机一般为1~3级回热系统,无中间过热循环,热力系统简单。 3)结构简单。小功率汽轮机通常是单缸、单轴、定转速(3000rpm或1500rpm)汽轮机,个别机组为双缸及高转速(附加变速装置)。 现在火电厂基本都是高参数大容量机组,抽汽汽轮机主要是用于发电和供暖,能源利用率高,与普通凝汽式汽轮机相比也更为节能。因此设计12MW机组抽汽汽轮机有一定研究意义。

汽轮机运行考试题库及答案

一、填空题 1、运行班长(或值长)在工作负责人将工作票注销退回之前,不准将(检修设备)加入运行; 2、工作票中“运行人员补充安全措施”一栏,如无补充措施,应在本栏中填写:(“无补充”)不得(空白)。 3、汽轮机的基本工作原理是力的(冲动原理)和(反动原理); 4、汽轮机的转动部分通常叫(转子),由(主轴)、(叶轮)、(动叶栅)、(联轴器)及其它装在轴上的零部件组成。 5、汽轮机的静止部分通常由(汽缸)、(隔板)、(汽封)、(轴承)等组成。 6、汽轮机的额定参数下的正常停机主要可以分为(减负荷)、(解列发电机)和(转子惰走)几个阶段。 7、根据电力法规要求:汽轮机应有以下自动保护装置:(自动主汽门)、(超速)、(轴向位移)、(低油压)和(低真空)保护装置。 8、汽轮机调速系统的静态试验是在汽轮机(静止)状态,起动(高压)油泵对调速系统进行试验,测定各部套之间的(关系)曲线,并应与制造厂设计曲线(基本相符)。 9、汽轮机的内部损失包括(进汽机构的节流)损失、(排汽管压力)损失、(级内)损失。 10、根据设备缺陷对安全运行的影响程度,设备缺陷分为(严重设备缺陷)、(重大设备缺陷)、(一般设备缺陷)三类。 11、运行设备出现(一、二)类缺陷,应迅速采取(有效)措施,严防扩大,并及时向有关领导汇报,需要(停机)处理的,及时提出(停机消缺)意见,严禁带病运行、拼设备。 12、汽轮机事故停机一般分为(破坏真空紧急停机)、(不破坏真空故障停机)、(由值长根据现场具体情况决定的停机) 13、汽轮机调节系统一般由(转速感受机构)、(传动放大机构)、(执行机构)、(反馈装置)等组成。 14、热电厂供热系统载热质有(蒸汽)和(热水)两种,分别称为(汽网)和(水热网)。 15、决定电厂热经济性的三个主要蒸汽参数是(初压力)、(初温度)、(排汽压力)。 16、汽轮机按热力特性分类分为(凝汽式汽轮机)、(调整抽汽式汽轮机)、(背压式汽轮机)。 17、对突发事故的处理,电力工人应具有(临危不惧)、(临危不乱)、(临危不慌)、(临危不逃)、果断处理的素质。

某1000MW凝汽式汽轮机机组热力系统设计毕业设计(论文)

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

汽轮机开题报告2015

燕山大学 本科毕业设计(论文)开题报告 课题名称:600MW电站锅炉汽轮机本体设计 学院(系): 年级专业: 学生姓名: 指导教师: 完成日期: 2015.3.30

一、综述本课题国内外研究动态,说明选题的依据和意义 1.1选题背景 目前我国用电水平仍然低下,人均装机0.25千瓦,未来20年,中国经济要保持7%以上的经济增长,每年将要新增电力装机容量2500万千瓦,按每千瓦7000元造价计算,每年电力新增装机将新增投资达1750亿元。而我国为产煤大国,原煤储量和开采量均居世界第一,我国的资源国情决定了我国能源结构以火电为主、水电为辅、核电风电作补。目前我国火电、水电、核电、风电装机容量分别达到23753万千瓦、7934万千瓦、210万千瓦、34.5万千瓦,占总装机容量的比重分别为74.4%、24.8%、0.7%、0.1%,电力结构发展很不平衡。根据目前的现状,火电厂装机量的增加及效率的提升占有重要地位。 电站煤耗的影响因素是多方面的,包括锅炉、汽轮机和发电机等设备的结构和运行操作、使用寿命、自动化程度和生产管理水平等,其中主要因素是汽轮机效率低。汽轮机作为火力发电的重要环节,其结构的好坏对能量转换效率影响重大。 1.2选题意义 进行汽轮机本体结构优化后的汽轮机有如下特点: 1)降低单位功率投资成本。如800MW机组比500MW汽轮机的千瓦造价低17%;1200MW机组比800MW机组的千瓦造价低15%—20%。 2)提高运行经济性。如法国的600MW机组比国产的125MW机组的热耗率低276kj/kW.h,每年可节约燃煤4万吨。 3)提高发电厂的效率,提高发电量。 4)加快电网建设速度,满足经济发展需要,提高电网的调峰能力。 1.3 国内外研究动态 (1)国外研究动态 19世纪末,瑞典拉瓦尔和英国帕森斯分别创制了实用的汽轮机。拉瓦尔于1882年制成了第一台5马力(3.67千瓦)的单级冲动式汽轮机,并解决了有关的喷嘴设计和强度设计问题。单级冲动式汽轮机功率很小,现在已很少采用。 20世纪初,法国拉托和瑞士佐莱分别制造了多级冲动式汽轮机。多级结构为增大汽轮机功率开拓了道路,已被广泛采用,机组功率不断增大。

