通信系统课程设计报告

合集下载

Matlab与通信仿真课程设计报告

Matlab与通信仿真课程设计报告

Matlab与通信仿真课程设计报告Matlab与通信仿真课程设计报告班级:12通信(1)班姓名:诸葛媛学号:Xb12680129实验⼀S-函数&锁相环建模仿真⼀、实验⽬的1.了解S函数和锁相环的⼯作原理2.掌握⽤S函数建模过程,锁相环载波提取仿真⼆、实验内容1、⽤S函数编写Similink基本模块(1)信源模块实现⼀个正弦波信号源,要求其幅度、频率和初始相位参数可以由外部设置,并将这个信号源进⾏封装。

(2)信宿和信号显⽰模块实现⼀个⽰波器⽊块,要求能够设定⽰波器显⽰的扫描周期,并⽤这个⽰波器观察(1)的信源模块(3)信号传输模块实现调幅功能,输⼊⽤(1)信源模块,输出⽤(2)信宿模块;基带信号频率1KHz,幅度1V;载波频率10KHz,幅度5V实现⼀个压控正弦振荡器,输⼊电压u(t)的范围为[v1,v2]V,输出正弦波的中⼼频率为f0Hz,正弦波的瞬时频率f随控制电压线性变化,控制灵敏度为kHz/V。

输⼊⽤(1)信源模块,输出⽤(2)信宿模块2、锁相环载波提取的仿真(1)利⽤压控振荡器模块产⽣⼀个受10Hz正弦波控制的,中⼼频率为100Hz,频偏范围为50Hz到150Hz的振荡信号,并⽤⽰波器模块和频谱仪模块观察输出信号的波形和频谱。

(2)构建⼀个抑制载波的双边带调制解调系统。

载波频率为10KHz,被调信号为1KHz正弦波,试⽤平⽅环恢复载波并进⾏解调。

(3)构建⼀个抑制载波的双边带调制解调系统。

载波频率为10KHz,被调信号为1KHz正弦波,试⽤科斯塔斯环恢复载波并进⾏解调。

(4)设参考频率源的频率为100Hz,要求设计并仿真⼀个频率合成器,其输出频率为300Hz。

并说明模型设计上与实例3.26的主要区别三、实验结果分析1、⽤S函数编写Similink基本模块(3)为了使S函数中输⼊信号包含多个,需要将其输⼊变量u初始为制定维数或⾃适应维数,⽽在S函数模块外部采⽤Simulink基本库中的复⽤器(Mux)将3⾏的信号矩阵。

大四通信工程课程设计

大四通信工程课程设计

大四通信工程课程设计一、教学目标本课程的教学目标旨在让学生掌握通信工程的基本原理、技术和应用,提高学生的实际工程能力和创新能力。

在知识目标方面,要求学生熟悉通信系统的基本概念、组成原理和关键技术,了解现代通信技术的发展趋势和应用领域。

在技能目标方面,培养学生具备通信系统设计和调试的能力,能运用所学知识解决实际工程问题。

在情感态度价值观目标方面,激发学生对通信工程学科的兴趣和热情,培养学生严谨治学、勇于创新的精神风貌。

二、教学内容本课程的教学内容主要包括通信系统的基本原理、关键技术、现代通信技术及其应用。

具体包括以下几个方面:1.通信系统的基本概念:通信系统的基本模型、信号与系统、调制与解调等。

2.通信系统的组成原理:无线通信、光纤通信、卫星通信等。

3.通信系统的关键技术:编码、信道估计、均衡、检测等。

4.现代通信技术:5G、物联网、大数据在通信领域的应用等。

5.通信系统的设计与调试:实际工程案例分析、实验操作等。

三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式进行教学。

具体包括以下几种:1.讲授法:通过讲解基本概念、原理和关键技术,使学生掌握通信工程的基本知识。

2.讨论法:学生针对通信领域的热点问题进行讨论,培养学生的思辨能力和创新意识。

3.案例分析法:分析实际工程案例,使学生了解通信系统的应用和设计方法。

4.实验法:开展实验操作,培养学生动手能力和实际问题解决能力。

四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:选用国内权威出版的通信工程相关教材,为学生提供系统的学习资料。

