透明导电膜知识培训
TCO透明导电薄膜玻璃扫盲之令狐采学创编

TCO玻璃扫盲分类:学习欧阳家百(2021.03.07)标签:雾度光伏电池导电性能镀膜玻璃TCO(Transparent conducting oxide)玻璃,即透明导电氧化物镀膜玻璃,是在平板玻璃表面通过物理或者化学镀膜的方法均匀镀上一层透明的导电氧化物薄膜,主要包括In、Sn、Zn和Cd 的氧化物及其复合多元氧化物薄膜材料。
TCO玻璃应用在透明导电电极、高温电子器件等领域,如太阳能电池、液晶显示器、光探测器、窗口涂层等。
平板显示器中,现在ITO类型的导电玻璃仍是平板显示器行业的主流玻璃电极产品。
在太阳能电池中,晶体硅片类电池的电极是焊接在硅片表面的导线,前盖板玻璃仅需达到高透光率就可以了。
薄膜太阳能电池是在玻璃表面的导电薄膜上镀制pin半导体膜,再镀制背电极。
与光伏电池的性能要求相匹配的三种TCO玻璃:ITO镀膜玻璃。
一种非常成熟的产品,具有透过率高,膜层牢固,导电性好等特点,初期曾应用于光伏电池的前电极。
但随着光吸收性能要求的提高,TCO玻璃必须具备提高光散射的能力,而ITO镀膜很难做到这一点,并且激光刻蚀性能也较差。
铟为稀有元素,在自然界中贮存量少,价格较高。
ITO应用于太阳能电池时在等离子体中不够稳定,因此目前ITO镀膜已非光伏电池主流的电极玻璃。
SnO2镀膜也简称FTO,目前主要是用于生产建筑用LowE 玻璃。
其导电性能比ITO略差,但具有成本相对较低,激光刻蚀容易,光学性能适宜等优点。
通过对普通LowE的生产技术进行升级改进,制造出了导电性比普通LowE好,并且带有雾度的产品。
利用这一技术生产的TCO玻璃已经成为薄膜光伏电池的主流产品。
氧化锌基薄膜的研究进展迅速,材料性能已可与ITO相比拟,结构为六方纤锌矿型。
其中铝掺杂的氧化锌薄膜研究较为广泛,它的突出优势是原料易得,制造成本低廉,无毒,易于实现掺杂,且在等离子体中稳定性好。
预计会很快成为新型的光伏TCO产品。
目前主要存在的问题是工业化大面积镀膜时的技术问题。
ITO镀膜玻璃培训

第二讲 ITO玻璃简介
第二讲 ITO玻璃简介
ITO是一种无色透明物质,具有良好的导电性,耐碱且易被 酸刻蚀。普遍应用于LCD、TP、CF、OLED、TFT等产品。
普通ITO玻璃由三部分构成:ITO层,SiO2层,玻璃基板。
LCD用ITO玻璃
ITO层 SIO2层 玻璃基板
第一讲 TCO 简介
美国矿产局有关不同元素的世界用量及产量的数据
元素 世界产量(吨/年) 世界用量(吨/年) 剩余产量(吨/年)
Ag 15,000
13,500
1,500
Bi 8,000
4,000
4,000
Cu 10,200,000 8,000,000 2,200,000
In 200
80 to 100 100
基板分类
碱 玻 璃— 钠钙玻璃,用于TN及STN LCD。板硝子NSG,旭硝子Asahi, 中央硝子Central Glass,
硼硅玻璃—德国肖特 Schott 铝硅玻璃—无碱硅酸铝玻璃,主要用于TFT- LCD。美国康宁Corning
第二讲 ITO玻璃简介
识别角2*5mm
浮法方向
相同角1.5*1.5mm
识别角
① 识别浮法方向:5mm的尺 寸方向与浮法方向平行。
② 识别膜面:将2*5mm的识 别角放在左上方,正对观 察者为ITO镀膜面。
③ 通常膜面是玻璃的锡面
第二讲 ITO玻璃简介
② ITO玻璃的分类
按基板类型分
TN
STN
SSTN