汽轮机本体保温方案知识

1.适用范围 本作业指导书适用于淮阴发电厂供热技改工程2×50MW机组中的#1汽轮机机组的保温(112·027SM-1)。 2. 编制依据 2.1哈尔滨汽轮机有限责任公司《CC50-8.83/4.22/1.57型汽轮机本体保温设计说明书》编号112·027SM-1 2.2《汽轮机保温技术条件》GB7520-87 2.3《火力发电厂热力设备和管道保温材料技术条件与检验方法》SDJ68-85 2.4《电力建设施工及验收规范》(汽轮机机组篇)DL5011-92 2.5《电力建设安全工作规程》(火力发电厂部分)DL5009·1-92 2.6《电力建设安全施工管理规定》1995-11-06 3.工程概况及主要工程量 3.1工程概况 3.1.1淮阴发电厂供热技改工程#1机为哈尔滨汽轮机有限责任公司生产的CC50-8.83/ 4.22/1.57型高压、双缸冷凝式汽轮机组。根据其保温设计说明书(112·027SM-1),汽轮机本体的保温,主要是指高压汽缸、主汽阀、调节阀、主汽管、高压前后汽封等机体外壁温度t≥100℃部分。 3.1.2汽轮机本体各部分保温材料采用硅酸铝耐火纤维毡,保护层由镀锌铁丝网和抹面构成。

4. 4.1参加作业人员的资格要求 4.1.1 所有施工人员应经过上岗前培训及三级安全教育,并考试全格。 4.1.2大部分施工人员应为从事该专业工作多年的熟练技术工人。 4.1.3作业人员施工前都必须参加施工技术、质量、安全交底活动。 4.1.4特殊工种人员应持证上岗。 4.2 作业人员构成 5. 5.1机具:砂浆拌和机。 5.2工具:手推平板车、翻斗车、剪刀、手板锯、刷子、铰钩、铁板等。 6施工准备 6.1主要材料设备准备 6.1.1所需保温材料均送到现场库房,并经取样试验合格后方准使用。 6.1.2汽水管道与汽机本体焊接完毕,各疏水、仪表、插座等应按图纸装好正式接头,各孔洞全部装好正式堵头,对于为热效率试验所设置的测点接头应按设计装齐,并经有关施工人员联合检查无遗漏。 6.2技术准备 6.2.1保温所需的图纸、资料齐全、图纸会审结束。 6.2.2所有参加施工人员已进行施工技术、质量、安全交底活动。 6.3现场条件准备 6.3.1对热工测点、导线、仪表、阀门等必须做好安全保护和交叉作业时人身安全隔离工

汽轮机本体结构(低压缸及发电机)

第一章600WM汽轮机低压缸及发电机结构简介 一、汽轮机热力系统的工作原理 1、汽水流程: 1〉再热后的蒸汽从机组两侧的两个中压再热主汽调节联合阀及四根中压导汽管从中部进入分流的中压缸,经过正反各9 级反动式压力级后,从中压缸上部四角的4 个排汽口排出,合并成两根连通管,分别进入Ⅰ号、Ⅱ号2个低压缸。低压缸为双分流结构,蒸汽从中部流入,经过正反向各7 级反动式压力级后,从2个排汽口向下排入凝汽器。排入凝汽器的乏汽在凝汽器内凝结成凝结水,由凝结水泵升压后经化学精处理装置、汽封冷却器、四台低压加热器,最后进入除氧器,除氧水由给水泵升压后经三台高压加热器进入锅炉省煤器,构成热力循环。 二、汽轮机本体缸体的常规设计 低压汽缸为三层缸结构,能够节省优质钢材,缩短启动时间。汽机各转子均为无中心孔转子,采用刚性联接,,提高了转子的寿命及启动速度。#1 低压转子的前轴承采用两瓦块可倾瓦轴承,这种轴承不仅有良好的自位性能,而且能承受较大的载荷,运行稳定。低压转子的另外三个轴承为圆筒轴承,能承受更大的负荷。 三、岱海电厂的设备配置及选型 1)我公司的汽轮机组选用上海汽轮机厂生产的 N600-16.7/538/538 型600MW 机组。最大连续出力可达648.624MW。这是上海汽轮机厂在引进美国西屋电气公司技术的基础上,对通流部分作了设计改进后的新型机组,它采用积木块式的设计。形式为亚临界参数、一次中间再热、单轴、四缸、四排汽凝汽式汽轮机。具有较好的热负荷和变负荷适应性,采用数字式电液调节(DEH)系统。机