2.参考书:提供相关的参考书籍,丰富学生的知识体系。

3.多媒体资料:制作PPT、视频等多媒体资料,增强课堂教学的趣味性和生动性。

4.实验设备:配备齐全的实验设备,为学生提供动手实践的机会。

5.网络资源:利用校园网、在线课程等资源,为学生提供丰富的学习资料和交流平台。

五、教学评估本课程的教学评估将采用多元化、全过程的评价方式,以全面、客观、公正地评价学生的学习成果。

移动通信原理课程设计报告_实验报告_

移动通信原理课程设计报告_实验报告_

电子科技大学通信抗干扰技术国家级重点实验室实验报告课程名称移动通信原理实验内容无线信道特性分析;BPSK/QPSK通信链路搭建与误码性能分析;SIMO系统性能仿真分析课程教师胡苏成员姓名成员学号成员分工独立完成必做题第二题,参与选做题SIMO仿真中的最大比值合并模型设计参与选做题SIMO仿真中的等增益合并模型设计独立完成必做题第一题参与选做题SIMO仿真中的选择合并模型设计1,必做题目1.1无线信道特性分析1.1.1实验目的1)了解无线信道各种衰落特性;2)掌握各种描述无线信道特性参数的物理意义;3)利用MATLAB中的仿真工具模拟无线信道的衰落特性。

1.1.2实验内容1)基于simulink搭建一个QPSK发送链路,QPSK调制信号经过了瑞利衰落信道,观察信号经过衰落前后的星座图,观察信道特性。

仿真参数:信源比特速率为500kbps,多径相对时延为[0 4e-06 8e-06 1.2e-05]秒,相对平均功率为[0 -3 -6 -9]dB,最大多普勒频移为200Hz。

例如信道设置如下图所示:1.1.3实验仿真(1)实验框图(2)图表及说明图一:Before Rayleigh Fading1 #上图为QPSK相位图,由图可以看出2比特码元有四种。

图二:After Rayleigh Fading#从上图可以看出,信号通过瑞利信道后,满足瑞利分布,相位和幅度发生随机变化,所以图三中的相位不是集中在四点,而是在四个点附近随机分布。

图三:Impulse Response#从冲激响应的图可以看出相位在时间上发生了偏移。

图四:Impulse Response#从频率响应的图可以看出,信号的频率响应失真比较严重。

(3)实验结论根据题目中给出的参数,计算瑞利衰落信道的相干带宽和相干时间:相干带宽 410*2787.421==τπσc B Hz相干时间 005.01==mc f T s1.2 BPSK/QPSK 通信链路搭建与误码性能分析1.2.1 实验目的掌握基于simulink 的BPSK 、QPSK 典型通信系统的链路实现,仿真BPSK/QPSK 信号在AWGN 信道、单径瑞利衰落信道下的误码性能。

(完整)通信系统课程设计

(完整)通信系统课程设计

课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目: 通信系统课群综合训练与设计初始条件:MATLAB 软件,电脑,通信原理知识要求完成的主要任务:1、利用仿真软件(如Matlab或SystemView),或硬件实验系统平台上设计完成一个典型的通信系统2、学生要完成整个系统各环节以及整个系统的仿真,最终在接收端或者精确或者近似地再现输入(信源),计算失真度,并且分析原因。

指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要 (2)Abstract (3)1.引言 (1)1.1通信系统简介 (1)1.2 Matlab简介 (1)2.系统设计 (2)2.1通信系统原理 (2)2.2 系统整体设计 (3)3.子系统设计 (4)3.1脉冲编码调制(PCM) (4)3.1.1抽样(Samping) (4)3.1.2量化(Quantizing) (5)3.1.3编码(Coding) (6)3.2 Manchester码编解码 (6)3.2.1曼切斯特编码原理 (7)3.2.2曼切斯特解码原理 (8)3.3循环码编解码 (8)3.3.1循环码编码原理 (9)3.3.2循环码解码原理 (10)3.3.3纠错能力 (10)3.4 ASK调制与解调 (11)3.5 衰落信道 (12)4软件设计及结果分析 (12)4.1 编程工具的选择 (12)4.2 软件设计方案 (13)4.3 编码与调试 (13)4.4 运行结果及分析 (14)5心得体会 (19)参考文献 (20)附录 (20)摘要在数字通信系统中,需要将输入的数字序列映射为信号波形在信道中传输,此时信源输出数字序列,经过信号映射后成为适于信道传输的数字调制信号,并在接收端对应进行解调恢复出原始信号。