TN—原片只切割磨边不抛光 STN—普通等级型抛光原片 SSTN—特殊等级型抛光原片
Sb 122,300
78,200
ITO基础知识讲解

液晶显示器现已成为技术密集,资金密集型高新技术产业,透明导电玻璃则是LCD的三大主要材料之一。
液晶显示器之所以能显示特定的图形,就是利用导电玻璃上的透明导电电膜,经蚀刻制成特定形状的电极,上下导电玻璃制成液晶盒后,在这些电极上加适当电压信号,使具有偶极矩的液晶分子在电场作用下特定的方面排列,仅而显示出与电极波长相对应的图形。
在氧化物导电膜中,以掺Sn的In2O3(ITO)膜的透过率最高和导电性能最好,而且容易在酸液中蚀刻出微细的图形。
其透过率已达90%以上,ITO中其透过率和阻值分别由In2O3与Sn2O3之比例来控制,通常SnO2:In2O3=1:9。
ITO是一种N型氧化物半导体-氧化铟锡,ITO薄膜即铟锡氧化物半导体透明导电膜,通常有两回事个主要的性能指针:电阻率和光透过率。
目前ITO膜层之电阻率一般在5*10-4左右,最好可达5*10-5,已接近金属的电阻率,在实际应用时,常以方块电阻来表征ITO的导电性能,其透过率则可达90%以上,ITO膜之透过率和阻值分别由In2O3与Sn2O3之比例控制,增加氧化锢比例则可提高ITO之透过率,通常Sn2O3:In2O3=1:9,因为氧化锡之厚度超过200Å时,通常透明度已不够好---虽然导电性能很好。
如用是电流平行流经ITO脱层的情形,其中d为膜厚,I为电流,L1为在电流方向上膜厚层长度,L2为在垂直于电流方向上的膜层长主,当电流流过方形导电膜时,该层电阻R=PL1/dL2式中P为导电膜之电阻率,对于给定膜层,P和d可视为定值,P/d,当L1=L2时,怒火正方形膜层,无论方块大小如何,其电阻均为定值P/d,此即方块电阻定义:R□=P/d,式中R□单位为:奥姆/□(Ω/□),由此可所出方块电阻与IOT膜层电阻率P和ITO膜厚d有关且ITO膜阻值越低,膜厚越大。
目前在高档STN液晶显示屏中所用ITO玻璃,其R□可达10Ω/□左右,膜厚为100-200um,而一般低档TN产品的ITO玻璃R□为100-300Ω/□,膜厚为20-30um。
纳米材料在透明导电薄膜中的应用技巧

纳米材料在透明导电薄膜中的应用技巧透明导电薄膜是一种具有高透明度和良好导电性的薄膜材料,广泛应用于太阳能电池、触摸屏、柔性显示器等领域。
纳米材料在透明导电薄膜中的应用技巧被认为是提高其性能和稳定性的关键。
本文将探讨几种常见的纳米材料在透明导电薄膜中的应用技巧,以及它们对透明导电薄膜性能的影响。
一、氧化锌纳米线氧化锌纳米线是一种具有优良导电性和透明性的纳米材料,常用于制备透明导电薄膜。
其制备方法包括溶胶凝胶法、热氧化法和水热法等。
在制备过程中,可以通过控制氧化锌纳米线的尺寸和形貌来调节薄膜的导电性和透明度。
较短的纳米线有较高的透明度,而较长的纳米线具有更好的导电性能。
此外,还可以通过掺杂不同的元素来改善氧化锌纳米线的导电性能和稳定性。
二、碳纳米管碳纳米管是一种具有优异的电子传输性能和高透明度的纳米材料,被广泛应用于透明导电薄膜的制备中。
碳纳米管可以通过化学气相沉积、溶液旋涂和自组装等方法制备薄膜。
在制备过程中,可以调节碳纳米管的浓度和布局来控制薄膜的导电性和透明度。
较高浓度的碳纳米管可以提高薄膜的导电性,但会降低透明度。
同时,通过掺杂其他元素或者将碳纳米管与其他纳米材料复合,可以进一步提高薄膜的性能。
三、金属纳米颗粒金属纳米颗粒是一种常用的纳米材料用于制备透明导电薄膜的材料。