组能在冷态、温态、热态和极热态等不同工况下启动。 汽轮机有两个双流的低压缸;通流级数为28级。低压汽缸为三层缸结构,能够节省优质钢材,缩短启动时间。汽机各转子均为无中心孔转子,采用刚性联接,提高了转子的寿命及启动速度。低压缸设有四个径向支持轴承。#1 低压缸的前轴承采用两瓦块可倾瓦轴承,这种轴承不仅有良好的自位性能,而且能承受较大的载荷,运行稳定。低压转子的另外三个轴承为圆筒轴承,能承受更大的负荷。 汽轮机低压缸有4级抽汽,分别用于向4 台低压加热器提供加热汽源。N600-16.7/538/538汽轮机采用一次中间再热,其优点是提高机组的热效率,在同样的初参数条件下,再热机组一般比非再热机组的热效率提高4%左右,而且由于末级蒸汽温度较非再热机组大大降低,因此,对防止汽轮机组低压末级叶片水蚀特别有利。但是中间再热式机组的热力系统比较复杂。 汽轮机额定基本参数 型号 N600-16.7/538/538 铭牌出力 603.7MW 结构形式亚临界、一次中间再热、单轴、四缸、四排汽、反动式、冷凝式 主汽压力 16.7MPa 主汽温度538℃ 再热汽压力 3.194MPa 再热汽温度538℃ 背压 11.8kPa(a) 冷却水温18℃ 给水温度278.2℃ 转速 3000r/min 旋转方向从汽轮机端向发电机端看为顺时针 汽轮机抽汽级数 8级 通流级数 58级 高压部分级数 I+11级,叶片全部由围带固定

汽轮机参数

三、汽轮机主要技术规范 (一)汽轮机铭牌主要技术参数 汽轮机型号 C12-3.43/0.981 型式抽汽凝汽式汽轮机 主汽门前蒸汽压力额定3.43(+0.2 )MPa(a) -0.3 最高3.63MPa(a) (可长期连续运行) 主汽门前蒸汽温度额定435(+5 )℃ -15 最高445℃ (可长期连续运行) 额定进汽量 87t/h 最大进汽量 127t/h(可长期连续运行)额定抽汽量 50t/h 最大抽汽量 80t/h 额定抽汽压力 0.981MPa(G) 抽汽压力范围 0.785~1.275MPa(G) 额定抽汽温度317.2 ℃ 抽汽温度范围 250~330℃ 额定功率 12 MW 汽轮机铭牌功率 12 MW 最大功率 15 MW 汽轮机转向(机头向机尾看)顺时针方向 汽轮机额定转速 3000r/min 汽轮机一发电机轴系临界转速 1735r/min 汽轮机单个转子的临界转速 1470r/min 汽轮机轴承座允许最大振动 0.03mm(双振幅值) 过临界转速时轴承座允许最大振动 0.10mm(双振幅值) 允许电频率变化范围50±0.5Hz 汽轮机中心高(距运转平台) 750mm 汽轮机本体总重 57t 汽轮机上半总重(连同隔板上半等) 15t 汽轮机下半重(包括隔板下半等) 19t 汽轮机转子总重 7.83t 汽轮机本体最大尺寸(长×宽×高)mm 6021×3590×3635

(二)汽轮机技术要求; 本汽轮机实际运行条件:进汽量为72 t/h,最大进汽量83 t/h;额定抽汽量45 t/h;无高加、除氧器回热抽汽;循环水温度≤33℃。 锅炉正常运行时,保证C12机组纯凝工况下发电量能达到12MW并长期稳定运行。并考虑两台锅炉运行时,其中一台汽机故障时另一台汽机在保证供汽条件下,抽凝状态运行能达到15MW。 12MW抽凝式汽轮发电机组的实际运行工况: 型式抽汽凝汽式汽轮机 )MPa(a) 主汽门前蒸汽压力额定3.43(+0.2 -0.3 最高3.63MPa(a) (可长期连续运行) )℃ 主汽门前蒸汽温度额定435(+5 -15 最高445℃ (可长期连续运行) 额定进汽量 71t/h 最大进汽量 83t/h(可长期连续运行) 额定抽汽量 35t/h 最大抽汽量 45t/h 额定抽汽压力 0.981MPa(G) 抽汽压力范围 0.785~1.275MPa(G) 额定抽汽温度317.2 ℃ 抽汽温度范围 250~330℃ 四、发电机技术规范 (一)发电机参数 型号 QFW-15-2A 额定功率15MW 额定功率因数 0.8 额定电压10.5kV 额定转速 3000r/min 频率 50Hz 相数 3 极数 2 定子线圈接法 Y 效率不低于 97% 短路比 0.48