本论文主要研究了数字信号的传输的基本概念及数字信号传输的传输过程和如何用MATLAB软件仿真设计数字传输系统。

首先介绍了本课题的理论依据,包括数字通信,数字基带传输系统的组成及数字信号的传输过程。

通信系统综合课程设计课程设计任务书

通信系统综合课程设计课程设计任务书

通信系统综合课程设计课程设计任务书课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目: 《通信系统课群综合训练与设计》1课程设计的目的通过课程设计,使学生加强对电子电路的理解,学会对电路分析计算以及设计。

进一步提高分析解决实际问题的能力,通过完成综合设计型和创新性实验及训练,创造一个动脑动手﹑独立开展电路实验的机会,锻炼分析﹑解决电子电路问题的实际本领,实现由课本知识向实际能力的转化;加深对通信原理的理解,提高学生对现代通信系统的全面认识,增强学生的实践能力。

2 课程设计要求要求:掌握以上各种电路与通信技术的基本原理,掌握实验的设计、电路调试与测量的方法。

1.培养学生根据需要选学参考书,查阅手册,图表和文献资料的自学能力,通过独立思考﹑深入钻研有关问题,学会自己分析解决问题的方法。

2.通过对实验电路的分析计算,了解简单实用电路的分析方法和工程设计方法。

3.掌握示波器,频谱仪,失真度仪的正确使用方法,学会简单电路的实验调试和整机指标测试方法,提高动手能力。

3 课程设计进度安排指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要 (I)Abstract................................................................ I I 1设计任务. (1)1.1设计目的 (1)1.2课程设计要求 (1)1.3课程设计任务 (1)2实验原理分析 (2)2.1实验原理框图 (2)2.2 PCM原理介绍 (3)2.2.1 抽样(Sampling) (3)2.2.2量化(quantizing) (4)42.2.4 编码(Coding) (10)2.2基带传输PST码 (10)2.3循环码 (11)2.3.1循环码介绍 (11)2.3.2 循环码编码原理 (13)2.3.3 循环码的纠错原理 (14)2.4二进制频移键控(2PSK)调制与解调原理 (16)2.4.1 数字调制技术 (16)2.4.2 二进制相移键控(2PSK)基本原理 (17)2.4.3 MATLAB实现2PSK调制与解调 (19)2.5衰落信道 (19)3 MATLAB软件仿真及结果 (20)3.1 MATLAB简介 (20)3.2 发送端仿真结果与分析 (20)3.2.1仿真结果图 (20)3.2.2 实验结果分析 (25)4.小结 (26)参考文献 (27)附录: (28)摘要通信系统的作用就是将信息从信源发送到一个或多个目的地。