金属纳米颗粒具有优良的导电性和透明度,可以通过溶胶凝胶法、溶液法和物理气相沉积等方法制备薄膜。
在制备过程中,可以调节金属纳米颗粒的浓度和尺寸来调节薄膜的导电性和透明度。
较高浓度的金属纳米颗粒可以提高薄膜的导电性,但会降低透明度。
此外,通过合金化、包覆保护或者将金属纳米颗粒与其他纳米材料复合等方法,可以进一步提高薄膜的性能和稳定性。
四、导电聚合物导电聚合物是一类具有导电性和透明性的材料,可以用于制备透明导电薄膜。
导电聚合物可以通过溶液旋涂、电沉积和电子束蒸发等方法制备薄膜。
在制备过程中,可以通过改变聚合物的含量和分子结构来调节薄膜的导电性和透明度。
ito导电膜原理

ito导电膜原理ITO导电膜是一种常见的导电膜材料,具有优良的光学和电学性能。
它被广泛应用于电子显示器、太阳能电池、触摸屏等领域。
本文将介绍ITO导电膜的原理及其在各个领域的应用。
ITO导电膜的原理主要基于其材料特性。
ITO是铟锡氧化物(Indium Tin Oxide)的简称,它是一种无机材料,具有透明、导电的特性。
ITO薄膜通常通过物理气相沉积(PVD)或化学气相沉积(CVD)等方法制备。
ITO导电膜的导电机制主要是由于铟离子(In3+)和锡离子(Sn4+)在氧气的作用下形成了氧化物晶格,并通过掺杂的方式引入了一定数量的自由电子。
这些自由电子在ITO薄膜中能够自由移动,从而形成了良好的电子导电性。
同时,ITO薄膜的晶格结构对光的透过性也有一定影响,使得ITO导电膜既具有良好的导电性能,又具备较高的透光率。
ITO导电膜在电子显示器中的应用非常广泛。
例如,在液晶显示器中,ITO导电膜作为透明电极,被用于驱动液晶分子的排列,实现图像的显示。
而在有机发光二极管(OLED)中,ITO导电膜则用作电极材料,使得电子和空穴能够在导电膜中注入并发光。
此外,ITO 导电膜还可以用于电子墨水屏、柔性显示器等各种新型显示技术中。
除了电子显示器,ITO导电膜还在太阳能电池领域有着广泛的应用。
在太阳能电池中,ITO导电膜作为透明电极,用于收集光电池发出的电流。
由于ITO导电膜具有较高的透光率和导电性能,能够最大限度地提高太阳能电池的光电转换效率。
ITO导电膜还被广泛应用于触摸屏技术中。
触摸屏是一种通过感应用户触摸位置来实现交互的技术,而ITO导电膜则作为触摸屏的感应电极。
当用户触摸屏幕时,ITO导电膜上的电流会发生变化,从而被感应器检测到,并通过算法计算出触摸位置。
ITO导电膜在触摸屏技术中的应用使得触摸屏具有了高灵敏度和精准度。
ITO导电膜是一种重要的导电材料,其原理基于铟锡氧化物的导电特性。
它在电子显示器、太阳能电池、触摸屏等领域具有广泛的应用。
ito膜工作原理

ito膜工作原理ITO膜是一种常见的透明导电薄膜,广泛应用于电子信息、光电显示和太阳能电池等领域。
它的工作原理主要涉及到膜的结构以及导电性能。
首先,ITO膜的结构是多层复合膜结构,通常由几层不同的材料构成。
其中,导电层主要采用氧化铟锡(In2O3-SnO2,简称ITO)材料,由于其具有良好的导电性和透明性,成为电子信息、光电显示器件的首选导电材料。
除此之外,ITO膜还包括缓冲层、透明层等部分,不仅起到保护导电层的作用,还能增加膜的透过度和稳定性。
其次,ITO膜的导电性能与其晶格结构和表面形貌有很大关系。
ITO材料是一种多晶结构,其晶格结构和掺杂方式会直接影响其导电性能。