汽轮机本体培训课件

超超临界1000MW等级汽轮机 培训资料 上海汽轮机有限公司

目录 1. 概述 2. 汽轮机本体结构特点 2.1总体结构特点 2.2高压缸的特点 2.3主汽门调门 2.4 补汽阀 2.5中压汽轮机 2.6再热主汽门 2.7低压汽轮机 2.8中低压连通管道 2.9轴承座 2.10盘车装置 3.辅助系统 3.1轴承 3.2.疏水系统 3.3润滑油系统 3.4轴封系统 3.5低压缸喷水系统 3.6高压缸通风 4.热力性能和启动 4.1热力循环 4.2热力特性 4.3启动 5.控制保护系统 1.概述

本机组为具有超群的热力性能、高度可靠性、高效率、高稳定性、容易维护、检修所花时间少、运行灵活、快速启动及调峰能力。机组形式为四缸四排汽、中间再热机组。机组的设计蒸汽参数、功率、转速等均标在汽轮机的名牌上。 汽轮机的内部结构详见汽轮机总剖面图。 机组的高、中压缸均可采用厂内精装出厂,整体发运现场的先进的组装形式。 机组的五个轴承座均为落地布置,不参与机组的滑销系统,除高压转子外,其余三根转子为单轴承支撑。机组长度短。推力轴承位于#2轴承座内。 汽轮机采用全周进汽加补汽阀的配汽方式,高、中压缸均为切向进汽。高、中压阀门均布置在汽缸两侧,阀门与汽缸直接连接,无导汽管。 蒸汽通过高压阀门和单流的高压缸后,从高压缸下部的两个排汽口进入再热器。蒸汽通过再热器加热后,通过两只再热门进入双流的中压缸,由中压外缸顶部的中低压连通管进入两只双流的低压缸。 在每只汽缸的下部都设有用于给水加热用的抽汽口。 运行模式:定-滑-定(由补汽阀调频) 汽轮机外型尺寸:29m X 10.4m X 7.75m 汽轮机总重:约1570 t

N300MW汽轮机组热力系统分析--TMCR-毕业设计

N300MW汽轮机组热力系统分析- TMCR 南京工程学院本科生毕业设计开题报告 2010 年月日

节能是我国能源战略和政策的核心。火电厂既是能源供应的中心也是资源消耗及环境污染和温室气体排放的大户,提高电厂设备运行的经济性和可靠性,减少污染物的排放,已经成为世人关注的重大课题。 热经济性代表了火电厂的能量利用、热功能转换技术的先进性和运行的经济性,是火电厂经济性评价的基础。合理的计算和分析火电厂的热经济性是在保证机组安全运行的基础上,提高运行操作及科学管理水平的有效手段。火电厂的设计、技术改造、运行优化以及目前国内外对大型火电厂性能监测的研究、运行偏差的分析等均需对火电厂的热力系统作详细的热平衡计算,求出热经济指标作为决策的依据。因此电厂的热力系统计算是实现上述任务的重要技术基础,直接反映出全厂的经济效益,对电厂的节能具有重要意义。 本文主要设计的是300MW凝汽式汽轮机。先了解了汽轮机及其各部件的工作原理。再设计了该汽轮机的各热力系统,并用手绘了各系统图。最后对所设计的热力系统进行经济性指标计算,分析温度压力等参数如何影响效率。本设计采用了三种计算方法——常规计算方法、简捷计算、等效热降法。 关键词:节能、热经济性分析、热力系统

Energy is our county’s energy strategy and policies. Thermal Power Plant is the center of energy supply and is large of resource consumption and environmental pollution and greenhouse gas emissions. Improving power plant equipment operation and reliability of economic and reducing emissions has become a major issue of world attention. Represents the thermal power plant economics of energy use, advanced thermal conversion technology functions and running economy is the thermal power plant based on economic evaluation. Rational calculation and analysis of the Thermal Power Plant is to increased operating and running an effective means of scientific management based on ensure the safe operation of generating units. Power plant design, technological innovation, optimization and operation of large thermal power plants at home and abroad Performance Monitoring, running deviation analysis require thermal power plant system on a detailed calculation of heat balance,then,calculate heat economic indicators as the basis for decision-making. Thus the plant system calculation is an important technique to achieve these tasks based onand it is a direct reflection of the economic benefits of the whole plant. It is important to energy power plant This article is designed to 300MW Condensing Steam Turbine. I first understand the components of the turbine and its working principle. I re-design of the turbine of the thermal system and hand-drawn map of each system. Finally, I designed thermal system on the economic index calculation, and analyze how

相关文档
最新文档