通信工程简单的课程设计

通信工程简单的课程设计

通信工程简单的课程设计一、课程目标知识目标:1. 理解通信工程的基本概念和原理,掌握通信系统的基本组成和功能。

2. 学习并掌握常用的通信技术和方法,如模拟通信和数字通信的特点及适用场景。

3. 了解通信工程中常用的信号处理技术和传输媒介,并理解其工作原理。

技能目标:1. 能够运用通信原理进行简单的通信系统设计和分析,解决实际问题。

2. 培养学生使用通信设备和软件进行数据传输、接收和处理的能力。

3. 培养学生的团队协作和沟通能力,通过小组合作完成课程设计任务。

情感态度价值观目标:1. 培养学生对通信工程学科的兴趣,激发其探索通信领域新技术的好奇心。

2. 培养学生的创新意识和实践能力,使其能够将理论知识应用于实际工程问题。

3. 增强学生的责任感,使其认识到通信工程在国民经济发展和社会进步中的重要作用。

课程性质:本课程设计旨在帮助学生将通信工程理论知识与实际应用相结合,提高学生的实践能力和创新能力。

学生特点:高中生具有一定的通信工程基础知识,对通信技术和设备感兴趣,希望通过实践操作提升自己的技能。

教学要求:结合通信工程教材,注重理论与实践相结合,引导学生通过课程设计深入理解通信原理,培养实际操作能力。

将课程目标分解为具体的学习成果,便于教学设计和评估。

二、教学内容1. 通信系统基本概念:介绍通信系统的定义、分类和基本组成,包括信源、信道、信宿等。

教材章节:第一章 通信系统概述2. 通信原理:讲解模拟通信和数字通信的基本原理,重点掌握调制、解调、编码、解码等技术。

教材章节:第二章 通信原理3. 信号处理技术:学习信号采样、量化、滤波等处理方法,了解其在通信系统中的应用。

教材章节:第三章 信号处理技术4. 传输媒介:介绍有线和无线传输媒介的特点及适用场景,如光纤、同轴电缆、无线电波等。

教材章节:第四章 传输媒介5. 通信设备与软件:学习常用通信设备和软件的使用方法,如示波器、信号发生器、通信仿真软件等。

教材章节:第五章 通信设备与软件6. 通信系统设计:结合实际案例,指导学生进行简单通信系统的设计和分析,培养实践能力。

移动通信课程设计实验报告-利用matlab进行m序列直接扩频仿真.

目录一、背景 (4)二、基本要求 (4)三、设计概述 (4)四、Matlab设计流程图 (5)五、Matlab程序及仿真结果图 (6)1、生成m序列及m序列性质 (6)2、生成50位随机待发送二进制比特序列,并进行扩频编码 (7)3、对扩频前后信号进行BPSK调制,观察其时域波形 (9)4、计算并观察扩频前后BPSK调制信号的频谱 (10)5、仿真经awgn信道传输后,扩频前后信号时域及频域的变化 (11)6、对比经信道前后两种信号的频谱变化 (12)7、接收机与本地恢复载波相乘,观察仿真时域波形 (14)8、与恢复载波相乘后,观察其频谱变化 (15)9、仿真观察信号经凯萨尔窗低通滤波后的频谱 (16)10、观察经过低通滤波器后无扩频与扩频系统的时域波形 (17)11、对扩频系统进行解扩,观察其时域频域 (18)12、比较扩频系统解扩前后信号带宽 (19)13、比较解扩前后信号功率谱密度 (20)14、对解扩信号进行采样、判决 (21)15、在信道中加入2040~2050Hz窄带强干扰并乘以恢复载波 (24)16、对加窄带干扰的信号进行低通滤波并解扩 (25)17、比较解扩后信号与窄带强干扰的功率谱 (27)六、误码率simulink仿真 (28)1、直接扩频系统信道模型 (28)2、加窄带干扰的直扩系统建模 (29)3、用示波器观察发送码字及解扩后码字 (30)4、直接扩频系统与无扩频系统的误码率比较 (31)5、不同扩频序列长度下的误码率比较 (32)6、扩频序列长度N=7时,不同强度窄带干扰下的误码率比较 (33)七、利用Walsh码实现码分多址技术 (34)1、产生改善的walsh码 (35)2、产生两路不同的信息序列 (36)3、用两个沃尔什码分别调制两路信号 (38)4、两路信号相加,并进行BPSK调制 (39)5、观察调制信号频谱,并经awgn信道加高斯白噪和窄带强干扰 (40)6、接收机信号乘以恢复载波,观察时域和频域 (42)7、信号经凯萨尔窗低通滤波器 (43)8、对滤波后信号分别用m1和m2进行解扩 (44)9、对两路信号分别采样,判决 (45)八、产生随机序列Gold码和正交Gold码 (47)1、产生Gold码并仿真其自相关函数 (48)2、产生正交Gold码并仿真其互相关函数 (50)九、实验心得体会 (51)直接序列扩频系统仿真一、背景直接序列扩频通信系统(DSSS)是目前应用最为广泛的系统。