一般来说,在ITO膜制备过程中,采用掺铟掺锡方式,通过调控工艺参数(如温度、气压等)可以得到具有高导电性能的ITO膜。
同时,通过改变溶液浓度、热处理方式等,还可以影响ITO膜的表面形貌和晶格结构,从而得到不同性能的ITO膜。
最后,ITO膜在设备中的工作原理涉及到其导电性能。
由于ITO膜的优异导电性能和透射性能,它可以作为电极,参与光电器件的电荷传输和能量转换过程。
以光电显示器为例,ITO膜制成的电极和具有特定结构的液晶分子,可以实现电场调制显示。
而在太阳能电池中,ITO膜作为透明电极,可以使光能尽量透过,以激发太阳能电池的电荷传输和转换。
综上所述,ITO膜的工作原理主要与其结构、导电性能和设备应用有关系。
通过控制ITO膜的制备工艺和表面形貌,可以得到具有不同性能的ITO膜,进而应用于不同领域的光电器件中,为人们的生活、生产带来便利和贡献。
ITO导电玻璃及相关透明导电薄膜的原理及应用

ITO导电玻璃及相关透明导电薄膜的原理及应用当今世界正处于信息时代,平板显示器(flat panel display,FPD)是我们接受信息的一个重要视觉窗口,其在生产制造中都离不开ITO 导电玻璃,ITO导电玻璃可用于多种平板显示器,主要的有液晶显示器(LCD)、有机电致发光(OLED)显示器、触摸屏等。
由于平板显示器,尤其是液晶显示器在整个显示行业应用领域最为广泛,制造技术最为成熟。
液晶显示组件的发展,也就是由被动式矩阵驱动向列型(TN)/超扭向型(STN)液晶显示器,推向主动式矩阵驱动薄膜晶体管液晶显示器,并更加发展至所谓的新世代的显示器,-有机电发光显示器或有机发光二极管(OLED),无论如何发展而铟锡氧化物薄膜的重要性并无任何地变化。
使用于液晶显示器的ITO膜,不仅作为透明的画素电极之功能而且也作为简单矩阵型STN-LCD的扫描电极和信号电极,以及主动型TFT-LCD的共通电极和阵列电路中配线之重要角色,随着彩色化、高解析化和人机界面化(触控面板),促使相关液晶显示器和其它平面显示器的成长快速,因此本文我们重点介绍ITO导电玻璃在液晶显示器中的应用。
一、什么是ITOITO (indium tin oxide,氧化铟锡)透明导电薄膜的主要功能是在于其极佳的电极材料而应用于平面面板显示器,具有发热、热反射、电磁波防止和静电防止等不同的用途。
ITO导电玻璃是一种既透明又导电的玻璃,它采用磁控溅射沉积成膜技术,以ITO 材料作为溅射靶材,在玻璃基板上生成一层很薄的ITO 膜。
这层ITO 膜同时具有良好的导电性和透光性,适于制作透明显示电极,是平板显示器生产的重要原材料之一,玻璃基板的厚度通常只有0.3~1.1mm,它具有重量轻、透明度高、平整度高、有一定的机械硬度、容易切割加工等特点,因此被广泛应用于平板显示器上。
ITO 导电玻璃随着20世纪70年代初LCD显示器的兴起至今已经历了30 多年的历程,并从过去只能生产高电阻、小尺寸、普通表面、黑白显示的产品,发展到了现在能够生产低电阻、大尺寸、抛光表面、彩色显示的产品。
新型透明导电膜

新型透明导电膜新型透明导电膜(TCFs)是一种结合了高透明度和良好导电性的材料,广泛应用于触摸屏、液晶显示器、有机发光二极管(OLED)显示、太阳能电池和智能窗户等领域。
传统的透明导电膜主要基于氧化铟锡(ITO),但由于铟资源稀缺且成本较高,研究者们一直在寻找替代材料。
以下是几种新型透明导电膜的材料和技术:1. 银纳米线(AgNWs)膜:由银纳米线组成的网络结构具有很好的导电性和透明度。