CRC循环码

通信系统课程设计报告课题名称(24,16)CRC循环码编解码器的设计学生姓名杨阳班级 08通信2W 学号 08313225 指导教师程钦任艳玲设计地点 60#507 2011年11 月18 日目录序言 (3)第1章课程设计要求及平台 (4)1.1 课程设计要求和目的 (4)1.2 课程设计内容 (4)1.3 个人在设计中的分工 (4)1.4 课程设计平台 (4)第2章 QUARTUSⅡ简介 (5)2.1 VHDL语言的优点 (5)2.2V H D L语言的基本结构 (5)2.2.1实体(ENTITY) (6)2.2.2 结构体(ARCHITECTURE) (7)第3章编解码器设计及仿真结果分析 (7)3.1编码器基本原理 (8)3.2编码器仿真及设计 (8)3.3解码器基本原理 (10)3.4 个人对译码原理的认识 (11)3.5解码器仿真及设计 (13)第4章心得与体会 (18)参考文献 (19)附录 (20)序言CRC循环码是在严密的代数学理论基础上建立起来的,是线性分组码的一种。

这种码的编码和解码设备都不太复杂,而且检错的能力较强。

CRC循环码除具有线性码的一般性质之外,还具有循环性,即任一码组循环一位以后,仍为该码中的一个组码。

在代数编码理论中,为了便于计算,经常将循环码表示成码多项式的形式,设码组为 a= (a n-1a n-2...a1a0),则码多项式定义如下:T (X) =a n-1x +a n-2x +...+a1x+a0。

在循环码中除全“ 0”码组外,再没有连续 k 位均为“ 0”的码组,即连“0”的长度最多只有 (k-1) 位。

否则,在经过若干次循环移位后将得到一个 k 位信息位全为“0”,但监督位不全为“0”的一个码组。

因此,g (x) 必须是一个常数项不为“0”的 (n-k) 次多项式,而且这个 g (x) 还是这种码中次数为 (n-k) 的唯一一个多项式。

称这唯一的 (n-k) 次多项式g(x) 为码的生成多项式。

光纤通信技术课程设计

光纤通信技术课程设计一、课程目标知识目标:1. 理解光纤通信的基本原理,掌握光纤的构造、分类和特性;2. 掌握光纤通信系统中光源、光检测器、光纤放大器等关键器件的工作原理;3. 了解光纤通信系统的组成、应用领域及其优缺点。

技能目标:1. 能够分析光纤通信系统的性能指标,如带宽、误码率等;2. 学会使用光纤通信设备,进行简单的光纤连接、熔接和测试操作;3. 能够运用所学知识,设计简单的光纤通信方案,解决实际问题。

情感态度价值观目标:1. 培养学生对光纤通信技术及其应用的兴趣,激发学生的探索精神和创新意识;2. 增强学生对我国光纤通信技术发展的了解,提高学生的民族自豪感;3. 通过学习光纤通信技术,培养学生团队合作意识,提高沟通协调能力。

分析课程性质、学生特点和教学要求,本课程旨在使学生在掌握光纤通信基本知识的基础上,提高实践操作能力和创新能力。

课程目标具体、可衡量,便于教师进行教学设计和评估。

通过本课程的学习,学生将能够全面了解光纤通信技术,为今后的学习和工作打下坚实基础。

二、教学内容1. 光纤通信基本原理- 光纤的结构、分类及其特性;- 光在光纤中的传输原理;- 光纤的损耗与色散。

2. 光纤通信系统关键器件- 光源:LED、LD、FP激光器等;- 光检测器:PIN光电二极管、APD等;- 光放大器:EDFA、拉曼放大器等。

3. 光纤通信系统的组成与应用- 光发射机、光接收机、光纤、光缆等组成部分;- 光纤通信系统的应用领域及优缺点;- 典型光纤通信系统案例分析。

4. 光纤通信性能指标与测试- 带宽、误码率、信噪比等性能指标;- 光纤连接、熔接技术;- 光纤通信设备测试方法。

5. 光纤通信技术实践- 光纤连接、熔接、测试操作实践;- 设计简单的光纤通信方案;- 分析实际应用中的光纤通信问题。

教学内容依据课程目标,结合教材章节进行选择和组织,保证科学性和系统性。

教学大纲明确,涵盖光纤通信技术的基本理论、关键器件、系统组成、性能指标、测试方法及实践应用等方面,旨在帮助学生全面掌握光纤通信技术知识。

大学生通信工程课程设计

大学生通信工程课程设计一、课程目标知识目标:1. 掌握通信系统的基本原理和关键技术,理解通信工程的基本概念和体系结构。

2. 学习并应用通信原理、信号与系统、数字信号处理等基本理论,分析通信过程中的信号传输、调制解调、信道编码等关键环节。

3. 了解当前通信技术的发展趋势,如5G、物联网等,及其在通信工程领域的应用。

技能目标:1. 能够运用通信原理和仿真软件设计简单的通信系统,具备实际通信工程问题的分析和解决能力。

2. 培养通信系统设计和调试的基本技能,包括使用相关仪器、设备和软件进行信号分析、系统优化等。

3. 提高团队协作和沟通能力,能够就通信工程问题进行有效讨论和撰写技术报告。

情感态度价值观目标:1. 培养对通信工程的兴趣和热情,激发学生主动学习和探索新技术的积极性。

2. 培养严谨的科学态度和良好的工程伦理观念,强调在通信工程实践中遵循相关法律法规和行业标准。

3. 增强学生的国家意识和社会责任感,使他们认识到通信技术在国家经济发展和社会进步中的重要作用。

本课程针对大学生通信工程课程设计,结合通信工程学科特点,注重理论与实践相结合,培养学生的实际操作能力和创新精神。

通过本课程的学习,使学生能够掌握通信工程的基本知识和技能,为未来从事相关领域的研究和工作打下坚实基础。

同时,注重培养学生的情感态度和价值观,使他们成为具有责任感和创新意识的优秀通信工程人才。

二、教学内容1. 通信原理:包括信号与系统、数字信号处理等基本理论,重点学习信号的时域和频域分析、线性时不变系统特性、傅里叶变换、滤波器设计等。

教材章节:第一章至第三章2. 通信系统:学习模拟通信系统、数字通信系统、无线通信系统的基本原理和关键技术,如调制解调、信道编码、多址技术等。

教材章节:第四章至第六章3. 通信网络:介绍通信网络的体系结构、协议和关键技术,如TCP/IP、移动通信网络、光纤通信网络等。

教材章节:第七章至第九章4. 通信工程实践:结合实际案例,学习通信系统设计与调试、通信设备的使用、信号分析软件操作等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录引言 (2)一、相关知识介绍 (2)(1)QAM调制解调原理 (3)(2)QAM的解调和判决 (4)二、设计内容及要求 (5)(1)设计内容 (5)(2)技术要求 (5)(3)设计步骤及要求 (5)三、程序流程图及设计方案 (5)(1)程序流程图 (5)(2)设计方案 (5)四、仿真结果及分析 (7)(1)信号接收图 (8)(2)误码率曲线图 (8)五、课程设计总结 (8)六、参考文献 (9)附录 (10)引言本次课程设的代码编写和仿真均基于Matlab仿真软件。

Matlab是矩阵实验室(Matrix Laboratory)的简称,可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等。

介绍了高斯信道下的16QAM误码率分析的设计方案,并着重介绍了各部分的设计思路及仿真。

整个设计配以误码率和信噪比的性能曲线图和信号接受图加以辅助说明。

设计共有三大组成部分:一是代码的编写及设计思路,本部分详细讲解了本次设计的理论实现,是关键部分;二是仿真结果及分析,这部分是为了分析设计是否合理,便于理;最后是对本次课程设计的总结。

一、相关知识介绍QAM是一种矢量调制,将输入比特先映射(一般采用格雷码)到一个复平面(星座)上,形成复数调制符号,然后将符号的I、Q分量(对应复平面的实部和虚部,也就是水平和垂直方向)采用幅度调制,分别对应调制在相互正交(时域正交)的两个载波(cos wt和sin wt)上。

这样与幅度调制(AM)相比,其频谱利用率将提高1倍。

QAM是幅度、相位联合调制的技术,它同时利用了载波的幅度和相位来传递信息比特,因此在最小距离相同的条件下可实现更高的频带利用率,目前QAM最高已达到1 024-QAM(1 024个样点)。