银纳米线的直径通常在几十纳米到几百纳米之间,长度可达几微米。
通过优化纳米线的排列和密度,可以得到接近ITO性能的透明导电膜。
2. 石墨烯膜:石墨烯是一种由单层碳原子以六边形排列构成的二维材料,具有极高的电导率和透明度。
石墨烯膜可通过化学气相沉积(CVD)、剥离法或氧化还原法等多种方法制备。
石墨烯的高导电性和机械强度使其成为一种有前景的透明导电材料。
3. 导电聚合物膜:如聚吡咯(PPy)、聚噻吩(PTh)和聚苯胺(PANI)等导电聚合物,通过掺杂可以显著提高其导电性,同时保持较好的透明度。
导电聚合物膜可以通过溶液加工法制备,具有良好的柔性和可加工性。
4. 二氧化钼(MoO3)和二硫化钼(MoS2)膜:过渡金属氧化物和硫化物也被研究作为透明导电膜的材料,它们具有良好的电导率和可见光范围内的高透光率。
5. 碳纳米管(CNTs)膜:碳纳米管是由石墨烯卷曲形成的圆筒状结构,具有优异的电导性、机械强度和透明度。
通过控制CNTs的排列和密度,可以制备出性能优异的透明导电膜。
新型透明导电膜的研发目标是在保持或提高透明度的同时,降低成本、提高柔韧性、增强耐用性,并减少对稀有或有毒元素的依赖。
这些材料和技术的进步有望推动透明电子和能源领域的创新和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新业务知识教材—透明导电膜部分
一、触摸屏发展的背景 二、触摸屏的原理以及发展历程 1、触摸屏—绝对定位元件 2、触摸屏的种类以及工作原理 3、各种方式触摸屏的特点比较以及应用的领域
三、 透明导电膜的功能以及材料组成 1、 透明导电膜在触摸屏中的作用 2、 透明导电膜的材料特点
四、 透明导电膜的技术要求 1、 透明导电膜的技术要求 2、 透明导电膜的技术指标
五、透明导电膜的生产工艺 1、溅射法生产工艺介绍 2、涂布法生产工艺介绍 3、其他方法简介
六、触摸屏的发展趋势以及面临的问题 触摸屏及透明导电膜知识简介 前言
随着计算机技术的快速发展,人机界面的沟通成了计算机技术的一个热点,触摸屏凭着优秀的人机沟通方式,成为了当今发展最快的技术。 触摸屏主要应用于个人便携式信息产品(如使用手写输入技术的PC、PDA、AV等)之外,应用领域遍及信息家电、公共信息(如电子政务、银行、医院、电力等部门的业务查询等)、电子游戏、通讯设备、办公室自动化设备、信息收集设备及工业设备等等。2009年全球触摸屏产值达43亿美元,估计2016年将成长到140亿美元,年复合成长率达18%。国内市场约占全球市场的20%,约为8.6亿美元。 第一章:触摸屏发展的背景
在人类渴求讯息实时联系与传递的欲望下,个人化电子用品未来将有爆发性的需求。然而,在机动与方便性的诉求下,个人化的电子工具通常使用在不安稳的场合,如何快速简便的使用随身的电子工具,是使用者最大期待。其中最大的障碍在于人与机器间的沟通。所以,是否具有快速简便的人机沟通接口,将是未来电子化产品最重要的功能。 如果说1964年鼠标的发明,把电脑操作带入了一个新的时代,那么触摸屏的出现,则使图形化的人机交互界面变得更为直观易用。1971年,美国人SamHurst发明了世界上第一个触摸传感器。虽然这个仪器和我们今天看到的触摸屏并不一样,却被视为触摸屏技术研发的开端。 当年,SamHurst在肯尼迪大学当教师,因为每天要处理大量的图形数据而不胜其烦,就开始琢磨怎样提高工作效率,用最简单的方法搞定这些该死的图形。他把自己的三间地下室改造成了车间,一间用来加工木材,一间制造电子元件,一间用来装配这些零件,并最终制造出了最早的触摸屏。