样点数目越多,其传输效率越高,例如具有16个样点的16-QAM信号,每个样点表示一种矢量状态,16-QAM有16态,每4位二进制数规定了16态中的一态,16-QAM中规定了16种载波和相位的组合,16-QAM的每个符号和周期传送4比特。

QAM调制器的原理是发送数据在比特/符号编码器(也就是串–并转换器)内被分成两路,各为原来两路信号的1/2,然后分别与一对正交调制分量相乘,求和后输出。

接收端完成相反过程,正交解调出两个相反码流,均衡器补偿由信道引起的失真,判决器识别复数信号并映射回原来的二进制信号。

如图4-2所示的是16-QAM的调制原理图。

作为调制信号的输入二进制数据流经过串–并变换后变成四路并行数据流。

这四路数据两两结合,分别进入两个电平转换器,转换成两路4电平数据。

例如,00转换成-3,01转换成-1,10转换成1,11转换成3。

这两路4电平数据g1(t)和g2(t)分别对载波cos2πfct和sin2πfct 进行调制,然后相加,即可得到16-QAM信号。

23(1)QAM 调制解调原理QAM (Quadrature Amplitude Modulation )就是用两个调制信号对频率相同、相位正交的两个载波进行调幅,然后将已调信号加在一起进行传输或发射。

在NTSC 制和PAL 制中形成色度信号时,用的就是正交调幅方式将两个色差信号调制到色度副载波上。

QAM 也可用于数字调制。

数字QAM 有4QAM 、8QAM 、16QAM 、32QAM 等调制方式。

其中,16QAM 和32QAM 广泛用于数字有线电视系统。

下面以16QAM 为例介绍其原理。

正交幅度调制(QAM )信号采用了两个正交载波t f t f c c ππ2sin 2cos 和,每一个载波都被一个独立的信息比特序列所调制。

发送信号波形如下图所示,2sin )(2cos )()(t f t g A t f t g A t u c T ms c T mc m ππ+= M m ,...,2,1=式中{mc A }和{ms A }是电平集合,这些电平是通过将k 比特序列映射为信号振幅而获得的。

例如一个16位正交幅度调制信号的星座图如下图所示,该星座是通过用M =4PAM 信号对每个正交载波进行振幅调制得到的。

利用PAM 分别调制两个正交载波可得到矩形信号星座。

QAM 可以看成是振幅调制和相位调制的结合。

因此发送的QAM 信号波形可表示为),2cos()()(n c T m mn t f t g A t u θπ+= ,,....,2,11M m = ,,....,2,12M n =如果,211k M =,222k M =那么QAM 方法就可以达到以符号速率)(21k k R B +同时发送12221log M M k k =+个二进制数据。

下图给出了QAM 调制器的框图。

4(2)QAM 的解调和判决假设在信号传输中存在载波相位偏移和加性高斯噪声。

因此r(t)可以表示为)()2sin()()2cos()()(t n f t g A f t g A t r c T ms c T mc ++++=φπφπ其中φ是载波相位偏移,且t f t n t f t n t n c s c c κκ2)(2cos )()(-=将接收信号与下述两个相移函数进行相关)2cos()()(1φπψ+=t f t g t c T)2sin()()(2φπψ+=t f t g t c T如图2.2.1所示,相关器的输出抽样后输入判决器。

使用下图中所示的锁相环估算接收信号的载波相位偏移φ,相移)(1t ψ和)(2t ψ对该相位偏移进行补偿。

假设图中所示的时钟与接收信号同步,以使相关器的输出在适当的时刻及时被抽样。

在这些条件下两个相关器的输出分别为φφsin cos 1s c mc n n A r -+= φφcos sin 2s c mc n n A r ++=其中 dt t g t n n T T c c )()(210⎰= dt t g t n n T T s s )()(210⎰= 噪声分量是均值为0,方差为20N 的互不相关的高斯随机变量。

5最佳判决器计算距离量度2),(m m s r s r D -= M m ,...2,1=二、设计内容及要求(1)设计内容利用Matlab 函数或者模块产生随机数据,经过16QAM 数字调制,送入高斯白噪声信道;在接收端使用16QAM 解调数据后,与信源数据进行误码率统计;分析误码率与信噪比的关系。

(2)技术要求信源为二进制随机数据;高斯白噪声中设置信噪比范围:-5~10dB ;得到误码率和信噪比的性能曲线图(本设计用Eb/N0取代信噪比)。

(3)设计步骤及要求①拟定程序设计流程图,编写各部分代码,并用matlab 仿真;②检验设计是否合理;③拟写设计报告。

三、程序流程图及设计方案(1)程序流程图(2)设计方案1、产生二进制随机数据源在MATLAB 中表示信号的常规格式是向量或者矩阵。

本示例中利用randint 函数来产生一个表示二进制数据序列连续值的列向量。

其中二进制数据序列的长度(即为列向量中的行数)设置为30,000。

%% 定义参数M = 16;k = log2(M);%% 产生信源x = randint(30000,1);2、16QAM调制modem.qammod函数实现M-QAM调制,本示例中M为16。

由于该函数默认的输入是十进制数据,而产生的信源为二进制,故须修改默认函数参数为输入数据类型是二进制。

%% 调制,设置输入为二进制数据y = modulate(modem.qammod('M',16,'InputType','Bit'),x);3、信道加高斯白噪声对已调制信号可采用awgn函数添加加性高斯白噪声。

其中比特能量与噪声功率谱密度的比值,Eb/N0,设置为-5--10dB。

将上述Eb/N0值转换为相应的信噪比(SNR),需要考虑每一符号包含的比特数k(16-QAM中为4)以及过采样率因子nsamp(本本次设计中为1)。

其中因子k是用来将Eb/N0转换为等价的Es/N0(符号能量与噪声功率谱密度的比值)。

%% 设置Eb/N0为-5--10dB。

EbNo = -5:1:10;%% for循环计算snr值和误码率(见5、误码率计算)for n=1:length(EbNo)%% EbNo值转换为相应的snr(信噪比)snr(n) = EbNo(n) + 10*log10(k);%% 加高斯白噪声ynoisy = awgn(y,snr(n),'measured');4、16QAM解调m odem.qamdemod函数实现M-QAM解调。

由于该函数默认的输出也是十进制数据,而之后要计算误码率时要求是二进制,故须修改默认函数参数为输出数据类型是二进制。

6%% 解调,设置输出二进制数据z = demodulate(modem.qamdemod('M',16,'OutputType','Bit'),ynoisy);5、计算误码率对原始二进制向量和上述步骤解调得到二进制向量利用biterr函数即可得到误比特数和误码率。

%% 计算仿真误码率[nErrors(n), BITBER(n)] = biterr(x,z);%% 计算理论误码率theo_err_prb(n)=(1/k)*3/2*erfc(sqrt(k*0.1*(10.^(EbNo(n)/10))));%% 结束for循环End6、绘制误码率曲线图和信号接收图对误码率与输入Eb/N0的关系可以利用semilogy绘制一条曲线图。

对发射和接收信号利用scatterplot函数可显示信号星座图的样子及噪声对信号造成的失真程度。

在该图中,横轴代表了信号的同相分量而纵轴代表了正交分量。

下面的代码还利用了MATLAB中的title、legend以及axis函数来绘制特定的图像。

%% 画仿真和理论误码率与Eb/N0的关系曲线图semilogy(EbNo,BITBER,'r*',EbNo,theo_err_prb,'b-');title('误比特率性能');xlabel('Eb/N0(dB)');ylabel('误比特率');legend('仿真比特误码率','理论比特误码率');%% 画出加噪后信号接收图h = scatterplot(ynoisy(1:1*5e3),1,0,'g.');hold on;%% 将刚调制后星座点和加噪后接收信号画在一个图表上scatterplot(y(1:1*5e3),1,0,'r*',h);title('Received Signal');7legend('Received Signal','Signal Constellation');axis([-5 5 -5 5]);hold off;四、仿真结果及分析(1)信号接收图红色*为调制后标准的星座点,绿色散点为加噪后信号点。

相关文档
最新文档