这种最早的触摸屏被命名为“AccuTouch”,由于是手工组装,一天生产几台设备。不久,SamHurst成立了自己的公司,并和西门子公司合作,不断完善这项技术。这个时期的触摸屏技术主要被美国军方采用,直到1982年,Sam Hurst的公司在美国一次科技展会上展出了33台安装了触摸屏的电视机,平民百姓才第一次亲手“摸”到神奇的触摸屏。触摸屏早期多被装于工控计算机、POS机终端等工业或商用设备之中。2007年iPhone手机的推出,成为触控行业发展的一个里程碑。苹果公司把一部至少需要20个按键的移动电话,设计得仅需三四个键就能搞定,剩余操作则全部交由触控屏幕完成。除赋予了使用者更加直接、便捷的操作体验之外,还使手机的外形变得更加时尚轻薄,增加了人机直接互动的亲切感,引发消费者的热烈追捧,同时也开启了触摸屏向主流操控界面迈进的征程。 触摸屏的优点:人类自婴儿时期就具有碰触喜爱事物的本能,因为碰触是表达意志最简单快速的方法。所以,触控屏幕可使人与机器间以更友善直接的方式沟通,使个人电子产品的使用更加人性化。有句广告词说「科技始终来自于人性」,这的确对于触控屏幕的重要性,作了最完美的诠释。 第二章:触摸屏的原理以及发展历程
触摸屏技术自从应用于公共服务领域和个人娱乐设备,人们逐渐习惯用“摸”的方式,在电子售货机上选购商品,在卡拉OK机上点播歌曲,在银行、医院、图书馆、机场查询自己需要的信息。1991年,触摸屏正式进入中国。1996年中国自主研发的触摸自助一体机投入生产。今天我们在大街小巷看到的“数字北京信息亭”就离不开触摸屏技术,有了它,即使不会使用电脑的人也能轻易查到“我在哪里”、“我要到哪去”。 1、触摸屏—绝对定位元件 触摸屏---绝对定位元件。所谓触摸屏,从市场概念来讲,就是一种人人都会使用的计算机输入设备,或者说是人人都会使用的与计算机沟通的设备。从技术原理角度来讲,触摸屏是一套透明的绝对定位系统,首先它必须保证是透明的,因此它必须通过材料科技来解决透明问题,其次它是绝对坐标,手指摸哪就是哪,不需要第二个动作,不像鼠标,是相对定位的一套系统;再其次就是能检测手指的触摸动作并且判断手指位置。 2、触摸屏的种类以及工作原理 触摸屏目前主要的形式分为:电阻式触摸屏、电容式触摸屏、声波式触摸屏、红外线式触摸屏。 电阻式触摸屏的工作原理以及构造 电阻触摸屏主要是通过测量电阻的大小来实现定位的。电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,在强化玻璃表面分别涂上两层ITO透明氧化金属导电层。利用压力感应进行控制。当手指触摸屏幕时。两层导电层在触摸点位置就有了接触,电阻发生变化。在X 和Y 两个方向上产生信号,然后传送到触摸屏控制器。控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。电阻式触摸屏不怕尘埃、水及污垢影响,能在恶劣环境下工作。但由于复合薄膜的外层采用塑胶材料,抗爆性较差,使用寿命受到一定影响。
电阻式触摸屏结果示意图:
图1 电容式触摸屏的工作原理以及构造 电容式触摸屏主要是通过人体的电流感应进行工作的,当有导电物体触碰时,就会改变触点的电容,从而可以探测出触摸的位置。电容式触摸屏对于戴手套的手或手持不导电的物体触摸时没有反应,这是因为增加了更为绝缘的介质。电容触摸屏能很好地感应轻微及快速触摸、防刮擦、不怕尘埃、水及污垢影响,适合恶劣环境下使用。但由于电容随温度、湿度或环境电场的不同而变化,故其稳定性较差,分辨率低,易漂移。 电容式触摸屏也需要使用ITO 材料,而且它的功耗低寿命长,但是较高的成本使它之前不太受关注。Apple 推出的iPhone 提供的友好人机界面,流畅操作性能使电容式触摸屏受到了市场的追捧,各种电容式触摸屏产品纷纷面世。而且随着工艺进步和批量化,它的成本不断下降,开始显现逐步取代电阻式触摸屏的趋势。 表面电容触摸屏只采用单层的ITO,当手指触摸屏表面时,就会有一定量的电荷转移到人体。为了恢复这些电荷损失,电荷从屏幕的四角补充进来,各方向补充的电荷量和触摸点的距离成比例,我们可以由此推算出触摸点的位置。 表面电容ITO 涂层通常需要在屏幕的周边加上线性化的金属电极,来减小角落/边缘效应对电场的影响。有时ITO 涂层下面还会有一个ITO 屏蔽层,用来阻隔噪音。表面电容触摸屏至少需要校正一次才能使用。 感应电容触摸屏与表面电容触摸屏相比,可以穿透较厚的覆盖层,而且不需要校正。感应电容式在两层ITO 涂层上蚀刻出不同的ITO 模块,需要考虑模块的总阻抗,模块之间的连接线的阻抗,两层ITO 模块交叉处产生的寄生电容等因素。而且为了检测到手指触摸,ITO 模块的面积应该比手指面积小。 电容式触摸屏示意图
图2 表面声波式触摸屏的工作原理以及构造 表面声波是一种沿介质表面传播的机械波。该种触摸屏的角上装有超声波换能器。能发送一种高频声波跨越屏幕表面,当手指触及屏幕时,触点上的声波即被阻止,由此确定坐标位置。表面声波触摸屏不受温度、湿度等环境因素影响,分辨率极高,有极好的防刮性,寿命长,透光率高,能保持清晰透亮的图像质量,最适合公共场所使用。但尘埃、水及污垢会严重影响其性能,需要经常维护,保持屏面的光洁。 表面声波式触摸屏输入是一种最新颖的触摸输入技术。该触摸屏是由传送换能器、接收换能器、反射板及控制器所组成。它不采用膜层结构,而是采用廉价的压电陶瓷换能器。该换能器在屏面上看不见,但能发送耳朵听不到的表面声波(见图)。位于触摸输入屏四周的反射阵列对表面声波进行空间取样,再次向多路平行路径反射。位于各发送器对面的反射声波检测阵列合成每束反射声波,变成连续的反射声波,变成连续的反射声波交替地对水平和垂直方向进行扫描。手指一触摸到触摸输入屏某个部位,该部位的表面波强度便能与触摸压力成正比地衰减。 表面声波式触摸屏示意图
图3 红外线式触摸屏的工作原理以及构造 红外线式触摸屏在显示器的前面安装一个电路板外框,电路板在屏幕四边排布红外发射管和红外接收管,一一对应形成横竖交叉的红外线矩阵。用户在触摸屏幕时,手指就会挡住经过该位置的横竖两条红外线,因而可以判断出触摸点在屏幕的位置。任何触摸物体都可改变触点上的红外线而实现触摸屏操作。红外触摸屏不受电流、电压和静电干扰,适宜某些恶劣的环境条件。其主要优点是价格低廉、安装方便、不需要卡或其它任何控制器,可以在各档次的计算机上应用。 红外线式触摸屏示意图 图4 3、各种方式触摸屏的特点比较以及应用的领域: 线性度 精确度 可测尺寸 透明度 耐用性 多点触摸 适用的环境 红外 ★★★★★ ★★★ ★★★★★ ★★★★★ ★★★ 不支持 适用于恶劣环境 表面声波 ★★★ ★★★ ★★ ★★★ ★★★★★ 不支持 公共场所,需维护 表面电容 ★★ ★★ ★★ ★★★★★ ★★★★★ 不支持 适用于恶劣环境,但稳定性较差 电阻 ★★★★ ★★★★ ★★★★ ★★ ★ 不支持 适用于恶劣环境 感应电★★★★★★★★★ ★★★★★★支持 适用于